植物生态学报 ›› 2024, Vol. 48 ›› Issue (10): 1374-1384.DOI: 10.17521/cjpe.2024.0002 cstr: 32100.14.cjpe.2024.0002
收稿日期:
2024-01-04
接受日期:
2024-05-22
出版日期:
2024-10-20
发布日期:
2024-12-03
通讯作者:
闫帮国
基金资助:
LI Lin, SUN Yi, YANG Xiao-Qiong, FANG Hai-Dong, YAN Bang-Guo*()(
)
Received:
2024-01-04
Accepted:
2024-05-22
Online:
2024-10-20
Published:
2024-12-03
Contact:
YAN Bang-Guo
Supported by:
摘要: 豆科植物根瘤是根瘤菌生物固氮的场所, 含有多种微生物, 即根瘤内生菌, 其对植物的生长和营养具有重要作用。但根瘤内生菌群落结构对氮的响应及其与植物生态化学计量特征之间的关系还有待研究。该研究以七彩花生(Arachis hypogaea ‘Qicai’)为实验材料, 设置3个施氮处理(N0: 0 kg·hm-2, N1: 140 kg·hm-2, N2: 280 kg·hm-2)进行大田实验, 测定叶片碳(C)、氮(N)、磷(P)含量和根瘤内生菌群落结构及丰度变化, 并采用PICRUSt 2软件进行功能预测分析。结果表明: (1)根瘤内生菌种类丰富, 共含有来自546个科1 049个属的微生物。其中主要的结瘤共生菌——慢生根瘤菌属(Bradyrhizobium)丰度占比仅为27.83%, 其他微生物丰度的总占比超过70%, 其中伯克霍尔德菌属(Burkholderia-Caballeronia-Paraburkholderia)和肠杆菌属(Enterobacter)的平均丰度占比均超过了10%。(2)施氮降低了根瘤内生菌菌群多样性, 并改变了其结构组成, 其中部分来自慢生根瘤菌属、肠杆菌属、科萨克氏菌属(Kosakonia)、泛菌属(Pantoea)的微生物相对丰度显著增加, 而一些来自根瘤菌属(Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium)、中慢生根瘤菌属(Mesorhizobium)、分枝杆菌属(Mycobacterium)、伯克霍尔德菌属的微生物相对丰度显著降低, 且部分属相对丰度与植物化学计量特征具有紧密的相关关系。(3)共现网络分析结果显示, 部分菌群模块与叶片C、N、P含量及化学计量特征具有显著相关关系; 同时, PICRUSt 2功能预测结果也显示部分微生物C、N、P代谢酶功能与七彩花生叶片C、N、P含量及化学计量特征具有显著相关关系, 表明菌群结构与植物养分含量及其平衡之间具有紧密关系。综上, 七彩花生根瘤内生菌种类丰富, 且菌群结构和功能对氮添加较为敏感, 未来研究中可通过微生物分离以及合成菌群技术进一步发掘氮耐受型和敏感型内生菌的功能。
李林, 孙毅, 杨晓琼, 方海东, 闫帮国. 七彩花生根瘤内生菌对氮添加的响应及其与植物化学计量特征的关系. 植物生态学报, 2024, 48(10): 1374-1384. DOI: 10.17521/cjpe.2024.0002
LI Lin, SUN Yi, YANG Xiao-Qiong, FANG Hai-Dong, YAN Bang-Guo. Response of endophytes in root nodules of Arachis hypogaea ‘Qicai’ to nitrogen addition and its relationship with plant stoichiometry characteristics. Chinese Journal of Plant Ecology, 2024, 48(10): 1374-1384. DOI: 10.17521/cjpe.2024.0002
图1 不同施氮量下七彩花生叶片碳(C)、氮(N)、磷(P)含量及化学计量特征变化。相同小写字母表示处理间不存在显著差异(p > 0.05)。N0, 0 kg·hm-2; N1, 140 kg·hm-2; N2, 280 kg·hm-2。
Fig. 1 Changes of carbon (C), nitrogen (N) and phosphorus (P) contents and stoichiometric characteristics of Arachis hypogaea ‘Qicai’ leaves under different nitrogen addition treatments. The same lowercase letters indicate no significant differences between treatments (p > 0.05). N0, 0 kg·hm-2; N1, 140 kg·hm-2; N2, 280 kg·hm-2.
