Chin J Plant Ecol ›› 2017, Vol. 41 ›› Issue (4): 409-417.DOI: 10.17521/cjpe. 2016.0338
Special Issue: 红树林及红树植物; 入侵生态学
• Orginal Article • Previous Articles Next Articles
Received:
2016-11-03
Accepted:
2017-02-28
Online:
2017-04-10
Published:
2017-05-19
Contact:
Ke-Ming MA
Quan CHEN, Ke-Ming MA. Effects of Spartina alterniflora invasion on enrichment of sedimental heavy metals in a mangrove wetland and the underlying mechanisms[J]. Chin J Plant Ecol, 2017, 41(4): 409-417.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe. 2016.0338
生境 Habitat | 地理坐标 Geographical location | 植物群落结构特征 Plant community characteristics | |||
---|---|---|---|---|---|
平均株高 Mean plant height (m) | 盖度 Coverage | 植株密度 Plant density (ind.·m-2) | 根系生物量 Root biomass (g·m-3) | ||
裸滩 Unvegetated shoal (US) | 109.78° E, 21.51° N | - | - | - | - |
互花米草 Spartina alterniflora (SA) | 109.77° E, 21.42° N | 1.16 ± 0.01** | 0.91 ± 0.01** | 42.55 ± 0.56** | 1 165.77 ± 151.25** |
海榄雌 Avicennia marina (AM) | 109.76° E, 21.52° N | 1.58 ± 0.03** | 0.88 ± 0.01** | 0.33 ± 0.02** | 1 685.82 ± 63.67** |
互花米草+海榄 Spartina alterniflora + Avicennia marina (MIX) | 109.79° E, 21.49° N | 1.25 ± 0.08 | 0.56 ± 0.02 | 22.00 ± 0.29 | 1 176.04 ± 125.72 |
Table 1 Vegetation characteristics in two pairs of comparative habitats in a mangrove wetland invaded by Spartina alterniflora in Zhanjiang, China
生境 Habitat | 地理坐标 Geographical location | 植物群落结构特征 Plant community characteristics | |||
---|---|---|---|---|---|
平均株高 Mean plant height (m) | 盖度 Coverage | 植株密度 Plant density (ind.·m-2) | 根系生物量 Root biomass (g·m-3) | ||
裸滩 Unvegetated shoal (US) | 109.78° E, 21.51° N | - | - | - | - |
互花米草 Spartina alterniflora (SA) | 109.77° E, 21.42° N | 1.16 ± 0.01** | 0.91 ± 0.01** | 42.55 ± 0.56** | 1 165.77 ± 151.25** |
海榄雌 Avicennia marina (AM) | 109.76° E, 21.52° N | 1.58 ± 0.03** | 0.88 ± 0.01** | 0.33 ± 0.02** | 1 685.82 ± 63.67** |
互花米草+海榄 Spartina alterniflora + Avicennia marina (MIX) | 109.79° E, 21.49° N | 1.25 ± 0.08 | 0.56 ± 0.02 | 22.00 ± 0.29 | 1 176.04 ± 125.72 |
生境 Habitat | 容重 Bulk density | 盐度 Salinity (%) | 砂粒 Sand (%) | 粉粒 Silt (%) | 黏粒 Clay (%) | pH |
---|---|---|---|---|---|---|
US | 1.44 ± 0.02** | 8.75 ± 0.34 | 5.42 ± 0.13** | 90.46 ± 0.38 | 2.67 ± 0.28 | 6.62 ± 0.02 |
SA | 0.65 ± 0.02 | 29.29 ± 1.07** | 2.08 ± 0.08 | 89.53 ± 0.53 | 8.12 ± 0.53** | 6.58 ± 0.03 |
AM | 0.91 ± 0.03** | 15.43 ± 0.51 | 2.56 ± 0.13 | 86.90 ± 1.76 | 6.31 ± 1.01 | 6.43 ± 0.02 |
MIX | 0.61 ± 0.02 | 33.50 ± 0.64** | 2.38 ± 0.08 | 86.14 ± 0.75 | 10.80 ± 0.76** | 6.52 ± 0.02** |
生境 Habitat | 有机质 Organic matter (%) | 全氮 Total nitrogen (%) | 全硫 Total sulphur (%) | 全磷 Total phosphorus (%) | 全钾 Total potassium (%) | 全碳 Total carbon (%) |
US | 1.01 ± 0.03 | 0.06 ± 0.001 | 0.17 ± 0.01 | 0.015 ± 0.000 | 0.42 ± 0.01 | 0.65 ± 0.02 |
SA | 2.15 ± 0.04** | 0.14 ± 0.004** | 0.36 ± 0.01** | 0.031 ± 0.001** | 0.69 ± 0.02** | 1.48 ± 0.03** |
AM | 2.23 ± 0.06 | 0.12 ± 0.002 | 0.41 ± 0.03 | 0.019 ± 0.001 | 0.59 ± 0.01 | 1.55 ± 0.04 |
MIX | 2.40 ± 0.06 | 0.15 ± 0.004** | 0.41 ± 0.01 | 0.032 ± 0.001** | 0.69 ± 0.0.02** | 1.62 ± 0.04** |
Table 2 Physicochemical properties of sediments in two pairs of comparative habitats in the mangrove wetland invaded by Spartina alterniflora in Zhanjiang, China
生境 Habitat | 容重 Bulk density | 盐度 Salinity (%) | 砂粒 Sand (%) | 粉粒 Silt (%) | 黏粒 Clay (%) | pH |
---|---|---|---|---|---|---|
US | 1.44 ± 0.02** | 8.75 ± 0.34 | 5.42 ± 0.13** | 90.46 ± 0.38 | 2.67 ± 0.28 | 6.62 ± 0.02 |
SA | 0.65 ± 0.02 | 29.29 ± 1.07** | 2.08 ± 0.08 | 89.53 ± 0.53 | 8.12 ± 0.53** | 6.58 ± 0.03 |
