植物生态学报 ›› 2024, Vol. 48 ›› Issue (10): 1361-1373.DOI: 10.17521/cjpe.2023.0287 cstr: 32100.14.cjpe.2023.0287
收稿日期:
2023-10-08
接受日期:
2024-06-14
出版日期:
2024-10-20
发布日期:
2024-06-24
通讯作者:
刘倩愿
基金资助:
LIU Qian-Yuan*(), YU Zhen-Dong, ZHANG Wei-Wei
Received:
2023-10-08
Accepted:
2024-06-14
Online:
2024-10-20
Published:
2024-06-24
Contact:
LIU Qian-Yuan
Supported by:
摘要: 土壤环境与植物自身属性影响着植物氮吸收, 明确河北坝上不同植物根系氮吸收偏好及其与土壤属性和根性状的关系, 可以增进对植物氮获取策略的理解, 同时为河北坝上混交防护林的构建提供理论依据。该研究选取张家口市康保县常见的农田防护林树种: 榆树(Ulmus pumila)、小叶杨(Populus simonii)、柠条锦鸡儿(Caragana korshinskii)和宁夏枸杞(Lycium barbarum)为研究对象, 采用15N同位素示踪技术测定植物根系对不同形态氮(硝态氮、铵态氮和甘氨酸氮)的吸收速率及其偏好, 并分析其与根系形态、构型和化学性状以及土壤环境的相关关系。结果显示: 宁夏枸杞根系偏好吸收硝态氮(硝态氮占总氮吸收的贡献率为46.05%), 其次是甘氨酸氮和铵态氮。小叶杨、榆树和柠条锦鸡儿根系各形态氮吸收的贡献率为铵态氮(44.91%-68.68%) >甘氨酸氮(22.63%-45.11%) >硝态氮(8.69%-9.98%)。Spearman相关性和冗余分析显示: 硝态氮的吸收速率与根直径和组织密度显著负相关, 与比根长和比表面积显著正相关, 即具有小的直径和组织密度、大的比根长和比表面积的根系表现出更高的硝态氮吸收速率。根分支强度与甘氨酸氮和总氮吸收速率显著正相关, 即具有高分支强度的根系其有机和无机氮吸收速率更高。根氮含量与铵态氮、甘氨酸氮和总氮吸收速率均显著负相关, 即低氮含量的根系表现出更高的氮吸收速率。4种防护林植物对3种形态氮的吸收存在显著差异, 其不仅与土壤氮含量有关, 还与植物根系自身的形态、构型和化学性状有关。基于植物氮吸收偏好以及根系结构性状与土壤肥力的影响综合考虑树种搭配, 在养分贫瘠的环境需减小植物的种间竞争, 最大限度地利用养分, 因此建议构建乔木-灌木(小叶杨-宁夏枸杞、榆树-宁夏枸杞)、灌木-灌木(宁夏枸杞-柠条锦鸡儿)混交防护林, 或是在原有小叶杨纯林或榆树纯林的林下补栽灌木宁夏枸杞。研究结果为河北坝上地区多树种防护林的构建提供理论依据。
刘倩愿, 俞振东, 张微微. 河北坝上乔灌木植物根系无机和有机氮吸收速率及其偏好. 植物生态学报, 2024, 48(10): 1361-1373. DOI: 10.17521/cjpe.2023.0287
LIU Qian-Yuan, YU Zhen-Dong, ZHANG Wei-Wei. Uptake rate and preference of inorganic and organic nitrogen in roots of tree and shrub plants in Bashang, Hebei, China. Chinese Journal of Plant Ecology, 2024, 48(10): 1361-1373. DOI: 10.17521/cjpe.2023.0287
防护林 Shelterbelt | 经纬度 Latitude and longitude | 海拔 Altitude (m) | 年龄 Age (a) | 株高 Tree height (m) | 基径 Basal diameter (cm) | 防护林长度 Length of shelterbelt (m) | 防护林宽度 Width of shelterbelt (m) | 树间距 Spacing of trees (m) |
---|---|---|---|---|---|---|---|---|
小叶杨 Populus simonii | 114.74° E, 42.02° N | 1 445 | 29 | 8.10 ± 0.41 | 25.29 ± 2.16 | 1 000 | 10 | 2.5 |
榆树 Ulmus pumila | 114.79° E, 42.12° N | 1 312 | 36 | 6.94 ± 0.53 | 21.16 ± 1.96 | 1 800 | 25 | 2.5 |
宁夏枸杞 Lycium barbarum | 114.74° E, 41.93° N | 1 448 | 15 | 2.24 ± 0.16 | 4.17 ± 0.93 | 500 | 5 | 0.1 |
柠条锦鸡儿 Caragana korshinskii | 114.80° E, 42.13° N | 1 283 | 17 | 0.89 ± 0.13 | 1.30 ± 0.15 | 5 000 | 10 | 0.1 |
表1 河北坝上4种防护林的基本信息
Table 1 Information of four study shelterbelts in Bashang region, Hebei
防护林 Shelterbelt | 经纬度 Latitude and longitude | 海拔 Altitude (m) | 年龄 Age (a) | 株高 Tree height (m) | 基径 Basal diameter (cm) | 防护林长度 Length of shelterbelt (m) | 防护林宽度 Width of shelterbelt (m) | 树间距 Spacing of trees (m) |
---|---|---|---|---|---|---|---|---|
小叶杨 Populus simonii | 114.74° E, 42.02° N | 1 445 | 29 | 8.10 ± 0.41 | 25.29 ± 2.16 | 1 000 | 10 | 2.5 |
榆树 Ulmus pumila | 114.79° E, 42.12° N | 1 312 | 36 | 6.94 ± 0.53 | 21.16 ± 1.96 | 1 800 | 25 | 2.5 |
宁夏枸杞 Lycium barbarum | 114.74° E, 41.93° N | 1 448 | 15 | 2.24 ± 0.16 | 4.17 ± 0.93 | 500 | 5 | 0.1 |
柠条锦鸡儿 Caragana korshinskii | 114.80° E, 42.13° N | 1 283 | 17 | 0.89 ± 0.13 | 1.30 ± 0.15 | 5 000 | 10 | 0.1 |
物种 Species | pH | 含水量 Water content (%) | 有机碳含量 Organic carbon content (g·kg-1) | 全氮含量 Total nitrogen content (g·kg-1) | 铵态氮含量 Ammonium nitrogen content (mg·kg-1) | 硝态氮含量 Nitrate nitrogen content (mg·kg-1) | 甘氨酸氮含量 Glycine nitrogen content (mg·kg-1) |
---|---|---|---|---|---|---|---|
小叶杨 Populus simonii | 8.31 ± 0.04ab | 14.18 ± 0.93b | 15.18 ± 0.79ab | 1.81 ± 0.24ab | 6.80 ± 0.52a | 20.84 ± 1.84b | 0.04 ± 0.01a |
榆树 Ulmus pumila | 8.41 ± 0.09a | 16.72 ± 2.03ab | 14.46 ± 0.87bc | 1.50 ± 0.13b | 6.66 ± 0.65a | 34.21 ± 3.18a | 0.04 ± 0.01a |
宁夏枸杞 Lycium barbarum | 8.07 ± 0.11b | 21.02 ± 0.93a | 18.06 ± 1.27a | 2.23 ± 0.18a | 6.56 ± 0.28a | 39.99 ± 3.13a | 0.03 ± 0.00ab |
柠条锦鸡儿 Caragana korshinskii | 8.49 ± 0.01a | 16.98 ± 0.62ab | 11.55 ± 0.50c | 1.61 ± 0.12b | 6.41 ± 0.24a | 11.59 ± 1.31c | 0.02 ± 0.00b |
表2 河北坝上4种防护林土壤属性(平均值±标准误)
Table 2 Soil characteristics of four shelterbelts in Bashang region, Hebei (mean ± SE)
物种 Species | pH | 含水量 Water content (%) | 有机碳含量 Organic carbon content (g·kg-1) | 全氮含量 Total nitrogen content (g·kg-1) | 铵态氮含量 Ammonium nitrogen content (mg·kg-1) | 硝态氮含量 Nitrate nitrogen content (mg·kg-1) | 甘氨酸氮含量 Glycine nitrogen content (mg·kg-1) |
---|---|---|---|---|---|---|---|
小叶杨 Populus simonii | 8.31 ± 0.04ab | 14.18 ± 0.93b | 15.18 ± 0.79ab | 1.81 ± 0.24ab | 6.80 ± 0.52a | 20.84 ± 1.84b | 0.04 ± 0.01a |
榆树 Ulmus pumila | 8.41 ± 0.09a | 16.72 ± 2.03ab | 14.46 ± 0.87bc | 1.50 ± 0.13b | 6.66 ± 0.65a | 34.21 ± 3.18a | 0.04 ± 0.01a |
宁夏枸杞 Lycium barbarum | 8.07 ± 0.11b | 21.02 ± 0.93a | 18.06 ± 1.27a | 2.23 ± 0.18a | 6.56 ± 0.28a | 39.99 ± 3.13a | 0.03 ± 0.00ab |
柠条锦鸡儿 Caragana korshinskii | 8.49 ± 0.01a | 16.98 ± 0.62ab | 11.55 ± 0.50c | 1.61 ± 0.12b | 6.41 ± 0.24a | 11.59 ± 1.31c | 0.02 ± 0.00b |
图1 河北坝上4种植物氮吸收速率(平均值±标准误)。不同小写字母表示同一物种不同形态氮吸收速率的差异显著, 不同大写字母表示不同物种之间氮吸收差异显著(p < 0.05)。
Fig. 1 Nitrogen (N) uptake rates of four plants in Bashang region, Hebei (mean ± SE). Different lowercase letters represent significant differences in uptake rates for different N forms by the same species, and different uppercase letters represent significant differences among plant species (p < 0.05).
图2 河北坝上4种植物各形态氮吸收占总氮吸收的贡献率(平均值±标准误)。不同小写字母表示同一物种不同形态氮吸收速率的差异显著, 不同大写字母表示不同物种之间氮吸收差异显著(p < 0.05)。
Fig. 2 Contribution of each nitrogen (N) form to total N uptake of plants in Bashang region, Hebei (mean ± SE). Different lowercase letters represent significant differences in uptake rates for different N forms by the same species, and different uppercase letters represent significant differences among species (p < 0.05).
图3 河北坝上4种植物根系性状(平均值±标准误)。不同大写字母表示不同物种间差异显著(p < 0.05)。Ck, 柠条锦鸡儿; Lb, 宁夏枸杞; Ps, 小叶杨; Up, 榆树。
Fig. 3 Root traits of four plants in Bashang region, Hebei (mean ± SE). Different uppercase letters indicate significant differences among species (p < 0.05). Ck, Caragana korshinskii; Lb, Lycium barbarum; Ps, Populus simonii; Up, Ulmus pumila.
指标 Factor | 缩写 Abbreviation | 氮吸收速率 Nitrogen uptake rate (µg·g-1·h-1) | ||||
---|---|---|---|---|---|---|
铵态氮 Ammonium nitrogen | 硝态氮 Nitrate nitrogen | 甘氨酸氮 Glycine nitrogen | 总氮 Total nitrogen | |||
根性状 Root trait | 根直径 Root diameter (mm) | AD | -0.021 | -0.688** | -0.108 | 0.003 |
根组织密度 Root tissue density (g·cm-2) | RTD | 0.264 | -0.637** | 0.099 | 0.290 | |
比根长 Specific root length (m·g-1) | SRL | -0.287 | 0.694** | -0.094 | -0.309 | |
比表面积 Specific surface area (cm2·g-1) | SSA | -0.324 | 0.714** | -0.100 | -0.335 | |
分支比 Branching ratio | BR | -0.358 | -0.218 | -0.176 | -0.235 | |
分支强度 Branching intensity (cm-1) | BI | 0.403 | 0.175 | 0.638** | 0.512* | |
根碳含量 Root carbon content (%) | RC | -0.592* | 0.053 | -0.594* | -0.662** | |
根氮含量 Root nitrogen content (%) | RN | -0.816** | 0.061 | -0.685** | -0.758* | |
根碳氮比 Ratio of carbon to nitrogen | C:N | 0.823* | -0.109 | 0.700** | 0.765** | |
土壤 Soil | 土壤pH Soil pH | pH | 0.137 | -0.492 | 0.225 | 0.308 |
土壤含水量 Soil water content (%) | SWC | -0.686** | 0.346 | -0.500* | -0.571* | |
土壤有机碳含量 Soil organic carbon content (g·kg-1) | SC | -0.072 | 0.613* | -0.079 | -0.115 | |
土壤全氮含量 Soil total nitrogen content (g·kg-1) | SN | -0.442 | 0.584* | -0.443 | -0.462 | |
土壤铵态氮含量 Soil ammonium nitogen content (mg·kg-1) | SAM | -0.035 | 0.448 | 0.015 | 0.082 | |
土壤硝态氮含量 Soil nitrate nitogen content (mg·kg-1) | SNT | -0.275 | 0.750** | 0.088 | -0.156 | |
土壤甘氨酸氮含量 Soil glycine nitogen content (mg·kg-1) | SGLY | 0.564* | 0.290 | 0.490 | 0.507* |
表3 河北坝上4种植物根氮吸收速率与根性状和土壤属性的Spearman相关性分析
Table 3 Spearman’s correlations between root nitrogen uptake rates and root traits and soil characteristics of four plants in Bashang region, Hebei
指标 Factor | 缩写 Abbreviation | 氮吸收速率 Nitrogen uptake rate (µg·g-1·h-1) | ||||
---|---|---|---|---|---|---|
铵态氮 Ammonium nitrogen | 硝态氮 Nitrate nitrogen | 甘氨酸氮 Glycine nitrogen | 总氮 Total nitrogen | |||
根性状 Root trait | 根直径 Root diameter (mm) | AD | -0.021 | -0.688** | -0.108 | 0.003 |
根组织密度 Root tissue density (g·cm-2) | RTD | 0.264 | -0.637** | 0.099 | 0.290 | |
比根长 Specific root length (m·g-1) | SRL | -0.287 | 0.694** | -0.094 | -0.309 | |
比表面积 Specific surface area (cm2·g-1) | SSA | -0.324 | 0.714** | -0.100 | -0.335 | |
分支比 Branching ratio | BR | -0.358 | -0.218 | -0.176 | -0.235 | |
分支强度 Branching intensity (cm-1) | BI | 0.403 | 0.175 | 0.638** | 0.512* | |
根碳含量 Root carbon content (%) | RC | -0.592* | 0.053 | -0.594* | -0.662** | |
根氮含量 Root nitrogen content (%) | RN | -0.816** | 0.061 | -0.685** | -0.758* | |
根碳氮比 Ratio of carbon to nitrogen | C:N | 0.823* | -0.109 | 0.700** | 0.765** | |
土壤 Soil | 土壤pH Soil pH | pH | 0.137 | -0.492 | 0.225 | 0.308 |
土壤含水量 Soil water content (%) | SWC | -0.686** | 0.346 | -0.500* | -0.571* | |
土壤有机碳含量 Soil organic carbon content (g·kg-1) | SC | -0.072 | 0.613* | -0.079 | -0.115 | |
土壤全氮含量 Soil total nitrogen content (g·kg-1) | SN | -0.442 | 0.584* | -0.443 | -0.462 | |
土壤铵态氮含量 Soil ammonium nitogen content (mg·kg-1) | SAM | -0.035 | 0.448 | 0.015 | 0.082 | |
土壤硝态氮含量 Soil nitrate nitogen content (mg·kg-1) | SNT | -0.275 | 0.750** | 0.088 | -0.156 | |
土壤甘氨酸氮含量 Soil glycine nitogen content (mg·kg-1) | SGLY | 0.564* | 0.290 | 0.490 | 0.507* |
图4 根性状(A)和土壤属性(B)对河北坝上4种植物氮吸收速率影响的冗余分析(RDA)。AD, 根平均直径; AMU, 铵态氮吸收速率; BI, 根分支强度; BR, 根分支比; C:N, 根碳氮比; GLYU, 甘氨酸吸收速率; NTU, 硝态氮吸收速率; RC, 根碳含量; RN, 根氮含量; RTD, 根组织密度; SAM, 土壤铵态氮含量; SC, 土壤有机碳含量; SGLY, 土壤甘氨酸含量; SN, 土壤全氮含量; SNT, 土壤硝态氮含量; SRL, 比根长; SSA, 根比表面积; SWC, 土壤含水量; TNU, 总氮吸收速率。
Fig. 4 Redundancy analysis (RDA) on the influence of root traits (A) and soil characteristics (B) on nitrogen uptake rates of four plants in Bashang region, Hebei. AD, root average diameter; AMU, ammonium nitrogen uptake rate; BI, root branching intensity; BR, root branching ratio; C:N, the ratio of root carbon to nitrogen content; GLYU, glycine nitrogen uptake rate; NTU, nitrate nitrogen uptake rate; RC, root carbon content; RN, root nitrogen content; RTD, root tissue density; SAM, soil ammonium nitrogen content; SC, soil organic carbon content; SGLY, soil glycinate nitrogen content; SN, soil total nitrogen content; SNT, soil nitrate nitrogen content; SRL, specific root length; SSA, root specific surface area; SWC, soil water content; TNU, total nitrogen uptake rate.
根性状 Root trait | 土壤属性 Soil characteristics | ||||||
---|---|---|---|---|---|---|---|
土壤pH Soil pH | 含水量 Water content (%) | 有机碳含量 Organic carbon content (g·kg-1) | 全氮含量 Total nitrogen content (g·kg-1) | 铵态氮含量 Ammonium nitogen content (mg·kg-1) | 硝态氮含量 Nitrate nitogen content (mg·kg-1) | 甘氨酸氮含量 Glycine nitogen content (mg·kg-1) | |
根直径 Root diameter (mm) | 0.760** | -0.293 | -0.817** | -0.522* | -0.296 | -0.776** | -0.543* |
根组织密度 Root tissue density (g·cm-2) | 0.751** | -0.472 | -0.880** | -0.555* | -0.265 | -0.840** | -0.397 |
比根长 Specific root length (m·g-1) | -0.817** | 0.476 | 0.871** | 0.591* | 0.265 | 0.879** | 0.410 |
比表面积 Specific surface area (cm2·g-1) | -0.803** | 0.497 | 0.856** | 0.585* | 0.250 | 0.888** | 0.373 |
分支比 Branching ratio | 0.244 | 0.179 | -0.391 | -0.229 | -0.115 | -0.268 | -0.731** |
分支强度 Branching intensity (cm-1) | -0.169 | -0.165 | 0.262 | -0.396 | -0.179 | 0.388 | 0.383 |
根碳含量 Root carbon content (%) | -0.305 | 0.206 | 0.241 | 0.275 | -0.324 | 0.082 | -0.392 |
根氮含量 Root nitrogen content (%) | -0.128 | 0.675** | 0.090 | 0.282 | -0.075 | 0.230 | -0.594* |
根碳氮比 Ratio of carbon to nitrogen | 0.143 | -0.782** | -0.115 | -0.366 | -0.041 | -0.274 | 0.575* |
表4 河北坝上4种植物根性状和土壤属性的Spearman相关性分析
Table 4 Spearman’s correlations between root traits and soil characteristics of four plants in Bashang region, Hebei
根性状 Root trait | 土壤属性 Soil characteristics | ||||||
---|---|---|---|---|---|---|---|
土壤pH Soil pH | 含水量 Water content (%) | 有机碳含量 Organic carbon content (g·kg-1) | 全氮含量 Total nitrogen content (g·kg-1) | 铵态氮含量 Ammonium nitogen content (mg·kg-1) | 硝态氮含量 Nitrate nitogen content (mg·kg-1) | 甘氨酸氮含量 Glycine nitogen content (mg·kg-1) | |
根直径 Root diameter (mm) | 0.760** | -0.293 | -0.817** | -0.522* | -0.296 | -0.776** | -0.543* |
根组织密度 Root tissue density (g·cm-2) | 0.751** | -0.472 | -0.880** | -0.555* | -0.265 | -0.840** | -0.397 |
比根长 Specific root length (m·g-1) | -0.817** | 0.476 | 0.871** | 0.591* | 0.265 | 0.879** | 0.410 |
比表面积 Specific surface area (cm2·g-1) | -0.803** | 0.497 | 0.856** | 0.585* | 0.250 | 0.888** | 0.373 |
分支比 Branching ratio | 0.244 | 0.179 | -0.391 | -0.229 | -0.115 | -0.268 | -0.731** |
分支强度 Branching intensity (cm-1) | -0.169 | -0.165 | 0.262 | -0.396 | -0.179 | 0.388 | 0.383 |
根碳含量 Root carbon content (%) | -0.305 | 0.206 | 0.241 | 0.275 | -0.324 | 0.082 | -0.392 |
根氮含量 Root nitrogen content (%) | -0.128 | 0.675** | 0.090 | 0.282 | -0.075 | 0.230 | -0.594* |
根碳氮比 Ratio of carbon to nitrogen | 0.143 | -0.782** | -0.115 | -0.366 | -0.041 | -0.274 | 0.575* |
[1] |
Ashton IW, Miller AE, Bowman WD, Suding KN (2010). Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology, 91, 3252-3260.
PMID |
[2] |
Bloom AJ, Sukrapanna SS, Warner RL (1992). Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiology, 99, 1294-1301.
DOI PMID |
[3] | Bradford MA (2014). Ecology: good dirt with good friends. Nature, 505, 486-487. |
[4] |
Britto DT, Kronzucker HJ (2013). Ecological significance and complexity of N-source preference in plants. Annals of Botany, 112, 957-963.
DOI PMID |
[5] |
Bueno A, Greenfield L, Pritsch K, Schmidt S, Simon J (2019). Responses to competition for nitrogen between subtropical native tree seedlings and exotic grasses are species-specific and mediated by soil N availability. Tree Physiology, 39, 404-416.
DOI PMID |
[6] | Dai LM (2020). A Study on Plants Nitrogen Uptake Preference Characteristics in Temperate Forests. Master degree dissertation, Northeastern University, Shenyang. |
[ 戴陆明(2020). 温带森林植物氮吸收偏好特性研究. 硕士学位论文, 东北大学, 沈阳.] | |
[7] | Dai SL (2008). Study on the Relationship Between Land Use and Soil Erosion in Kangbao County. Master degree dissertation, Capital Normal University, Beijing. |
[ 代士良 (2008). 康保县土地利用与土壤侵蚀关系研究. 硕士学位论文, 首都师范大学, 北京.] | |
[8] | Du E, Terrer C, Pellegrini AFA, Ahlström A, van Lissa CJ, Zhao X, Xia N, Wu X, Jackson RB (2020). Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience, 13, 221-226. |
[9] | Erktan A, McCormack ML, Roumet C (2018). Frontiers in root ecology: recent advances and future challenges. Plant and Soil, 424, 1-9. |
[10] |
Fay PA, Prober SM, Harpole WS, Knops JMH, Bakker JD, Borer ET, Lind EM, MacDougall AS, Seabloom EW, Wragg PD, Adler PB, Blumenthal DM, Buckley YM, Chu C, Cleland EE, et al. (2015). Grassland productivity limited by multiple nutrients. Nature Plants, 1, 15080. DOI: 10.1038/nplants.2015.80.
PMID |
[11] | Fu YX, Wang L, Peng S, Wang HY, Chang CP (2014). Research on windproof efficiency and type configuration of farmland shelterbelt in Bashang region of Hebei Province—Taking Kangbao County as an example. Research of Soil and Water Conservation, 21, 279-283. |
[ 付亚星, 王乐, 彭帅, 王红营, 常春平 (2014). 河北坝上农田防护林防风效能及类型配置研究——以河北省康保县为例. 水土保持研究, 21, 279-283.] | |
[12] |
Gallet-Budynek A, Brzostek E, Rodgers VL, Talbot JM, Hyzy S, Finzi AC (2009). Intact amino acid uptake by northern hardwood and conifer trees. Oecologia, 160, 129-138.
DOI PMID |
[13] | Gao L, Cui X, Hill PW, Guo Y (2020). Uptake of various nitrogen forms by co-existing plant species in temperate and cold-temperate forests in northeast China. Applied Soil Ecology, 147, 103398. DOI: 10.1016/j.apsoil.2019.103398. |
[14] |
Gessler A, Schneider S, VON Sengbusch D, Weber P, Hanemann U, Huber C, Rothe A, Kreutzer K, Rennenberg H (1998). Field and laboratory experiments on net uptake of nitrate and ammonium by the roots of spruce (Picea abies) and beech (Fagus sylvatica) trees. New Phytologist, 138, 275-285.
DOI PMID |
[15] | Gu JC, Wang YN, Xiao LJ, Gao GQ (2019). Morphological and structural characteristics of 1-5 order roots in litter and soil horizons of Larix gmelinii Rupr. plantation. Journal of Northeast Forestry University, 47(4), 33-37. |
[ 谷加存, 王亚楠, 肖立娟, 高国强 (2019). 落叶松凋落物层和土壤层1-5级细根形态和结构特征. 东北林业大学学报, 47(4), 33-37.] | |
[16] | Holdaway RJ, Richardson SJ, Dickie IA, Peltzer DA, Coomes DA (2011). Species-and community-level patterns in fine root traits along a 120 000-year soil chronosequence in temperate rain forest. Journal of Ecology, 99, 954-963. |
[17] | Hong J, Ma X, Yan Y, Zhang X, Wang X (2018). Which root traits determine nitrogen uptake by alpine plant species on the Tibetan Plateau. Plant and Soil, 424, 63-72. |
[18] |
Isaac ME, Borden KA (2019). Nutrient acquisition strategies in agroforestry systems. Plant and Soil, 444, 1-19.
DOI |
[19] | Ito T, Tanaka-Oda A, Masumoto T, Akatsuki M, Makita N (2023). Different relationships of fine root traits with root ammonium and nitrate uptake rates in conifer forests. Journal of Forest Research, 28, 25-32. |
[20] | Jacob A, Leuschner C (2015). Complementarity in the use of nitrogen forms in a temperate broad-leaved mixed forest. Plant Ecology & Diversity, 8, 243-258. |
[21] | Ji Y, Zhou G, Li Z, Wang S, Zhou H, Song X (2020). Triggers of widespread dieback and mortality of poplar (Populus spp.) plantations across Northern China. Journal of Arid Environments, 174, 104076. DOI: 10.1016/j.jaridenv.2019.104076. |
[22] | Jia J, Li HY (2008). Resistance of several mixed plantation to Anoplophora nobilis. Journal of West China Forestry Science, 37(1), 82-85. |
[ 贾隽, 李红彦 (2008). 几种混交林对黄斑星天牛的抗虫性研究. 西部林业科学, 37(1), 82-85.] | |
[23] | Jiang Q, Guo RQ, Song TT, Chen TT, Chen YH, Jia LQ, Xiong DC, Chen GS (2020). Effects of warming and nitrogen addition on nitrogen uptake kinetics of fine roots of Cunninghamia lanceolata seedlings in different seasons. Acta Ecologica Sinica, 40, 2996-3005. |
[ 姜琦, 郭润泉, 宋涛涛, 陈廷廷, 陈宇辉, 贾林巧, 熊德成, 陈光水 (2020). 增温与氮添加对不同季节杉木幼苗细根不同形态氮吸收动力学的影响. 生态学报, 40, 2996-3005.] | |
[24] | Kahmen A, Livesley SJ, Arndt SK (2009). High potential, but low actual, glycine uptake of dominant plant species in three Australian land-use types with intermediate N availability. Plant and Soil, 325, 109-121. |
[25] |
Kong D, Ma C, Zhang Q, Li L, Chen X, Zeng H, Guo D (2014). Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist, 203, 863-872.
DOI PMID |
[26] | Li CC, Li QR, Xu XL, Ouyang H (2016). Nitrogen acquisition strategies of Cunninghamia lanceolata at different ages. Acta Ecologica Sinica, 36, 2620-2625. |
[ 李常诚, 李倩茹, 徐兴良, 欧阳华 (2016). 不同林龄杉木氮素的获取策略. 生态学报, 36, 2620-2625.] | |
[27] | Li X, Rennenberg H, Simon J (2016). Seasonal variation in N uptake strategies in the understory of a beech-dominated N-limited forest ecosystem depends on N source and species. Tree Physiology, 36, 589-600. |
[28] |
Liese R, Alings K, Meier IC (2017). Root branching is a leading root trait of the plant economics spectrum in temperate trees. Frontiers in Plant Science, 8, 315. DOI: 10.3389/fpls.2017.00315.
PMID |
[29] |
Liese R, Lübbe T, Albers NW, Meier IC (2018). The mycorrhizal type governs root exudation and nitrogen uptake of temperate tree species. Tree Physiology, 38, 83-95.
DOI PMID |
[30] |
Lipson D, Näsholm T (2001). The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia, 128, 305-316.
DOI PMID |
[31] |
Liu B, Li H, Zhu B, Koide RT, Eissenstat DM, Guo D (2015). Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. New Phytologist, 208, 125-136.
DOI PMID |
[32] |
Liu M, Xu F, Xu X, Wanek W, Yang X (2018). Age alters uptake pattern of organic and inorganic nitrogen by rubber trees. Tree Physiology, 38, 1685-1693.
DOI PMID |
[33] | Liu QY, Chen YF, Chen YM, Wang HM (2023). Effects of different ammonium to nitrate ratios on nitrogen uptake preference and traits of absorptive roots of subtropical trees seedlings. Scientia Silvae Sinicae, 59(2), 48-57. |
[ 刘倩愿, 陈奕帆, 陈艳梅, 王辉民 (2023). 铵硝比对亚热带树种幼苗氮吸收偏好及吸收根属性的影响. 林业科学, 59(2), 48-57.] | |
[34] | Liu Q, Wang H, Xu X (2020). Root nitrogen acquisition strategy of trees and understory species in a subtropical pine plantation in Southern China. European Journal of Forest Research, 139, 791-804. |
[35] | Liu Q, Xu M, Yuan Y, Wang H (2021). Interspecific competition for inorganic nitrogen between canopy trees and underlayer-planted young trees in subtropical pine plantations. Forest Ecology and Management, 494, 119331. DOI: 10.1016/j.foreco.2021.119331. |
[36] | Ma Z, Guo D, Xu X, Lu M, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO (2018). Evolutionary history resolves global organization of root functional traits. Nature, 555, 94-97. |
[37] | McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B, Giblin AE, Kielland K, Kwiatkowski BL, Laundre JA, Murray G (2002). Resource-based niches provide a basis for plant species diversity and dominance in Arctic tundra. Nature, 415, 68-71. |
[38] |
Miller AE, Bowman WD (2002). Variation in nitrogen-15 natural abundance and nitrogen uptake traits among co-occurring alpine species: Do species partition by nitrogen form? Oecologia, 130, 609-616.
DOI PMID |
[39] | Nacry P, Bouguyon E, Gojon A (2013). Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant and Soil, 370, 1-29. |
[40] |
Näsholm T, Kielland K, Ganeteg U (2009). Uptake of organic nitrogen by plants. New Phytologist, 182, 31-48.
DOI PMID |
[41] |
Nordin A, Högberg P, Näsholm T (2001). Soil nitrogen form and plant nitrogen uptake along a boreal forest productivity gradient. Oecologia, 129, 125-132.
DOI PMID |
[42] | Pinno BD, Wilson SD (2013). Fine root response to soil resource heterogeneity differs between grassland and forest. Plant Ecology, 214, 821-829. |
[43] | Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002). Fine root architecture of nine North American trees. Ecological Monographs, 72, 293-309. |
[44] |
Qin L, Walk TC, Han P, Chen L, Zhang S, Li Y, Hu X, Xie L, Yang Y, Liu J, Lu X, Yu C, Tian J, Shaff JE, Kochian LV, Liao X, Liao H (2019). Adaption of roots to nitrogen deficiency revealed by 3D quantification and proteomic analysis. Plant Physiology, 179, 329-347.
DOI PMID |
[45] | Rasmussen IS, Dresbøll DB, Thorup-Kristensen K (2015). Winter wheat cultivars and nitrogen (N) fertilization- Effects on root growth, N uptake efficiency and N use efficiency. European Journal of Agronomy, 68, 38-49. |
[46] | Ren H, Gao GQ, Ma YY, Li ZW, Gu JC (2021). Root nitrogen uptake and its relationship with root morphological and chemical traits in Pinus koraiensis at different ages. Journal of Beijing Forestry University, 43(10), 65-72. |
[ 任浩, 高国强, 马耀远, 李祖旺, 谷加存 (2021). 不同年龄红松根系氮素吸收及其与根形态和化学性状的关系. 北京林业大学学报, 43(10), 65-72.] | |
[47] | Schimel JP, Bennett J (2004). Nitrogen mineralization: challenges of a changing paradigm. Ecology, 85, 591-602. |
[48] | Simon J, Dannenmann M, Gasche R, Holst J, Mayer H, Papen H, Rennenberg H (2011). Competition for nitrogen between adult European beech and its offspring is reduced by avoidance strategy. Forest Ecology and Management, 262, 105-114. |
[49] | Sun L, Chang X, Yu X, Jia G, Chen L, Liu Z, Zhu X (2019). Precipitation and soil water thresholds associated with drought-induced mortality of farmland shelter forests in a semi-arid area. Agriculture Ecosystems & Environment, 284, 106595. DOI: 10.1016/j.agee.2019.106595. |
[50] | Templer PH, Dawson TE (2004). Nitrogen uptake by four tree species of the Catskill Mountains, New York:implications for forest N dynamics. Plant and Soil, 262, 251-261. |
[51] | Tian H, Song HX, Wu XW, Zhang ZH (2022). The root elongation and the changes of cell wall components of rapeseed root under low nitrogen conditions. Journal of Hunan Agricultural University (Natural Sciences), 48, 386-393. |
[ 田辉, 宋海星, 吴秀文, 张振华 (2022). 低氮条件下油菜根系伸长与细胞壁组分的变化. 湖南农业大学学报(自然科学版), 48, 386-393.] | |
[52] | Wang X, Zhang C, Hasi E, Dong Z (2010). Has the Three-North Forest Shelterbelt Program solved the desertification and dust storm problems in arid and semiarid China? Journal of Arid Environments, 74, 13-22. |
[53] | Xu X, Li Q, Wang J, Zhang L, Tian S, Zhi L, Li Q, Sun Y (2014). Inorganic and organic nitrogen acquisition by a fern Dicranopteris dichotoma in a subtropical forest in South China. PLoS ONE, 9, e90075. DOI: 10.1371/journal.pone.0090075. |
[54] | Ye ZQ, Deng RJ, Wang YC, Wang JM, Li JW, Zhang FB, Chen J (2018). Branching patterns of clonal root of Populus euphratica and its associations with soil factors. Journal of Beijing Forestry University, 40(2), 31-39. |
[ 叶子奇, 邓如军, 王雨辰, 王健铭, 李景文, 张凡兵, 陈杰 (2018). 胡杨繁殖根系分枝特征及其与土壤因子的关联性. 北京林业大学学报, 40(2), 31-39.] | |
[55] |
Yi R, Liu Q, Yang F, Dai X, Meng S, Fu X, Li S, Kou L, Wang H (2023). Complementary belowground strategies underlie species coexistence in an early successional forest. New Phytologist, 238, 612-623.
DOI PMID |
[56] | Zhang XX (2020). Analysis on restoration of degraded stand of three-north shelterbelt in Hebei Province. Protection Forest Science and Technology, (9), 77-78. |
[ 张昕欣 (2020). 河北省三北防护林退化林分修复浅析. 防护林科技, (9), 77-78.] | |
[57] | Zou TT, Zhang ZL, Li N, Yuan YS, Zheng DH, Liu Q, Yin HJ (2017). Differential uptakes of different forms of soil nitrogen among major tree species in subalpine coniferous forests of western Sichuan, China. Chinese Journal of Plant Ecology, 41, 1051-1059. |
[ 邹婷婷, 张子良, 李娜, 袁远爽, 郑东辉, 刘庆, 尹华军 (2017). 川西亚高山针叶林主要树种对土壤中不同形态氮素的吸收差异. 植物生态学报, 41, 1051-1059.]
DOI |
[1] | 李孝龙, 周俊, 彭飞, 钟宏韬, Hans LAMBERS. 植物养分捕获策略随成土年龄的变化及生态学意义[J]. 植物生态学报, 2021, 45(7): 714-727. |
[2] | 侯宝林, 庄伟伟. 古尔班通古特沙漠一年生植物的氮吸收策略[J]. 植物生态学报, 2021, 45(7): 760-770. |
[3] | 陈锦, 宋明华, 李以康. 13C脉冲标记揭示放牧对高寒草甸同化碳分配的影响[J]. 植物生态学报, 2019, 43(7): 576-584. |
[4] | 邹婷婷, 张子良, 李娜, 袁远爽, 郑东辉, 刘庆, 尹华军. 川西亚高山针叶林主要树种对土壤中不同形态氮素的吸收差异[J]. 植物生态学报, 2017, 41(10): 1051-1059. |
[5] | 苏华,刘伟,李永庚. 水分再分配对土壤-植物系统养分循环的生态意义[J]. 植物生态学报, 2014, 38(9): 1019-1028. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19