图2 不同施氮处理下七彩花生根瘤内生菌多样性(A)、主要内生菌各属丰度变化(B)、主坐标分析(PCoA) (C)、根瘤内生细菌丰度变化火山图(D)。A图中不同小写字母表示处理间差异显著(p < 0.05)。D图中的点表示一个扩增子序列变体, 红色表示在氮添加下显著上调, 绿色表示显著下调。N0, 0 kg·hm-2; N1, 140 kg·hm-2; N2, 280 kg·hm-2。Allorhizobium-Neorhizobium- Pararhizobium-Rhizobium, 根瘤菌属; Bradyrhizobium, 慢生根瘤菌属; Burkholderia-Caballeronia-Paraburkholderia, 伯克霍尔德菌属; Enterobacter, 肠杆菌属; Kosakonia, 科萨克氏菌属; Mycobacterium, 分歧杆菌属; Novosphingobium, 新鞘氨醇菌属; Pantoea, 泛菌属; Saccharimonadales, 糖单孢菌; Unassigned, 未分类。*, p < 0.05。
Fig. 2 Diversity (A), changes in the relative abundance of dominant genera (B), principal coordination analysis (PCoA) (C) and volcano plot illustrating changes in the relative abundance (D) of endophytes in root nodules under different nitrogen addition treatments of Arachis hypogaea ‘Qicai’. Different lowercase letters in A indicate significant differences among treatments (p < 0.05). Each point represents an amplicon sequence variant (ASV) in D. Each red point indicate an enriched ASV while each blue point represents a depleted ASV. N0, 0 kg·hm-2; N1, 140 kg·hm-2; N2, 280 kg·hm-2. *, p < 0.05.
相关性系数 Correlation coeffficient | C | N | P | C:N | C:P | N:P |
---|---|---|---|---|---|---|
根瘤菌属 Allorhizobium-Neorhizobium- Pararhizobium-Rhizobium | 0.00 | -0.35* | -0.11 | 0.37** | 0.13 | -0.12 |
慢生根瘤菌属 Bradyrhizobium | 0.01 | 0.17 | 0.27 | -0.19 | -0.23 | -0.08 |
伯克霍尔德菌属 Burkholderia-Caballeronia- Paraburkholderia | 0.37** | 0.16 | -0.03 | -0.08 | 0.06 | 0.10 |
肠杆菌属 Enterobacter | -0.22 | 0.18 | -0.05 | -0.23 | 0.02 | 0.18 |
科萨克氏菌属 Kosakonia | -0.27 | -0.09 | -0.04 | 0.03 | -0.01 | -0.03 |
分枝杆菌属 Mycobacterium | 0.03 | -0.16 | 0.13 | 0.18 | -0.11 | -0.20 |
新鞘氨醇菌属 Novosphingobium | 0.18 | -0.21 | -0.04 | 0.24 | 0.09 | -0.09 |
泛菌属 Pantoea | 0.08 | -0.02 | -0.04 | 0.04 | 0.04 | 0.01 |
糖单孢菌 Saccharimonadales | -0.04 | -0.21 | 0.03 | 0.17 | -0.03 | -0.15 |
表1 七彩花生根瘤内生细菌主要属相对丰度与叶片碳(C)、氮(N)、磷(P)含量及化学计量特征的关系
Table 1 Relationship between relative abundance of Arachis hypogaea ‘Qicai’ root nodule endophytes and leaf carbon (C), nitrogen (N) and phosphorus (P) stoichiometric characteristics
相关性系数 Correlation coeffficient | C | N | P | C:N | C:P | N:P |
---|---|---|---|---|---|---|
根瘤菌属 Allorhizobium-Neorhizobium- Pararhizobium-Rhizobium | 0.00 | -0.35* | -0.11 | 0.37** | 0.13 | -0.12 |
慢生根瘤菌属 Bradyrhizobium | 0.01 | 0.17 | 0.27 | -0.19 | -0.23 | -0.08 |
伯克霍尔德菌属 Burkholderia-Caballeronia- Paraburkholderia | 0.37** | 0.16 | -0.03 | -0.08 | 0.06 | 0.10 |
肠杆菌属 Enterobacter | -0.22 | 0.18 | -0.05 | -0.23 | 0.02 | 0.18 |
科萨克氏菌属 Kosakonia | -0.27 | -0.09 | -0.04 | 0.03 | -0.01 | -0.03 |
分枝杆菌属 Mycobacterium | 0.03 | -0.16 | 0.13 | 0.18 | -0.11 | -0.20 |
新鞘氨醇菌属 Novosphingobium | 0.18 | -0.21 | -0.04 | 0.24 | 0.09 | -0.09 |
泛菌属 Pantoea | 0.08 | -0.02 | -0.04 | 0.04 | 0.04 | 0.01 |
糖单孢菌 Saccharimonadales | -0.04 | -0.21 | 0.03 | 0.17 | -0.03 | -0.15 |
图3 PICRUSt 2预测根瘤内生菌酶功能对施氮量的响应及其与叶片化学计量特征的关系。A, 酶活性变化(平均值±标准差)。B, 酶活性主坐标分析(PCoA)。C, 酶活性与叶片化学计量特征的关系。N0, 0 kg·hm-2; N1, 140 kg·hm-2; N2, 280 kg·hm-2。C, 碳; N, 氮; P, 磷。3-Phytase, 3-植酸酶; 4-Phytase, 4-植酸酶; Acid phosphatase, 酸性磷酸酶; Alkaline phosphatase, 碱性磷酸酶; Alpha-amylase, α-淀粉酶; Alpha-glucosidase, α-糖苷酶; Ammonia monooxygenase, 氨单加氧酶; Beta-glucosidase, β-糖苷酶; Cellulase, 纤维素酶; Chitinase, 几丁质酶; Nitrate reductase, 硝酸还原酶; Nitric oxide dioxygenase, 一氧化氮双加氧酶; Nitrite reductase (NADH), 亚硝酸还原酶(NADH); Nitrite reductase (NO-forming), 亚硝酸盐还原酶(NO-生成); Nitronate monooxygenase, 硝基单加氧酶; Nitrous-oxide reductase, 一氧化二氮还原酶; Nitrogenase, 固氮酶。*, p ≤ 0.05; **, p ≤ 0.01。A中不同小写字母表示不同处理间差异显著(p < 0.05)。
Fig. 3 Response of root nodule endophyte enzyme functions (predicted by PICRUSt 2) to nitrogen addition treatments and their association with leaf stoichiometric characteristics. A, Changes in enzyme activities (mean ± SE). B, Principal component analysis (PCoA) of enzyme activity. C, Relationships between enzyme activities and leaf stoichiometric characteristics. N0, 0 kg·hm-2; N1, 140 kg·hm-2; N2, 280 kg·hm-2. C, carbon; N, nitrogen; P, phosphorus。*, p ≤ 0.05; **, p ≤ 0.01. Different lowercase letters in A indicate significant differences among treatments (p < 0.05).
图4 七彩花生根瘤内生菌群落共现网络分析。A, 根瘤细菌群共现网络。B, 不同菌群模块丰度与叶片化学计量特征关系。C, 各模块主要菌属组成。N0, 0 kg·hm-2; N1, 140 kg·hm-2; N2, 280 kg·hm-2。C, 碳; N, 氮; P, 磷。Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, 根瘤菌属; Bradyrhizobium, 慢生根瘤菌属; Burkholderia- Caballeronia-Paraburkholderia, 伯克霍尔德菌属; Enterobacter, 肠杆菌属; Kosakonia, 科萨克氏菌属; Mycobacterium, 分歧杆菌属; Novosphingobium, 新鞘氨醇菌属; Pantoea, 泛菌属; Saccharimonadales, 糖单孢菌; Unassigned, 未分类。*, p ≤ 0.05; **, p ≤ 0.01。
Fig. 4 Co-occurrence network analysis of endophytic communities in root nodules of Arachis hypogaea ‘Qicai’. A, Cooccurrence network of root nodule endophytes. B, Associations between the relative abundance of different clusters with leaf stoichiometric characteristics. C, Main bacterial genus composition of each module. N0, 0 kg·hm-2; N1, 140 kg·hm-2; N2, 280 kg·hm-2. C, carbon; N, nitrogen; P, phosphorus. *, p ≤ 0.05; **, p ≤ 0.01.
[1] | Allison SD, Weintraub MN, Gartner TB, Waldrop MP (2011). Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function//Shukla G, Varma A. Soil Enzymology. Springer, Berlin. 229-243. |
[2] |
Berendsen RL, Pieterse CMJ, Bakker PAHM (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17, 478-486.
DOI PMID |
[3] |
Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, et al. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications, 20, 30-59.
PMID |
[4] |
Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, Maestre FT, Singh BK, Fierer N (2018). A global atlas of the dominant bacteria found in soil. Science, 359, 320-325.
DOI PMID |
[5] |
Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI (2020). PICRUSt2 for prediction of metagenome functions. Nature Biotechnology, 38, 685-688.
DOI PMID |
[6] |
Duc L, Noll M, Meier BE, Bürgmann H, Zeyer J (2009). High diversity of diazotrophs in the forefield of a receding alpine glacier. Microbial Ecology, 57, 179-190.
DOI PMID |
[7] |
Fan KK, Delgado-Baquerizo M, Guo XS, Wang DZ, Wu YY, Zhu M, Yu W, Yao HY, Zhu YG, Chu HY (2019). Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome, 7, 143. DOI: 10.1186/s40168-019-0757-8.
PMID |
[8] | Feng MM, Adams JM, Fan KK, Shi Y, Sun RB, Wang DZ, Guo XS, Chu HY (2018). Long-term fertilization influences community assembly processes of soil diazotrophs. Soil Biology & Biochemistry, 126, 151-158. |
[9] | Gan Y, Stulen I, van Keulen H, Kuiper PJC (2004). Low concentrations of nitrate and ammonium stimulate nodulation and N2 fixation while inhibiting specific nodulation (nodule DW g-1 root dry weight) and specific N2 fixation (N2 fixed g-1 root dry weight) in soybean. Plant and Soil, 258, 281-292. |
[10] |
Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266.
DOI PMID |
[11] |
Hardoim PR, van Overbeek LS, Elsas JD (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 16, 463-471.
DOI PMID |
[12] | Lewis RW, Bertsch PM, McNear DH (2019). Nanotoxicity of engineered nanomaterials (ENMs) to environmentally relevant beneficial soil bacteria—A critical review. Nanotoxicology, 13, 392-428. |
[13] | Li GL, Li PF, Wu M, Liu K, Evangelos P, Liu J, Liu M, Li ZP (2023). Variation in rhizosphere microbial communities and its association with the nodulation ability of peanut. Archives of Agronomy and Soil Science, 69, 759-770. |
[14] | Li L, Sun Y, Fang HD, Shi LT, Yue XW, Yan BG (2023). Nitrogen fixation capabilities of rhizobia in Yunnan colorful peanut and their associations with leghemoglobin concentration. Journal of Peanut Science, 52(3), 56-62. |
[ 李林, 孙毅, 方海东, 史亮涛, 岳学文, 闫帮国 (2023). 云南七彩花生根瘤菌固氮能力及其与豆血红蛋白含量的关系. 花生学报, 52(3), 56-62.] | |
[15] | Li SX, Yang ZJ, Xu DP, Zhang NN, Liu XJ (2015). Effects of nitrogen application rate on growth and nutrient accumulation of Santalum album L. seedlings. Journal of Plant Nutrition and Fertilizer, 21, 807-814. |
[ 李双喜, 杨曾奖, 徐大平, 张宁南, 刘小金 (2015). 施氮量对檀香幼苗生长及养分积累的影响. 植物营养与肥料学报, 21, 807-814.] | |
[16] |
Li Y, Tremblay J, Bainard LD, Cade-Menun B, Hamel C (2020). Long-term effects of nitrogen and phosphorus fertilization on soil microbial community structure and function under continuous wheat production. Environmental Microbiology, 22, 1066-1088.
DOI PMID |
[17] |
Limpens E, Bisseling T (2003). Signaling in symbiosis. Current Opinion in Plant Biology, 6, 343-350.
PMID |
[18] |
Liu LM, Wang SS, Chen JF (2021). Anthropogenic activities change the relationship between microbial community taxonomic composition and functional attributes. Environmental Microbiology, 23, 6663-6675.
DOI PMID |
[19] | Liang M, Meng WW, Chen ZD, Shen Y, Liu YH, Shen Y, Liu Z, Nan ZW, Xu J, Zhang Z (2023) Effects of nitrogen application levels on microbial community structure and diversity in peanut rhizosphere soil. Shandong Agricultural Sciences, 55, 78-83. |
[ 梁满, 孟维伟, 陈志德, 沈一, 刘永惠, 沈悦, 刘柱, 南镇武, 徐杰, 张正 (2023). 施氮水平对花生根际土壤微生物群落结构和多样性的影响. 山东农业科学, 55, 78-83.] | |
[20] | Lyu XC, Xia X, Wang C, Ma CM, Dong SK, Gong ZP (2019). Effects of changes in applied nitrogen concentrations on nodulation, nitrogen fixation and nitrogen accumulation during the soybean growth period. Soil Science and Plant Nutrition, 65, 479-489. |
[21] | Melero S, López-Bellido RJ, López-Bellido L, Muñoz-Romero V, Moreno F, Murillo JM (2011). Long-term effect of tillage, rotation and nitrogen fertiliser on soil quality in a Mediterranean Vertisol. Soil and Tillage Research, 114, 97-107. |
[22] | Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012). Closing yield gaps through nutrient and water management. Nature, 490, 254-257. |
[23] | Pernilla Brinkman E, van der Putten WH, Bakker EJ, Verhoeven KJF (2010). Plant-soil feedback: experimental approaches, statistical analyses and ecological interpretations. Journal of Ecology, 98, 1063-1073. |
[24] | Preyanga R, Anandham R, Krishnamoorthy R, Senthilkumar M, Gopal NO, Vellaikumar A, Meena S (2021). Groundnut (Arachis hypogaea) nodule Rhizobium and passenger endophytic bacterial cultivable diversity and their impact on plant growth promotion. Rhizosphere, 17, 100309. DOI: 10.1016/j.rhisph.2021.100309. |
[25] |
Reich PB, Oleksyn J, Wright IJ (2009). Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species. Oecologia, 160, 207-212.
DOI PMID |
[26] | Reich PB, Oleksyn J, Wright IJ, Niklas KJ, Hedin L, Elser JJ (2010). Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proceedings of the Royal Society B: Biological Sciences, 277, 877-883. |
[27] | Robertson GP, Vitousek PM (2009). Nitrogen in agriculture: balancing the cost of an essential resource. Annual Review of Environment and Resources, 34, 97-125. |
[28] | Salas-González I, Reyt G, Flis P, Custódio V, Gopaulchan D, Bakhoum N, Dew TP, Suresh K, Franke RB, Dangl JL, Salt DE, Castrillo G (2021). Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science, 371, eabd0695. DOI: 10.1126/science.abd0695. |
[29] |
Schreeg LA, Santiago LS, Wright SJ, Turner BL (2014). Stem, root, and older leaf N:P ratios are more responsive indicators of soil nutrient availability than new foliage. Ecology, 95, 2062-2068.
DOI PMID |
[30] | Singh P, Singh RK, Li H, Guo D, Sharma A, Lakshmanan P, Malviya MK, Song X, Solanki MK, Verma KK, Yang LT, L Y (2021). Diazotrophic bacteria Pantoea dispersa and Enterobacter asburiae promote sugarcane growth by inducing nitrogen uptake and defense-related gene expression. Frontiers in Microbiology, 11, 600417. DOI: 10.3389/micb.2020.600417. |
[31] | Su W, Chen P, Wu T, Liu Y, Song YT, Liu XJ, Liu JX (2023). Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings. Chinese Journal of Plant Ecology, 47, 1094-1104. |
[ 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀 (2023). 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响. 植物生态学报, 47, 1094-1104.]
DOI |
|
[32] | Sun QQ, Zheng YM, Yu TY, Wu Y, Yang JS, Wu ZF, Wu JX, Li SX (2022). Responses of soil diazotrophic diversity and community composition of nodulating and non-nodulating peanuts (Arachis hypogaea L.) to nitrogen fertilization. Acta Agronomica Sinica, 48, 2575-2587. |
[ 孙棋棋, 郑永美, 于天一, 吴月, 杨吉顺, 吴正锋, 吴菊香, 李尚霞 (2022). 施氮对不同结瘤特性花生土壤固氮菌多样性和群落组成的影响. 作物学报, 48, 2575-2587.]
DOI |
|
[33] | Treseder KK, Vitousek PM (2001). Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology, 82, 946-954. |
[34] | van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA, Suding KN, van de Voorde TFJ, Wardle DA (2013). Plant-soil feedbacks: the past, the present and future challenges. Journal of Ecology, 101, 265-276. |
[35] |
Vandamme P, Goris J, Chen WM, de Vos P, Willems A (2002). Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Systematic and Applied Microbiology, 25, 507-512.
PMID |
[36] | Wang CB, Zheng YM, Shen P, Zheng YP, Wu ZF, Sun XW, Yu TY, Feng H (2016). Determining N supplied sources and N use efficiency for peanut under applications of four forms of N fertilizers labeled by isotope 15N. Journal of Integrative Agriculture, 15, 432-439. |
[37] |
Wang H, Gu CT, Liu XF, Yang CW, Li WB, Wang SD (2020). Impact of soybean nodulation phenotypes and nitrogen fertilizer levels on the rhizosphere bacterial community. Frontiers in Microbiology, 11, 750. DOI: 10.3389/fmicb.2020.00750.
PMID |
[38] | Wang PC, Ding LL, Zou C, Zhang YJ, Wang MY (2022). Rhizosphere element circling, multifunctionality, aboveground productivity and trade-offs are better predicted by rhizosphere rare taxa. Frontiers in Plant Science, 13, 985574. DOI: 10.3389/fpls.2022.985574. |
[39] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[40] | Wu CX, Yan BS, Wei FR, Wang HL, Gao LQ, Ma HZ, Liu Q, Liu Y, Liu GB, Wang GL (2023). Long-term application of nitrogen and phosphorus fertilizers changes the process of community construction by affecting keystone species of crop rhizosphere microorganisms. Science of the Total Environment, 897, 165239. DOI: 10.1016/j.scitotenv.2023.65239. |
[41] | Wu ZF, Chen DX, Zheng YM, Wang CB, Sun XW, Li XD, Wang XX, Shi CR, Feng H, Yu TY (2016). Supply characteristics of different nitrogen sources and nitrogen use efficiency of peanut. Chinese Journal of Oil Crop Sciences, 38, 207-213. |
[ 吴正锋, 陈殿绪, 郑永美, 王才斌, 孙学武, 李向东, 王兴祥, 石程仁, 冯昊, 于天一 (2016). 花生不同氮源供氮特性及氮肥利用率研究. 中国油料作物学报, 38, 207-213.] | |
[42] | Xia X, Ma CM, Dong SK, Xu Y, Gong ZP (2017). Effects of nitrogen concentrations on nodulation and nitrogenase activity in dual root systems of soybean plants. Soil Science and Plant Nutrition, 63, 470-482. |
[43] | Yan BG, Liu GC, Fan B, He GX, Shi LT, Li JC, Ji ZH (2015). Relationships between plant stoichiometry and biomass in an arid-hot valley, Southwest China. Chinese Journal of Plant Ecology, 39, 807-815. |
[ 闫帮国, 刘刚才, 樊博, 何光熊, 史亮涛, 李纪潮, 纪中华 (2015). 干热河谷植物化学计量特征与生物量之间的关系. 植物生态学报, 39, 807-815.]
DOI |
|
[44] | Yan J, Han XZ (2014). Effect of soil inorganic N concentrations on the nodulation, N2 fixation and yield in soybean in a pot experiment. Scientia Agricultura Sinica, 47, 1929-1938. |
[ 严君, 韩晓增 (2014). 盆栽条件下土壤无机氮浓度对大豆结瘤、固氮和产量的影响. 中国农业科学, 47, 1929-1938.]
DOI |
|
[45] | Ying D, Chen XL, Hou JF, Zhao FC, Li P (2023). Soil properties and microbial functional attributes drive the response of soil multifunctionality to long-term fertilization management. Applied Soil Ecology, 192, 105095. DOI: 10.1016/j.apsoil.2023.105095. |
[46] | Zhang X, Zhang XY, Zhang YT, Mao JW, Li GP, Zhao LJ (2012). Effects of nitrogen application rate on nodulation, nitrogen absorption and utilization of peanuts. Journal of Peanut Science, 41(4), 12-17. |
[ 张翔, 张新友, 张玉亭, 毛家伟, 李国平, 赵丽君 (2012). 氮用量对花生结瘤和氮素吸收利用的影响. 花生学报, 41(4), 12-17.] | |
[47] | Zhao BY, Jia XQ, Yu N, Murray JD, Yi KK, Wang ET (2024). Microbe-dependent and independent nitrogen and phosphate acquisition and regulation in plants. New Phytologist, 242, 1507-1522. |
[48] |
Zheng YM, Wang CX, Liu QM, Wu ZF, Wang CB, Sun XS, Zheng YP (2017). Effect of nitrogen fertilizer regulation on root growth and nodulating ability of peanut. Journal of Nuclear Agricultural Sciences, 31, 2418-2425.
DOI |
[ 郑永美, 王春晓, 刘岐茂, 吴正锋, 王才斌, 孙秀山, 郑亚萍 (2017). 氮肥对花生根系生长和结瘤能力的调控效应. 核农学报, 31, 2418-2425.]
DOI |
|
[49] | Zipfel C, Oldroyd GED (2017). Plant signalling in symbiosis and immunity. Nature, 543, 328-336. |
[1] | 王艺彤, 叶尔江·拜克吐尔汉, 廖丹, 王娟. 雌雄异株植物髭脉槭不同生长阶段叶片元素计量特征与性二态间的相互关系[J]. 植物生态学报, 2024, 48(6): 760-769. |
[2] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[3] | 王军强, 刘彬, 常凤, 马紫荆, 樊佳辉, 何想菊, 尤思学, 阿尔孜古力·阿布都热西提, 杨滢可, 沈欣艳. 博斯腾湖湖滨带水盐梯度下植物功能性状及生态化学计量特征分析[J]. 植物生态学报, 2022, 46(8): 961-970. |
[4] | 聂秀青, 王冬, 周国英, 熊丰, 杜岩功. 三江源地区高寒湿地土壤微生物生物量碳氮磷及其化学计量特征[J]. 植物生态学报, 2021, 45(9): 996-1005. |
[5] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[6] | 杨泽, 嘎玛达尔基, 谭星儒, 游翠海, 王彦兵, 杨俊杰, 韩兴国, 陈世苹. 氮添加量和施氮频率对温带半干旱草原土壤呼吸及组分的影响[J]. 植物生态学报, 2020, 44(10): 1059-1072. |
[7] | 李军军, 李萌茹, 齐兴娥, 王立龙, 徐世健. 芨芨草叶片养分特征对氮磷不同添加水平的响应[J]. 植物生态学报, 2020, 44(10): 1050-1058. |
[8] | 王攀, 朱湾湾, 牛玉斌, 樊瑾, 余海龙, 赖江山, 黄菊莹. 氮添加对荒漠草原植物群落组成与微生物生物量生态化学计量特征的影响[J]. 植物生态学报, 2019, 43(5): 427-436. |
[9] | 冯婵莹, 郑成洋, 田地. 氮添加对森林植物磷含量的影响及其机制[J]. 植物生态学报, 2019, 43(3): 185-196. |
[10] | 朱启林, 向蕊, 汤利, 龙光强. 间作对氮调控玉米光合速率和光合氮利用效率的影响[J]. 植物生态学报, 2018, 42(6): 672-680. |
[11] | 王曦,胡红玲,胡庭兴,张城浩,王鑫,刘丹. 干旱胁迫对桢楠幼树渗透调节与活性氧代谢的影响及施氮的缓解效应[J]. 植物生态学报, 2018, 42(2): 240-251. |
[12] | 黄菊莹, 余海龙, 王丽丽, 马凯博, 康扬眉, 杜雅仙. 不同氮磷比处理对甘草生长与生态化学计量特征的影响[J]. 植物生态学报, 2017, 41(3): 325-336. |
[13] | 杨蕾, 孙晗, 樊艳文, 韩威, 曾令兵, 刘超, 王襄平. 长白山木本植物叶片氮磷含量的海拔梯度格局及影响因子[J]. 植物生态学报, 2017, 41(12): 1228-1238. |
[14] | 王乔姝怡, 郑成洋, 张歆阳, 曾发旭, 邢娟. 氮添加对武夷山亚热带常绿阔叶林植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2016, 40(11): 1124-1135. |
[15] | 李单凤, 于顺利, 王国勋, 方伟伟. 黄土高原优势灌丛营养器官化学计量特征的环境分异和机制[J]. 植物生态学报, 2015, 39(5): 453-465. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19