AM | 0.91 ± 0.03** | 15.43 ± 0.51 | 2.56 ± 0.13 | 86.90 ± 1.76 | 6.31 ± 1.01 | 6.43 ± 0.02 |
MIX | 0.61 ± 0.02 | 33.50 ± 0.64** | 2.38 ± 0.08 | 86.14 ± 0.75 | 10.80 ± 0.76** | 6.52 ± 0.02** |
生境 Habitat | 有机质 Organic matter (%) | 全氮 Total nitrogen (%) | 全硫 Total sulphur (%) | 全磷 Total phosphorus (%) | 全钾 Total potassium (%) | 全碳 Total carbon (%) |
US | 1.01 ± 0.03 | 0.06 ± 0.001 | 0.17 ± 0.01 | 0.015 ± 0.000 | 0.42 ± 0.01 | 0.65 ± 0.02 |
SA | 2.15 ± 0.04** | 0.14 ± 0.004** | 0.36 ± 0.01** | 0.031 ± 0.001** | 0.69 ± 0.02** | 1.48 ± 0.03** |
AM | 2.23 ± 0.06 | 0.12 ± 0.002 | 0.41 ± 0.03 | 0.019 ± 0.001 | 0.59 ± 0.01 | 1.55 ± 0.04 |
MIX | 2.40 ± 0.06 | 0.15 ± 0.004** | 0.41 ± 0.01 | 0.032 ± 0.001** | 0.69 ± 0.0.02** | 1.62 ± 0.04** |
理化性质 Physicochemical properties | 植被特征 Vegetation characteristics | p | R2 | 回归方程 Regression equation |
---|---|---|---|---|
有机质含量 Organic matter content (COM) | PH | <0.001 | 0.848 | COM = 0.89PH + 1.09 |
全氮含量 Total nitrogen content (CTN) | PD, PH, C | <0.001 | 0.923 | CTN = 0.001PD + 0.08PH - 0.07C + 0.06 |
全磷含量 Total phosphorus content (CTP) | PD | <0.001 | 0.689 | CTP = 0.0003PD + 0.02 |
全硫含量 Total sulphur content (CTS) | PH | <0.001 | 0.860 | CTS = 0.16PH + 0.18 |
全钾含量 Total potassium content (CTK) | PD, PH, C | 0.001 | 0.903 | CTK = 0.05PD + 0.21PH - 0.19C + 0.42 |
全碳含量 Total carbon content (CTC) | PH, PD, C | 0.047 | 0.887 | CTC = 0.58PH + 0.005PD + 0.67 |
容重 Bulk density (BD) | PD, PH, C | 0.001 | 0.961 | BD = 0.68CC - 0.014PD - 0.71PH + 1.43 |
盐度 Salinity (Sal) | PD, PH, C | <0.001 | 0.939 | Sal = 0.006PD + 0.25PH - 0.38C + 0.91 |
pH | PD, PH | 0.022 | 0.608 | pH = 0.003PD - 0.122PH + 6.62 |
砂粒比例 Sand ratio (Sa) | C | <0.001 | 0.837 | Sa = 5.11 - 3.41C |
粉粒比例 Silt ratio (Si) | PH | 0.03 | 0.295 | Si = 90.55 - 2.31PH |
黏粒比例 Clay ratio (Cl) | PD, PH, C | 0.003 | 0.807 | Cl = 0.15PD + 9.48PH - 12.97C + 2.74 |
Table 3 Relationships (by stepwise regression analysis) between vegetation characteristics and physicochemical properties in the mangrove wetland invaded by Spartina alterniflora in Zhanjiang, China
理化性质 Physicochemical properties | 植被特征 Vegetation characteristics | p | R2 | 回归方程 Regression equation |
---|---|---|---|---|
有机质含量 Organic matter content (COM) | PH | <0.001 | 0.848 | COM = 0.89PH + 1.09 |
全氮含量 Total nitrogen content (CTN) | PD, PH, C | <0.001 | 0.923 | CTN = 0.001PD + 0.08PH - 0.07C + 0.06 |
全磷含量 Total phosphorus content (CTP) | PD | <0.001 | 0.689 | CTP = 0.0003PD + 0.02 |
全硫含量 Total sulphur content (CTS) | PH | <0.001 | 0.860 | CTS = 0.16PH + 0.18 |
全钾含量 Total potassium content (CTK) | PD, PH, C | 0.001 | 0.903 | CTK = 0.05PD + 0.21PH - 0.19C + 0.42 |
全碳含量 Total carbon content (CTC) | PH, PD, C | 0.047 | 0.887 | CTC = 0.58PH + 0.005PD + 0.67 |
容重 Bulk density (BD) | PD, PH, C | 0.001 | 0.961 | BD = 0.68CC - 0.014PD - 0.71PH + 1.43 |
盐度 Salinity (Sal) | PD, PH, C | <0.001 | 0.939 | Sal = 0.006PD + 0.25PH - 0.38C + 0.91 |
pH | PD, PH | 0.022 | 0.608 | pH = 0.003PD - 0.122PH + 6.62 |
砂粒比例 Sand ratio (Sa) | C | <0.001 | 0.837 | Sa = 5.11 - 3.41C |
粉粒比例 Silt ratio (Si) | PH | 0.03 | 0.295 | Si = 90.55 - 2.31PH |
黏粒比例 Clay ratio (Cl) | PD, PH, C | 0.003 | 0.807 | Cl = 0.15PD + 9.48PH - 12.97C + 2.74 |
Fig. 1 Contents of sedimental heavy metals in two pairs of comparative habitats (mean ± SE) in the mangrove wetland invaded by Spartina alterniflora in Zhanjiang, China. Values in columns followed by ** indicate significant differences in each pair of comparative habitats based on paired-sample t-tests (p < 0.01). See Table 1 for information on habitats.
生境 Habitat | 砷 As (µg·g-1) | 镉 Cd (µg·g-1) | 铬 Cr (µg·g-1) | 铜 Cu (µg·g-1) | 镍 Ni (µg·g-1) | 铅 Pb (µg·g-1) | 锌 Zn (µg·g-1) | 锰 Mn (µg·g-1) |
---|---|---|---|---|---|---|---|---|
US | 16.64 ± 3.90 | 1.29 ± 0.77 | 23.41 ± 0.45c | 5.89 ± 0.35c | 3.34 ± 3.40b | 28.54 ± 1.41b | 27.80 ± 0.52c | 64.21 ± 1.54b |
SA | 15.91 ± 2.42 | 1.50 ± 0.41 | 45.17 ± 1.17a | 12.49 ± 0.51a | 12.58 ± 2.53a | 33.30 ± 1.83ab | 54.07 ± 1.58a | 87.58 ± 4.17a |
AM | 15.59 ± 3.21 | 1.43 ± 0.48 | 35.42 ± 0.90b | 9.22 ± 0.33b | 5.40 ± 2.92b | 37.52 ± 1.34a | 41.95 ± 1.49b | 67.82 ± 5.36b |
MIX | 16.13 ± 3.36 | 1.43 ± 0.40 | 46.33 ± 0.99a | 12.72 ± 0.41a | 14.92 ± 4.48a | 34.09 ± 2.17ab | 56.66 ± 1.40a | 86.15 ± 3.35a |
Table 4 Contents of sedimental heavy metals in four habitats in the mangrove wetland invaded by Spartina alterniflora in Zhanjiang, China
生境 Habitat | 砷 As (µg·g-1) | 镉 Cd (µg·g-1) | 铬 Cr (µg·g-1) | 铜 Cu (µg·g-1) | 镍 Ni (µg·g-1) | 铅 Pb (µg·g-1) | 锌 Zn (µg·g-1) | 锰 Mn (µg·g-1) |
---|---|---|---|---|---|---|---|---|
US | 16.64 ± 3.90 | 1.29 ± 0.77 | 23.41 ± 0.45c | 5.89 ± 0.35c | 3.34 ± 3.40b | 28.54 ± 1.41b | 27.80 ± 0.52c | 64.21 ± 1.54b |
SA | 15.91 ± 2.42 | 1.50 ± 0.41 | 45.17 ± 1.17a | 12.49 ± 0.51a | 12.58 ± 2.53a | 33.30 ± 1.83ab | 54.07 ± 1.58a | 87.58 ± 4.17a |
AM | 15.59 ± 3.21 | 1.43 ± 0.48 | 35.42 ± 0.90b | 9.22 ± 0.33b | 5.40 ± 2.92b | 37.52 ± 1.34a | 41.95 ± 1.49b | 67.82 ± 5.36b |
MIX | 16.13 ± 3.36 | 1.43 ± 0.40 | 46.33 ± 0.99a | 12.72 ± 0.41a | 14.92 ± 4.48a | 34.09 ± 2.17ab | 56.66 ± 1.40a | 86.15 ± 3.35a |
污染程度 Pollution level | 无 No | 轻度 Mild | 偏中度 Partial-moderate | 中度 Moderate | 偏重 Partial-hazardous | 重 Hazardous | 严重 Severe |
---|---|---|---|---|---|---|---|
级别 Level | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
累积指数 Accumulation index (I) | ≤0 | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | >5 |
Table 5 Heavy metal pollution level and evaluation criteria
污染程度 Pollution level | 无 No | 轻度 Mild | 偏中度 Partial-moderate | 中度 Moderate | 偏重 Partial-hazardous | 重 Hazardous | 严重 Severe |
---|---|---|---|---|---|---|---|
级别 Level | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
累积指数 Accumulation index (I) | ≤0 | 0-1 | 1-2 | 2-3 | 3-4 | 4-5 | >5 |
生境 Habitat | 砷 As | 镉 Cd | 铬 Cr | 铜 Cu | 镍 Ni | 铅 Pb | 锌 Zn | 锰 Mn |
---|---|---|---|---|---|---|---|---|
裸滩 US | -0.80 ± 0.32 | 0.92 ± 0.21 | -1.99 ± 0.03 | -3.55 ± 0.09 | -2.37 ± 0.40 | -0.86 ± 0.07 | -2.40 ± 0.03 | -3.50 ± 0.03 |
互花米草 SA | -0.70 ± 0.24 | 1.27 ± 0.11 | -1.04 ± 0.04 | -2.45 ± 0.06 | -1.13 ± 0.08 | -0.64 ± 0.08 | -1.44 ± 0.05 | -3.06 ± 0.07 |
海榄雌 AM | -1.26 ± 0.57 | 1.15 ± 0.17 | -1.40 ± 0.04 | -2.88 ± 0.05 | -2.65 ± 0.34 | -0.45 ± 0.05 | -1.80 ± 0.05 | -3.46 ± 0.11 |
混生群落 MIX | -1.22 ± 0.66 | 1.21 ± 0.11 | -1.01 ± 0.03 | -2.42 ± 0.05 | -0.91 ± 0.12 | -0.61 ± 0.09 | -1.37 ± 0.04 | -3.08 ± 0.06 |
总和 Total | -1.00 ± 0.23 | 1.14 ± 0.08 | -1.36 ± 0.06 | -2.82 ± 0.07 | -1.76 ± 0.17 | -0.64 ± 0.04 | -1.75 ± 0.06 | -3.28 ± 0.05 |
Table 6 Pollution levels for individual sedimental heavy metal in the mangrove wetland invaded by Spartina alterniflora in Zhanjiang, China
生境 Habitat | 砷 As | 镉 Cd | 铬 Cr | 铜 Cu | 镍 Ni | 铅 Pb | 锌 Zn | 锰 Mn |
---|---|---|---|---|---|---|---|---|
裸滩 US | -0.80 ± 0.32 | 0.92 ± 0.21 | -1.99 ± 0.03 | -3.55 ± 0.09 | -2.37 ± 0.40 | -0.86 ± 0.07 | -2.40 ± 0.03 | -3.50 ± 0.03 |
互花米草 SA | -0.70 ± 0.24 | 1.27 ± 0.11 | -1.04 ± 0.04 | -2.45 ± 0.06 | -1.13 ± 0.08 | -0.64 ± 0.08 | -1.44 ± 0.05 | -3.06 ± 0.07 |
海榄雌 AM | -1.26 ± 0.57 | 1.15 ± 0.17 | -1.40 ± 0.04 | -2.88 ± 0.05 | -2.65 ± 0.34 | -0.45 ± 0.05 | -1.80 ± 0.05 | -3.46 ± 0.11 |
混生群落 MIX | -1.22 ± 0.66 | 1.21 ± 0.11 | -1.01 ± 0.03 | -2.42 ± 0.05 | -0.91 ± 0.12 | -0.61 ± 0.09 | -1.37 ± 0.04 | -3.08 ± 0.06 |
总和 Total | -1.00 ± 0.23 | 1.14 ± 0.08 | -1.36 ± 0.06 | -2.82 ± 0.07 | -1.76 ± 0.17 | -0.64 ± 0.04 | -1.75 ± 0.06 | -3.28 ± 0.05 |
理化性质 Physicochemical properties | 砷 As | 镉 Cd | 铬 Cr | 铜 Cu | 镍 Ni | 铅 Pb | 锌 Zn | 锰 Mn |
---|---|---|---|---|---|---|---|---|
有机质含量 Organic matter content (COM) | -0.100 | 0.201 | 0.886** | 0.863** | 0.703** | 0.729** | 0.880** | 0.560* |
全氮含量 Total nitrogen content (CTN) | -0.094 | 0.405 | 0.980** | 0.963** | 0.838** | 0.607* | 0.973** | 0.732** |
全磷含量 Total phosphorus content (CTP) | -0.060 | 0.249 | 0.950** | 0.961** | 0.932** | 0.339 | 0.957** | 0.398 |
全硫含量 Total sulphur content (CTS) | -0.020 | 0.179 | 0.779** | 0.747** | 0.589* | 0.712** | 0.774** | 0.812** |
全钾含量 Total potassium content (CTK) | -0.059 | 0.214 | 0.990** | 0.974** | 0.848** | 0.580* | 0.980** | 0.782** |
全碳含量 Total carbon content (CTC) | -0.120 | 0.223 | 0.876** | 0.853** | 0.680** | 0.737** | 0.868** | 0.534* |
容重 Bulk density (BD) | 0.043 | -0.154 | -0.973** | -0.941** | -0.854** | -0.527* | -0.967** | -0.790** |
盐度 Salinity (Sal) | -0.024 | -0.150 | 0.956** | 0.955** | 0.943** | 0.331 | 0.960** | 0.855** |
pH | -0.059 | -0.226 | -0.238 | -0.217 | -0.007 | -0.623** | -0.237 | 0.268 |
砂粒比例 Sand ratio (Sa) | 0.150 | -0.107 | -0.904** | -0.870** | -0.679** | -0.647** | -0.886** | -0.662** |
粉粒比例 Silt ratio (Si) | 0.398 | 0.234 | -0.426 | -0.430 | -0.378 | -0.586* | -0.417 | -0.230 |
黏粒比例 Clay ratio (Cl) | -0.281 | -0.017 | 0.898** | 0.981** | 0.868** | 0.497* | 0.895** | 0.776** |
Table 7 Summary of Pearson correlation analyses between the sedimental heavy metal contents and the physicochemical properties in the mangrove wetland invaded by Spartina alterniflora in Zhanjiang, China
理化性质 Physicochemical properties | 砷 As | 镉 Cd | 铬 Cr | 铜 Cu | 镍 Ni | 铅 Pb | 锌 Zn | 锰 Mn |
---|---|---|---|---|---|---|---|---|
有机质含量 Organic matter content (COM) | -0.100 | 0.201 | 0.886** | 0.863** | 0.703** | 0.729** | 0.880** | 0.560* |
全氮含量 Total nitrogen content (CTN) | -0.094 | 0.405 | 0.980** | 0.963** | 0.838** | 0.607* | 0.973** | 0.732** |
全磷含量 Total phosphorus content (CTP) | -0.060 | 0.249 | 0.950** | 0.961** | 0.932** | 0.339 | 0.957** | 0.398 |
全硫含量 Total sulphur content (CTS) | -0.020 | 0.179 | 0.779** | 0.747** | 0.589* | 0.712** | 0.774** | 0.812** |
全钾含量 Total potassium content (CTK) | -0.059 | 0.214 | 0.990** | 0.974** | 0.848** | 0.580* | 0.980** | 0.782** |
全碳含量 Total carbon content (CTC) | -0.120 | 0.223 | 0.876** | 0.853** | 0.680** | 0.737** | 0.868** | 0.534* |
容重 Bulk density (BD) | 0.043 | -0.154 | -0.973** | -0.941** | -0.854** | -0.527* | -0.967** | -0.790** |
盐度 Salinity (Sal) | -0.024 | -0.150 | 0.956** | 0.955** | 0.943** | 0.331 | 0.960** | 0.855** |
pH | -0.059 | -0.226 | -0.238 | -0.217 | -0.007 | -0.623** | -0.237 | 0.268 |
砂粒比例 Sand ratio (Sa) | 0.150 | -0.107 | -0.904** | -0.870** | -0.679** | -0.647** | -0.886** | -0.662** |
粉粒比例 Silt ratio (Si) | 0.398 | 0.234 | -0.426 | -0.430 | -0.378 | -0.586* | -0.417 | -0.230 |
黏粒比例 Clay ratio (Cl) | -0.281 | -0.017 | 0.898** | 0.981** | 0.868** | 0.497* | 0.895** | 0.776** |
重金属元素 Heavy metals | 植被特征 Vegetation characteristics | p | R2 | 回归方程 Regression equation |
---|---|---|---|---|
砷 As | – | – | – | – |
镉 Cd | – | – | – | – |
铬 Cr | PD, PH, C | <0.001 | 0.901 | Cr = 0.44PD + 19.31PH - 21.40C + 23.72 |
铜 Cu | PD, PH, C | <0.001 | 0.855 | Cu = 0.14PD + 5.66PH - 6.51C + 5.99 |
镍 Ni | PD | <0.001 | 0.573 | Ni = 0.22PD + 5.44 |
铅 Pb | PH | 0.001 | 0.509 | Pb = 5.00PH + 28.39 |
锌 Zn | PD, PH, C | <0.001 | 0.909 | Zn = 0.58PD + 26.16PH - 31.22C + 28.09 |
锰 Mn | PD | <0.001 | 0.630 | Mn = 0.55PD + 67.47 |
Table 8 Relationships (by stepwise regression analysis) between the sedimental heavy metal contents and the vegetation characteristics in the mangrove wetland invaded by Spartina alterniflora in Zhanjiang, China
重金属元素 Heavy metals | 植被特征 Vegetation characteristics | p | R2 | 回归方程 Regression equation |
---|---|---|---|---|
砷 As | – | – | – | – |
镉 Cd | – | – | – | – |
铬 Cr | PD, PH, C | <0.001 | 0.901 | Cr = 0.44PD + 19.31PH - 21.40C + 23.72 |
铜 Cu | PD, PH, C | <0.001 | 0.855 | Cu = 0.14PD + 5.66PH - 6.51C + 5.99 |
镍 Ni | PD | <0.001 | 0.573 | Ni = 0.22PD + 5.44 |
铅 Pb | PH | 0.001 | 0.509 | Pb = 5.00PH + 28.39 |
锌 Zn | PD, PH, C | <0.001 | 0.909 | Zn = 0.58PD + 26.16PH - 31.22C + 28.09 |
锰 Mn | PD | <0.001 | 0.630 | Mn = 0.55PD + 67.47 |
[1] | Banerjee K, Senthilkumar B, Purvaja R, Ramesh R (2012). Sedimentation and trace metal distribution in selected locations of Sundarbans mangroves and Hooghly estuary, Northeast coast of India.Environmental Geochemistry and Health, 34, 27-42. |
[2] | Bortolus A, Carlton JT, Schwindt E (2015). Reimagining South American coasts: Unveiling the hidden invasion history of an iconic ecological engineer.Diversity and Distributions, 21, 1267-1283. |
[3] | Bradley BA, Blumenthal DM, Early R, Grosholz ED, Lawler JJ, Miller LP, Sorte CJ, D’Antonio CM, Diez JM, Dukes JS (2011). Global change, global trade, and the next wave of plant invasions.Frontiers in Ecology and the Environment, 10, 20-28. |
[4] | Caetano M, Vale C, Cesario R, Fonseca N (2008). Evidence for preferential depths of metal retention in roots of salt marsh plants.Science of the Total Environment, 390, 466-474. |
[5] | Chen H, Chen GZ, Ye ZH (2009). Research progress of heavy metal pollution in mangrove wetlands.Acta Ecologica Sinica, 29, 3893-3900. (in Chinese with English abstract)[程皓, 陈桂珠, 叶志鸿 (2009). 红树林重金属污染生态学研究进展. 生态学报, 29, 3893-3900.] |
[6] | Chen L, Wang W, Zhang Y, Lin G (2009). Recent progresses in mangrove conservation, restoration and research in China. Journal of Plant Ecology, 2, 45-54. |
[7] | Chen LZ, Wang WQ, Zhang YH, Huang L, Zhao CL, Yang SC, Yang ZW, Chen YC, Xu HL, Zhong CR, Su B, Fang BZ, Chen NM, Zeng CZ, Lin GH (2010). Damage to mangroves from extreme cold in early 2008 in southern China.Chinese Journal of Plant Ecology, 34, 186-194. (in Chinese with English abstract)[陈鹭真, 王文卿, 张宜辉, 黄丽, 赵春磊, 杨盛昌, 杨志伟, 陈粤超, 徐华林, 钟才荣, 苏博, 方柏州, 陈乃明, 曾传志, 林光辉 (2010). 2008年南方低温对我国红树植物的破坏作用. 植物生态学报, 34, 186-194.] |
[8] | Chen Q, Li J, Zhang L, Lu H, Ren H, Jian S (2015). Changes in the macrobenthic faunal community during succession of a mangrove forest at Zhanjiang, South China.Journal of Coastal Research, 31, 315-325. |
[9] | Chen Q, Ma KM (2015). Research overview and trend on biological invasion in mangrove forests.Chinese Journal of Plant Ecology, 39, 283-299. (in Chinese with English abstract)[陈权, 马克明 (2015). 红树林生物入侵研究概况与趋势. 植物生态学报, 39, 283-299.] |
[10] | Chung CH (2006). Forty years of ecological engineering with Spartina plantations in China.Ecological Engineering, 27, 49-57. |
[11] | Clemens S, Palmgren MG, Krämer U (2002). A long way ahead: Understanding and engineering plant metal accumulation.Trends in Plant Science, 7, 309-315. |
[12] | Craft C, Reader J, Sacco JN, Broome SW (1999). Twenty-five years of ecosystem development of constructed Spartina alterniflora( Loisel) marshes.Ecological Applications, 9, 1405-1419. |
[13] | Elton CS (1958). The Ecology of Invasions by Plants and Animals. Methuen, London. |
[14] | Fonseca EF, Neto JAB, Silva CG (2013). Heavy metal accumulation in mangrove sediments surrounding a large waste reservoir of a local metallurgical plant, Sepetiba Bay, SE, Brazil.Environmental Earth Sciences, 70, 643-650. |
[15] | Gan HY, Zheng ZC, Liang K, Chen TH (2010). Spatial distribution and source of heavy metals in surface sediment from near-shore area of Beihai, Guangxi.Marine Environmental Science, 29, 698-704. (in Chinese with English abstract)[甘华阳, 郑志昌, 梁开, 陈太浩 (2010). 广西北海近岸海域表层沉积物的重金属分布及来源分析. 海洋环境科学, 29, 698-704.] |
[16] | Islam MS, Tanaka M (2004). Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: A review and synthesis.Marine Pollution Bulletin, 48, 624-649. |
[17] | Kathiresan K, Bingham BL (2001). Biology of mangroves and mangrove ecosystems.Advances in Marine Biology, 40, 81-251. |
[18] | Li B, Liao CH, Zhang XD, Chen HL, Wang Q, Chen ZY, Gan XJ, Wu JH, Zhao B, Ma ZJ (2009). Spartina alterniflora invasions in the Yangtze River estuary, China: An overview of current status and ecosystem effects.Ecological Engineering, 35, 511-520. |
[19] | Li LQ (2008). Heavy Metals in the Mangrove Wetlands of China. PhD dissertation, Xiamen University, Xiamen. (in Chinese with English abstract)[李柳强 (2008). 中国红树林湿地重金属污染研究. 博士学位论文, 厦门大学, 厦门.] |
[20] | Li LQ, Ding ZH, Liu JL, Lin HN, Wu H (2008). Distribution of heavy metals in surficial sediments from main mangrove wetlands of China and their influence factors.Acta Oceanologica Sinica, 30(5), 159-164. (in Chinese with English abstract)[李柳强, 丁振华, 刘金铃, 林慧娜, 吴浩 (2008). 中国主要红树林表层沉积物中重金属的分布特征及其影响因素. 海洋学报, 30(5), 159-164.] |
[21] | Liao C, Luo Y, Jiang L, Zhou X, Wu X, Fang C, Chen J, Li B (2007). Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China. Ecosystems, 10, 1351-1361. |
[22] | Lin GX, Lu WZ (2011). Investigation of plant resources in Zhanjiang Gaoqiao Mangrove and the surrounding regions, Guangdong Province.Guangdong Forestry Science and Technology, 27(5), 38-43. (in Chinese with English abstract)[林广旋, 卢伟志 (2011). 湛江高桥红树林及周边地区植物资源调查. 广东林业科技, 27(5), 38-43.] |
[23] | Ma RL, He YS, Yang Y, Xia N, Guo YP, Zhang GC, Lu S (2012). Geochemical characteristics of surface sediments from the Qiongzhou Strait.Marine Science Bulletin, 31(2), 131-135. (in Chinese with English abstract)[马荣林, 何玉生, 杨奕, 夏南, 郭跃品, 张固成, 陆珊 (2012). 琼州海峡表层沉积物元素地球化学特征. 海洋通报, 31(2), 131-135.] |
[24] | Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000). Biotic invasions: Causes, epidemiology, global consequences, and control.Ecological Applications, 10, 689-710. |
[25] | Nagajyoti PC, Lee KD, Sreekanth TVM (2010). Heavy metals, occurrence and toxicity for plants: A review.Environmental Chemistry Letters, 8, 199-216. |
[26] | Nath B, Birch G, Chaudhuri P (2013). Trace metal biogeochemistry in mangrove ecosystems: A comparative assessment of acidified (by acid sulfate soils) and non-acidified sites.Science of the Total Environment, 463, 667-674. |
[27] | Nawab J, Khan S, Shah MT, Gul N, Ali A, Khan K, Huang Q (2016). Heavy metal bioaccumulation in native plants in chromite impacted sites: A search for effective remediating plant species.Clean-Soil Air Water, 44, 37-46. |
[28] | Pan K, Wang WX (2012). Trace metal contamination in estuarine and coastal environments in China.Science of the Total Environment, 421, 3-16. |
[29] | Peng JF, Song YH, Yuan P, Cui XY, Qiu GL (2009). The remediation of heavy metals contaminated sediment.Journal of Hazardous Materials, 161, 633-640. |
[30] | Piazzolla D, Scanu S, Frattarelli FM, Mancini E, Tiralongo F, Brundo MV, Tibullo D, Pecoraro R, Copat C, Ferrante M, Marcelli M (2015). Trace-metal enrichment and pollution in coastal sediments in the Northern Tyrrhenian Sea, Italy.Archives of Environmental Contamination and Toxicology, 69, 470-481. |
[31] | Rainbow PS (2002). Trace metal concentrations in aquatic invertebrates: Why and so what?Environmental Pollution, 120, 497-507. |
[32] | Rashed MN (2010). Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt. Journal of Hazardous Materials, 178, 739-746. |
[33] | Simberloff D, Martin J-L, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, Garcia-Berthou E, Pascal M, Pysek P, Sousa R, Tabacchi E, Vila M (2013). Impacts of biological invasions: What’s what and the way forward?Trends in Ecology & Evolution, 28, 58-66. |
[34] | Tilman D (1999). The ecological consequences of changes in biodiversity: A search for general principles.Ecology, 80, 1455-1474. |
[35] | Usman ARA, Alkredaa RS, Al-Wabel MI (2013). Heavy metal contamination in sediments and mangroves from the coast of Red Sea: Avicennia marina as potential metal bio-accumulator. Ecotoxicology and Environmental Safety, 97, 263-270. |
[36] | Wang AJ, Chen J, Li DY (2008). Impact of Spartina altemiflora on sedimentary environment of coastal wetlands of the Quanzhou Bay. The Ocean Engineering, 26(4), 60-69. (in Chinese with English abstract)[王爱军, 陈坚, 李东义 (2008). 互花米草对福建泉州湾海岸湿地沉积环境影响. 海洋工程, 26(4), 60-69.] |
[37] | Wang Q, An SQ, Ma ZJ, Zhao B, Chen JK, Li B (2005). Invasive Spartina alterniflora: Biology, ecology and management. Acta Phytotaxonomica Sinica, 44, 559-588. (in Chinese with English abstract)[王卿, 安树青, 马志军, 赵斌, 陈家宽, 李博 (2006). 入侵植物互花米草——生物学、生态学及管理. 植物分类学报, 44, 559-588.] |
[38] | Yadav A, Ram A, Majithiya D, Salvi S, Sonavane S, Kamble A, Ghadigaonkar S, Jaiswar JRM, Gajbhiye SN (2015). Effect of heavy metals on the carbon and nitrogen ratio in Avicennia marina from polluted and unpolluted regions. Marine Pollution Bulletin, 101, 359-365. |
[39] | Zhang JP, Ren H, Shen WJ, Jian SG, Lu HF (2009). Community composition, species diversity and population biomass of the Gaoqiao mangrove forest in Southern China. In: Herrera JR ed. International Wetlands: Ecology, Conservation and Restoration. Nova Science, New York. 177-190. |
[40] | Zhang MY, Cui LJ, Sheng LX, Wang YF (2009). Distribution and enrichment of heavy metals among sediments, water body and plants in Hengshuihu Wetland of Northern China.Ecological Engineering, 35, 563-569. |
[41] | Zhang Y, Huang G, Wang W, Chen L, Lin G (2012). Interactions between mangroves and exotic Spartina in an anthropogenically disturbed estuary in southern China. Ecology, 93, 588-597. |
[42] | Zhang ZW, Xu XR, Sun YX, Yu S, Chen YS, Peng JX (2014). Heavy metal and organic contaminants in mangrove ecosystems of China: A review.Environmental Science and Pollution Research, 21, 11938-11950. |
[43] | Zou F, Zhang H, Dahmer T, Yang Q, Cai J, Zhang W, Liang C (2008). The effects of benthos and wetland area on shorebird abundance and species richness in coastal mangrove wetlands of Leizhou Peninsula, China.Forest Ecology and Management, 255, 3813-3818. |
[1] | SHI Huan-Huan, XUE Qiong, YU Zhen-Lin, WANG Cheng-Huan. Effects of density and species proportion on intraspecific and interspecific interactions between salt marsh plants during seed germination [J]. Chin J Plant Ecol, 2023, 47(1): 77-87. |
[2] | FANG Jing-Yun, GUO Ke, WANG Guo-Hong, TANG Zhi-Yao, XIE Zong-Qiang, SHEN Ze-Hao, WANG Ren-Qing, QIANG Sheng, LIANG Cun-Zhu, DA Liang-Jun, YU Dan. Vegetation classification system and classification of vegetation types used for the compilation of vegetation of China [J]. Chin J Plant Ecol, 2020, 44(2): 96-110. |
[3] | SUN Hui-Min, JIANG Jiang, CUI Li-Na, ZHANG Shui-Feng, ZHANG Jin-Chi. Effects of Spartina alterniflora invasion on soil organic carbon composition of mangrove wetland in Zhangjiang River Estuary [J]. Chin J Plant Ecol, 2018, 42(7): 774-784. |
[4] | HU Chu-Qi,LIU Jin-Ke,WANG Tian-Hong,WANG Wen-Lin,LU Shan,ZHOU Chang-Fang. Influence of three types of salt stress on photosynthesis in Spartina alterniflora and Phragmites australis [J]. Chin J Plan Ecolo, 2015, 39(1): 92-103. |
[5] | TU Li-Hua, HU Hong-Ling, HU Ting-Xing, ZHANG Jian, LUO Shou-Hua, DAI Hong-Zhong. Response of Betula luminifera leaf litter decomposition to simulated nitrogen deposition in the Rainy Area of West China [J]. Chin J Plant Ecol, 2012, 36(2): 99-108. |
[6] | HUANG Yi, WANG Dong-Wei, CAI Jia-Liang, ZHENG Wei-Shuang. Review of glomalin-related soil protein and its environmental function in the rhizosphere [J]. Chin J Plant Ecol, 2011, 35(2): 232-236. |
[7] | LI Jian, MA Jian-Hua, SONG Bo. HEAVY METAL ACCUMULATION AND HEALTH RISK ASSESSMENT IN THE ROADSIDE SOIL-WHEAT SYSTEM ALONG ZHENGZHOU-KAIFENG HIGH-WAY, CHINA [J]. Chin J Plant Ecol, 2009, 33(3): 624-628. |
[8] | ZHAO Cong-Jiao, DENG Zi-Fa, ZHOU Chang-Fang, GUAN Bao-Hua, AN Shu-Qing, CHEN Lin, LU Xia-Mei. EFFECTS OF NITROGEN AVAILABILITY AND COMPETITION ON LEAF CHARACTERISTICS OF SPARTINA ALTERNIFLORA AND PHRAGMITES AUSTRALIS [J]. Chin J Plant Ecol, 2008, 32(2): 392-401. |
[9] | CHEN Lin, DENG Zi-Fa, AN Shu-Qing, ZHAO Cong-Jiao, ZHOU Chang-Fang, ZHI Ying-Biao. ALTERNATE IRRIGATION OF FRESH AND SALT WATER RESTRAINS CLONAL GROWTH AND REPRODUCTION OF SPARTINA ALTERNIFLORA [J]. Chin J Plant Ecol, 2007, 31(4): 645-651. |
[10] | ZHU Wen-Quan, PAN Yao-Zhong, ZHANG Jin-Shui. ESTIMATION OF NET PRIMARY PRODUCTIVITY OF CHINESE TERRESTRIAL VEGETATION BASED ON REMOTE SENSING [J]. Chin J Plant Ecol, 2007, 31(3): 413-424. |
[11] | HUANG Hua-Mei, ZHANG Li-Quan. REMOTE SENSING ANALYSIS OF RANGE EXPANSION OF SPARTINA ALTERNIFLORA AT JIUDUANSHA SHOALS IN SHANGHAI, CHINA [J]. Chin J Plant Ecol, 2007, 31(1): 75-82. |
[12] | Jiang Gao-ming. The Application of Pinus tabulaeformis Tree Rings in Revealing the Pollution History of Chengde City [J]. Chin J Plan Ecolo, 1994, 18(4): 314-321. |
[13] | Huang Yin-xiao, Lin Shun-hua, Ren Ji-kai, Chen Qing-lang, Chen Zhang-long, Han Rong-zhuang, Yao Yi-qun. The Translocation, Distribution and Accumulation of Heavy Metals in Crops-Soil System in the Eastern Suburbs of Beijing [J]. Chin J Plan Ecolo, 1986, 10(2): 131-145. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn