Chin J Plant Ecol ›› 2005, Vol. 29 ›› Issue (6): 968-975.DOI: 10.17521/cjpe.2005.0129
• Research Articles • Previous Articles Next Articles
FAN Ze-Xin1,2, CAO Kun- Fang1,*(), ZOU Shou-Qing1
Received:
2004-11-17
Accepted:
2005-04-27
Online:
2005-11-17
Published:
2005-09-30
Contact:
CAO Kun- Fang
FAN Ze-Xin, CAO Kun- Fang, ZOU Shou-Qing. AXIAL AND RADIAL CHANGES IN XYLEM ANATOMICAL CHARACTERISTICS IN SIX EVERGREEN BROADLEAVED TREE SPECIES IN AILAO MOUNTAIN, YUNNAN[J]. Chin J Plant Ecol, 2005, 29(6): 968-975.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2005.0129
Fig.1 Axial variations of mean lumen diameter in six evergreen broadleaved tree species The > or < indicated the position of the transition zone when the segmented regression was significant, there is no label in trees which the segmented regression was ns while the simple regression was significant, the “ns” was labeled centered below the tree letter when the simple and segmented regression were both ns
Fig.3 Axial variations of lumen/total sapwood area in the six evergreen broadleaved tree species The tree letters and the labels are the same as Fig. 1
Fig.4 Axial variations in the theoretical hydraulic conductivity in the six evergreen broadleaved tree species The tree letters and the labels are the same as Fig. 1
树号 Trees | 导管直径 Lumen diameter | 导管密度 Vessel density | 导管占边材面积比 Lumen/total sapwood area | 理论比导率 ks | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
简单 SimM R2 | 分段 SegM R2 | F值 F(df) | 简单 SimM R2 | 分段 SegM R2 | F值 F(df) | 简单 SimM R2 | 分段 SegM R2 | F值 F(df) | 简单 SimM R2 | 分段 SegM R2 | F值 F(df) | ||||
A | 0.73 | 0.85 | 6.44(16)* | 0.72 | 0.83 | 5.38(17)* | 0.49 | 0.66 | 3.87(16)* | 0.65 | 0.76 | 3.38(16) | |||
B | 0.73 | 0.92 | 16.77(14)* | 0.61 | 0.90 | 20.48(14)* | 0.00 | 0.45 | 5.74(14)* | 0.56 | 0.83 | 10.76(14)* | |||
C | 0.81 | 0.88 | 4.28(15)* | 0.86 | 0.88 | 1.61(15) | 0.03 | 0.59 | 10.04(15)* | 0.55 | 0.73 | 4.78(15)* | |||
D | 0.14 | 0.86 | 37.12(14)* | 0.61 | 0.88 | 13.16(12)* | 0.55 | 0.80 | 8.47(14)* | 0.01 | 0.82 | 26.38(12)* | |||
E | 0.76 | 0.92 | 18.94(19)* | 0.73 | 0.91 | 20.86(19)* | 0.02 | 0.10 | 0.80(19) | 0.65 | 0.79 | 6.19(19)* | |||
F | 0.59 | 0.63 | 0.66(10) | 0.92 | 0.93 | 0.22(7) | 0.13 | 0.43 | 2.57(10) | 0.10 | 0.54 | 4.77(10)* | |||
G | 0.90 | 0.90 | 0.23(17) | 0.61 | 0.80 | 8.07(17)* | 0.46 | 0.63 | 3.34(15) | 0.77 | 0.85 | 4.28(17)* | |||
H | 0.86 | 0.91 | 3.99(14)* | 0.65 | 0.68 | 3.33(13) | 0.67 | 0.84 | 5.96(12)* | 0.83 | 0.87 | 2.16(13) | |||
I | 0.92 | 0.93 | 1.45(16) | 0.36 | 0.59 | 4.20(15)* | 0.66 | 0.71 | 1.45(15) | 0.87 | 0.88 | 0.53(15) | |||
J | 0.19 | 0.56 | 3.32(8) | 0.67 | 0.82 | 3.13(8) | 0.13 | 0.48 | 2.61(8) | 0.01 | 0.43 | 2.99(8) | |||
K | 0.80 | 0.87 | 4.25(17)* | 0.83 | 0.89 | 3.93(14)* | 0.24 | 0.55 | 5.30(17)* | 0.75 | 0.85 | 6.04(17)* | |||
L | 0.84 | 0.85 | 0.34(15) | 0.66 | 0.79 | 4.85(17)* | 0.05 | 0.21 | 1.85(18) | 0.75 | 0.75 | 0.72(14) | |||
M | 0.44 | 0.92 | 31.72(10)* | - | - | - | - | - | - | - | - | - | |||
N | 0.67 | 0.89 | 9.97(10)* | - | - | - | - | - | - | - | - | - |
Table 1 Summary of correlations and F-tests of the simple linear regression (SimM) and segmented regression model (SegM) on the data of Figure 1-4
树号 Trees | 导管直径 Lumen diameter | 导管密度 Vessel density | 导管占边材面积比 Lumen/total sapwood area | 理论比导率 ks | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
简单 SimM R2 | 分段 SegM R2 | F值 F(df) | 简单 SimM R2 | 分段 SegM R2 | F值 F(df) | 简单 SimM R2 | 分段 SegM R2 | F值 F(df) | 简单 SimM R2 | 分段 SegM R2 | F值 F(df) | ||||
A | 0.73 | 0.85 | 6.44(16)* | 0.72 | 0.83 | 5.38(17)* | 0.49 | 0.66 | 3.87(16)* | 0.65 | 0.76 | 3.38(16) | |||
B | 0.73 | 0.92 | 16.77(14)* | 0.61 | 0.90 | 20.48(14)* | 0.00 | 0.45 | 5.74(14)* | 0.56 | 0.83 | 10.76(14)* | |||
C | 0.81 | 0.88 | 4.28(15)* | 0.86 | 0.88 | 1.61(15) | 0.03 | 0.59 | 10.04(15)* | 0.55 | 0.73 | 4.78(15)* | |||
D | 0.14 | 0.86 | 37.12(14)* | 0.61 | 0.88 | 13.16(12)* | 0.55 | 0.80 | 8.47(14)* | 0.01 | 0.82 | 26.38(12)* | |||
E | 0.76 | 0.92 | 18.94(19)* | 0.73 | 0.91 | 20.86(19)* | 0.02 | 0.10 | 0.80(19) | 0.65 | 0.79 | 6.19(19)* | |||
F | 0.59 | 0.63 | 0.66(10) | 0.92 | 0.93 | 0.22(7) | 0.13 | 0.43 | 2.57(10) | 0.10 | 0.54 | 4.77(10)* | |||
G | 0.90 | 0.90 | 0.23(17) | 0.61 | 0.80 | 8.07(17)* | 0.46 | 0.63 | 3.34(15) | 0.77 | 0.85 | 4.28(17)* | |||
H | 0.86 | 0.91 | 3.99(14)* | 0.65 | 0.68 | 3.33(13) | 0.67 | 0.84 | 5.96(12)* | 0.83 | 0.87 | 2.16(13) | |||
I | 0.92 | 0.93 | 1.45(16) | 0.36 | 0.59 | 4.20(15)* | 0.66 | 0.71 | 1.45(15) | 0.87 | 0.88 | 0.53(15) | |||
J | 0.19 | 0.56 | 3.32(8) | 0.67 | 0.82 | 3.13(8) | 0.13 | 0.48 | 2.61(8) | 0.01 | 0.43 | 2.99(8) | |||
K | 0.80 | 0.87 | 4.25(17)* | 0.83 | 0.89 | 3.93(14)* | 0.24 | 0.55 | 5.30(17)* | 0.75 | 0.85 | 6.04(17)* | |||
L | 0.84 | 0.85 | 0.34(15) | 0.66 | 0.79 | 4.85(17)* | 0.05 | 0.21 | 1.85(18) | 0.75 | 0.75 | 0.72(14) | |||
M | 0.44 | 0.92 | 31.72(10)* | - | - | - | - | - | - | - | - | - | |||
N | 0.67 | 0.89 | 9.97(10)* | - | - | - | - | - | - | - | - | - |
Fig.5 Variation of mean lumen diameter with annual grown rings from pith at different heights aboveground in four evergreen broadleaved tree species (Fagaceae) The curve were fitted by Lowess (locally weighted, piecewise, linear regression) with F=0.6-0.9
[1] |
Becker P, Gribben RJ, Lim CM (2000a). Tapered conduits can buffer hydraulic conductance from path-length effects. Tree Physiology, 20,965-967.
URL PMID |
[2] | Becker P, Meinzer FC, Wullschleger SD (2000b). Hydraulic limitation of tree height: a critique. Functional Ecology, 14,4-11. |
[3] |
Becker P, Gribben RJ (2001). Estimation of conduit taper for the hydraulic resistance model of West et al.. Tree Physiology, 21,697-700.
DOI URL PMID |
[4] |
Becker P, Gribben RJ, Schulte PL (2003). Incorporation of transfer resistance between tracheary elements in hydraulic resistance models for tapered conduits. Tree Physiology, 23,1009-1019.
URL PMID |
[5] | Comstock JP, Sperry JS (2000). Theoretical considerations of optimal conduit length for water transport in vascular plants. New Phytologist, 148,195-218. |
[6] | Di Lucca CM (1989). Juvenile-mature wood transition. In: Kellogg RM ed. Second Growth Douglas-fir: Its Management and Conversion for Value. Forintek Canada Corp., Vancouver BC,23-38. |
[7] |
Domec JC, Gartner BL (2002). Age- and position-related changes in hydraulic versus mechanical dysfunction of xylem: inferring the design criteria for Douglas-fir wood structure. Tree Physiology, 22,91-104.
URL PMID |
[8] | Enquist BJ, West GB, Charnov EL, Brown JH (1999). Allometric scaling of prucuction and life-history variation in vascular plants. Nature, 401,907-911. |
[9] | Enquist BJ (2003). Cope's rule and the evolution of long-distance transport in vascular plants: allometric scaling, biomass partitioning and optimization. Plant, Cell and Environment, 26,151-161. |
[10] | Goudie JW, DiLucca CM (2002). Modelling the relationship between crown morphology and wood characteristics of coastal western hemlock in British Columbia. In:Nepveu G ed. Fourth workshop on the connection between silviculture and wood quality through modelling approaches and simulation software. INRA, Nancy,308-319. |
[11] |
James SA, Meinzer FC, Goldstein G, Woodruff D, Jones T, Restom T, Mejia M, Clearwater M, Campanello P (2003). Axial and radial water transport and internal water storage in tropical forest canopy trees. Oecologia, 134,37-45.
URL PMID |
[12] | Li JY (李吉跃), Zhai HB (翟洪波) (2000). Hydraulic architecture and drought resistance of wood plants. Chinese Journal of Applied Ecology (应用生态学报), 11,301-305.. (in Chinese with English abstract) |
[13] |
McCulloh KA, Sperry JS, Adler FR (2003). Water transport in plants obeys Murray's law. Nature, 421,939-942.
URL PMID |
[14] |
McDowell N, Barnard H, Bond BJ, Hinckley T, Hubbard RM, Ishii H, Køstner B, Magnani F, Marshall JD, Meinzer FC, Phillips N, Ryan MG, Whitehead D (2002). The relationship between tree height and leaf area: sapwood area ratio. Oecologia, 132,12-20.
DOI URL PMID |
[15] | McElorone AJ, Pockman WT, Martínez-Vilalta J, Jackson RB (2004). Variation in xylem structure and function in stems and roots to 20 m depth. New Phytologist, 163,507-517. |
[16] |
Mencuccini M, Grace J, Fioravanti M (1997). Biomechanical and hydraulic determinants of tree structure in Scots pine: anatomical characteristics. Tree Physiology, 17,105-113.
URL PMID |
[17] | Niklas KJ, Enquist BJ (2001). Invariant scaling relationships for interspecific plant biomass production rates and body size. Proceedings of the National Academy of Science of the United Seates of America, 98,2922-2927. |
[18] |
Noshiro S, Suzuki M (2001). Ontogenetic wood anatomy of tree and subtree species of Nepalese Rhododendron (Ericaceae) and characterization of shrub species. American Journal of Botany, 88,560-569.
URL PMID |
[19] | Pothier D, Margolis HA, Waring RH (1989). Patterns to change of saturated sapwood permeability and sapwood conductance with stand development. Canadian Journal of Forest Research, 19,432-439. |
[20] | Qiu XZ (邱学忠) (1998). Studies on the Forest Ecosystem on Ailao Mountains, Yunnan, China (哀牢山森林生态系统研究). Yunnan Science and Technology Press, Kunming,1-100. (in Chinese with English abstract) |
[21] |
Ryan MG, Yoder BJ (1997). Hydraulic limits to tree height and tree growth. BioScience, 47,235-242.
DOI URL |
[22] |
Schulte PJ (1999). Water flow through a 20-pore perforation plate in vessels of Liquidambar styraciflua. Journal of Experimental Botany, 50,1179-1187.
DOI URL |
[23] | Shinozaki TK, Yoda K, Hozumi K, Kira T (1964). A quantitative analysis of plant form: the pipe model theory. I. Basic analysis. Japanese Journal of Ecology, 14,97-105. |
[24] | Sperry JS (2003). Evolution of water transport and xylem structure. International Journal of Plant Science, 164,115-127. |
[25] |
Spicer R, Gartner BL (2001). The effects of cambial age and position within the stem on specific conductivity in Douglas-fir ( Pseudotsuga menziensii) sapwood. Trees, 15,222-229.
DOI URL |
[26] | Tyree MT, Davis SD, Cochard H (1994). Biophysical perspectives of xylem evolution: is there a tradeoff hydraulic efficiency for vulnerability of dysfunction? International Association of Wood Anatomists Journal, 15,355-360. |
[27] | Tyree MT, Zimmermann MH (2002). Xylem Structure and the Ascent of Sap. 2nd edn. Springer-Verlag, Berlin, 283. |
[28] | West GB, Brown JH, Enquist BJ (1999). A general model for the structure and allometry of plant vascular systems. Nature, 400,664-667. |
[1] | ZHANG Yu-Jian, LIU Yan-Hong. Tree physiology and major influencing factors under forest fires [J]. Chin J Plant Ecol, 2024, 48(3): 269-286. |
[2] | BAI Yu-Xin, YUAN Dan-Yang, WANG Xing-Chang, LIU Yu-Long, WANG Xiao-Chun. Comparison of characteristics of tree trunk xylem vessels among three species of Betula in northeast China and their relationships with climate [J]. Chin J Plant Ecol, 2023, 47(8): 1144-1158. |
[3] | ZHU Ming-Yang, LIN Lin, SHE Yu-Long, XIAO Cheng-Cai, ZHAO Tong-Xing, HU Chun-Xiang, ZHAO Chang-You, WANG Wen-Li. Radial growth and its low-temperature threshold of Abies georgei var. smithii at different altitudes in Jiaozi Mountain, Yunnan, China [J]. Chin J Plant Ecol, 2022, 46(9): 1038-1049. |
[4] | HAN Xu-Li, ZHAO Ming-Shui, WANG Zhong-Yuan, YE Lin-Feng, LU Shi-Tong, CHEN Sen, LI Yan, XIE Jiang-Bo. Adaptation of xylem structure and function of three gymnosperms to different habitats [J]. Chin J Plant Ecol, 2022, 46(4): 440-450. |
[5] | FANG Jing, YE Lin-Feng, CHEN Sen, LU Shi-Tong, PAN Tian-Tian, XIE Jiang-Bo, LI Yan, WANG Zhong-Yuan. Differences in anatomical structure and hydraulic function of xylem in branches of angiosperms in field and garden habitats [J]. Chin J Plant Ecol, 2021, 45(6): 650-658. |
[6] | Xia-Li GUO, Bi-Yun YU, Han-Xue LIANG, Jian-Guo HUANG. Advancement in studies of tree growth and ecophysiology incorporating micro-sampling approach [J]. Chin J Plan Ecolo, 2017, 41(7): 795-804. |
[7] | Liang-Jun ZHU, Zong-Shan LI, Xiao-Chun WANG. Anatomical characteristics of xylem in tree rings and its relationship with environments [J]. Chin J Plan Ecolo, 2017, 41(2): 238-251. |
[8] | MA Yu-Zhu,CHENG Dong-Liang,ZHONG Quan-Lin,JIN Bing-Jie,LIN Jiang-Ming,LU Hong-Dian,GUO Bing-Qiao. Branching and metabolic exponents in seven woody plants [J]. Chin J Plant Ecol, 2014, 38(6): 599-607. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn