Chin J Plant Ecol ›› 2017, Vol. 41 ›› Issue (8): 850-861.DOI: 10.17521/cjpe.2016.0095
Special Issue: 生态遥感及应用
• Research Articles • Previous Articles Next Articles
Chang LIU, Peng-Sen SUN*, Shi-Rong LIU
Online:
2017-08-10
Published:
2017-09-29
Contact:
Peng-Sen SUN
About author:
KANG Jing-yao(1991-), E-mail: Chang LIU, Peng-Sen SUN, Shi-Rong LIU. A comparison of spectral reflectance indices in response to water: A case study of Quercus aliena var. acuteserrata[J]. Chin J Plant Ecol, 2017, 41(8): 850-861.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2016.0095
反射光谱指数 Spectral reflectance index | 缩写 Acronym | 定义 Definition | 参考文献 Reference |
---|---|---|---|
水分指数 Water index | WI | R900/R970 | Pe?uelas et al., 1993 |
水分指数/归一化植被指数 Water index/normalized difference vegetation index | WI/NDVI | (R900/R970)/[(R900-R680)/(R900+R680)] | Pe?uelas & Inoue, 1999 |
水分胁迫指数 Moisture stress index | MSI | R820/R1600 | Hunt & Rock, 1989 |
简单比值指数 Simple ratio index(760,1650) | SR(760,1650) | R760/R1650 | Tian et al., 2006 |
简单比值指数 Simple ratio index(1300,1450) | SR(1300,1450) | R1300/R1450 | Seelig et al., 2008 |
简单比值水分指数 Simple ratio water index | SRWI | R860/R1240 | Zarco-Tejada et al., 2003 |
归一化红外指数 Normalized difference infrared index | NDII | (R850-R1650)/(R850+R1650) | Hardisky et al., 1983 |
归一化水分指数 Normalized difference water index | NDWI | (R860-R1240)/(R860+R1240) | Gao, 1996 |
水分含量反射指数 Water content reflactance index | WCRI | R1455/(R1272-R1455) | Sun et al., 2008 |
三波段复合指数 Three-band composite index | SR(610,560)/ND(810,610) | (R610/R560)/[(R810-R610)/(R810+R610)] | Tian et al., 2004 |
四波段干旱指数 Four bands drought index | SR(1640,2130)/ND(855,555) | (R1640/R2130)/[(R855-R555)/(R855+R555)] | Zhang & Guo, 2006 |
归一化多波段干旱指数 Normalized multi-band drought index | NMDI | [(R860-(R1640-R2130)]/[R860+(R1640+R2130)] | Wang & Qu , 2007 |
三波段比值指数 Three-band ratio index975 | Ratio975 | 2R960-990/(R920-940+R1090-1110) | Pu et al., 2003 |
三波段比值指数 Three-band ratio index1200 | Ratio1200 | 2R1180-1220/(R1090-1110+R1265-1285) | Pu et al., 2003 |
双差值指数 Double difference index | DDn(1530, 525) | 2R1530-R1005-R2055 | Wang & Li, 2012 |
Table 1 Reflectance spectral indices related to water status and their definitions
反射光谱指数 Spectral reflectance index | 缩写 Acronym | 定义 Definition | 参考文献 Reference |
---|---|---|---|
水分指数 Water index | WI | R900/R970 | Pe?uelas et al., 1993 |
水分指数/归一化植被指数 Water index/normalized difference vegetation index | WI/NDVI | (R900/R970)/[(R900-R680)/(R900+R680)] | Pe?uelas & Inoue, 1999 |
水分胁迫指数 Moisture stress index | MSI | R820/R1600 | Hunt & Rock, 1989 |
简单比值指数 Simple ratio index(760,1650) | SR(760,1650) | R760/R1650 | Tian et al., 2006 |
简单比值指数 Simple ratio index(1300,1450) | SR(1300,1450) | R1300/R1450 | Seelig et al., 2008 |
简单比值水分指数 Simple ratio water index | SRWI | R860/R1240 | Zarco-Tejada et al., 2003 |
归一化红外指数 Normalized difference infrared index | NDII | (R850-R1650)/(R850+R1650) | Hardisky et al., 1983 |
归一化水分指数 Normalized difference water index | NDWI | (R860-R1240)/(R860+R1240) | Gao, 1996 |
水分含量反射指数 Water content reflactance index | WCRI | R1455/(R1272-R1455) | Sun et al., 2008 |
三波段复合指数 Three-band composite index | SR(610,560)/ND(810,610) | (R610/R560)/[(R810-R610)/(R810+R610)] | Tian et al., 2004 |
四波段干旱指数 Four bands drought index | SR(1640,2130)/ND(855,555) | (R1640/R2130)/[(R855-R555)/(R855+R555)] | Zhang & Guo, 2006 |
归一化多波段干旱指数 Normalized multi-band drought index | NMDI | [(R860-(R1640-R2130)]/[R860+(R1640+R2130)] | Wang & Qu , 2007 |
三波段比值指数 Three-band ratio index975 | Ratio975 | 2R960-990/(R920-940+R1090-1110) | Pu et al., 2003 |
三波段比值指数 Three-band ratio index1200 | Ratio1200 | 2R1180-1220/(R1090-1110+R1265-1285) | Pu et al., 2003 |
双差值指数 Double difference index | DDn(1530, 525) | 2R1530-R1005-R2055 | Wang & Li, 2012 |
样本 Sample | 水分相关变量 Variables related to water | 样本数 Number of sample | 最大值 Maximum value | 最小值 Minimum value | 平均值 Mean value | 标准偏差 Standard deviation | 变异系数 Coefficient of variation (%) |
---|---|---|---|---|---|---|---|
顶部新展叶 Top new expended leaf | SWC | 12 | 2.24 | 2.06 | 2.15 | 0.07 | 3.11 |
LMP | 12 | 0.69 | 0.67 | 0.68 | 0.01 | 0.99 | |
RWC | 12 | 0.94 | 0.90 | 0.92 | 0.01 | 1.12 | |
EWT | 12 | 93.40 | 87.40 | 90.60 | 1.81 | 2.00 | |
下部新展叶 Bottom new expended leaf | SWC | 12 | 2.49 | 2.31 | 2.39 | 0.07 | 3.11 |
LMP | 12 | 0.73 | 0.71 | 0.72 | 0.01 | 0.99 | |
RWC | 12 | 0.94 | 0.90 | 0.92 | 0.01 | 1.22 | |
EWT | 12 | 97.80 | 91.60 | 94.90 | 1.90 | 2.00 | |
顶部成熟叶 Top mature leaf | SWC | 12 | 1.36 | 1.20 | 1.28 | 0.05 | 4.21 |
LMP | 12 | 0.58 | 0.55 | 0.56 | 0.01 | 1.85 | |
RWC | 12 | 0.96 | 0.93 | 0.94 | 0.01 | 0.87 | |
EWT | 12 | 88.00 | 82.20 | 85.00 | 2.02 | 2.38 | |
下部成熟叶 Bottom mature leaf | SWC | 12 | 1.76 | 1.52 | 1.65 | 0.07 | 4.46 |
LMP | 12 | 0.65 | 0.62 | 0.63 | 0.01 | 1.73 | |
RWC | 12 | 0.96 | 0.93 | 0.95 | 0.01 | 0.91 | |
EWT | 12 | 98.30 | 93.10 | 95.50 | 1.92 | 2.01 |
Table 2 Water status of leaf samples at different developmental stages and canopy position before dehydration
样本 Sample | 水分相关变量 Variables related to water | 样本数 Number of sample | 最大值 Maximum value | 最小值 Minimum value | 平均值 Mean value | 标准偏差 Standard deviation | 变异系数 Coefficient of variation (%) |
---|---|---|---|---|---|---|---|
顶部新展叶 Top new expended leaf | SWC | 12 | 2.24 | 2.06 | 2.15 | 0.07 | 3.11 |
LMP | 12 | 0.69 | 0.67 | 0.68 | 0.01 | 0.99 | |
RWC | 12 | 0.94 | 0.90 | 0.92 | 0.01 | 1.12 | |
EWT | 12 | 93.40 | 87.40 | 90.60 | 1.81 | 2.00 | |
下部新展叶 Bottom new expended leaf | SWC | 12 | 2.49 | 2.31 | 2.39 | 0.07 | 3.11 |
LMP | 12 | 0.73 | 0.71 | 0.72 | 0.01 | 0.99 | |
RWC | 12 | 0.94 | 0.90 | 0.92 | 0.01 | 1.22 | |
EWT | 12 | 97.80 | 91.60 | 94.90 | 1.90 | 2.00 | |
顶部成熟叶 Top mature leaf | SWC | 12 | 1.36 | 1.20 | 1.28 | 0.05 | 4.21 |
LMP | 12 | 0.58 | 0.55 | 0.56 | 0.01 | 1.85 | |
RWC | 12 | 0.96 | 0.93 | 0.94 | 0.01 | 0.87 | |
EWT | 12 | 88.00 | 82.20 | 85.00 | 2.02 | 2.38 | |
下部成熟叶 Bottom mature leaf | SWC | 12 | 1.76 | 1.52 | 1.65 | 0.07 | 4.46 |
LMP | 12 | 0.65 | 0.62 | 0.63 | 0.01 | 1.73 | |
RWC | 12 | 0.96 | 0.93 | 0.95 | 0.01 | 0.91 | |
EWT | 12 | 98.30 | 93.10 | 95.50 | 1.92 | 2.01 |
Fig. 1 Changes of specific leaf water content (A), leaf moisture percentage on fresh mass (B), relative water content (C), and equivalent water thickness (D) of Quercus aliena var. acuteserrata leaves in different growth stages and canopy positions during the dehydration process (mean ± SD).
Fig. 2 Changes of original spectral reflectance, reflectance differences and reflectance sensitivities of Quercus aliena var. acuteserrata leaves in different growth stages and canopy positions during the dehydration process.
Fig. 3 Correlations of different moisture indices of top new expended leaf (A), top mature leaf (B), bottom new expended leaf (C), and bottom mature leaf (D) and their sensitive reflectance spectral bands. EWT, equivalent water thickness; LMP, leaf moisture percentage on fresh quality; SWC, specific leaf water content; RWC, relative water content.
反射光谱指数 Reflectance spectral index | 下部新展叶 Bottom new expended leaf | 顶部新展叶 Top new expended leaf | 下部成熟叶 Bottom mature leaf | 顶部成熟叶 Top mature leaf | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SWC | LMP | RWC | EWT | SWC | LMP | RWC | EWT | SWC | LMP | RWC | EWT | SWC | LMP | RWC | EWT | |
水分指数 Water index | 0.751** | 0.751** | 0.836** | 0.801** | 0.831** | 0.830** | 0.894** | 0.867** | 0.678** | 0.685** | 0.876** | 0.806** | 0.708** | 0.713** | 0.818** | 0.776** |
水分指数/归一化植被指数 Water index/ normalized difference vegetation index | 0.400** | 0.401** | 0.439** | 0.432** | 0.413** | 0.415** | 0.457** | 0.465** | 0.372** | 0.376** | 0.626** | 0.634* | 0.553** | 0.556** | 0.594** | 0.602** |
水分胁迫指数 Moisture stress index | 0.411** | 0.412** | 0.493** | 0.336** | 0.401** | 0.403** | 0.483** | 0.330** | 0.251* | 0.253* | 0.633** | 0.471** | 0.338** | 0.340** | 0.603** | 0.475** |
简单比值指数 Simple ratio index(760,1650) | 0.491** | 0.494** | 0.565** | 0.463** | 0.462** | 0.465** | 0.505** | 0.393** | 0.283* | 0.285* | 0.682** | 0.550** | 0.404** | 0.406** | 0.655** | 0.536** |
简单比值指数 Simple ratio index(1300,1450) | 0.366** | 0.364** | 0.601** | 0.726** | 0.385** | 0.386** | 0.612** | 0.732** | 0.421** | 0.426** | 0.716** | 0.811** | 0.488** | 0.495** | 0.708** | 0.808** |
简单比值水分指数 Simple ratio water index | 0.722** | 0.722** | 0.798** | 0.736** | 0.771** | 0.773** | 0.829** | 0.786** | 0.619** | 0.617** | 0.801** | 0.695** | 0.663** | 0.665** | 0.756** | 0.732** |
归一化红外指数 Normalized difference infrared index | -0.363** | -0.363** | -0.477** | -0.373** | -0.377** | -0.375** | -0.472** | -0.395** | -0.217* | -0.219* | -0.631** | -0.465** | -0.317** | -0.319** | -0.577** | -0.452** |
归一化水分指数 Normalized difference water index | 0.715** | 0.717** | 0.787** | 0.726** | 0.763** | 0.764** | 0.824** | 0.777** | 0.621** | 0.623** | 0.808** | 0.697** | 0.664** | 0.667** | 0.758** | 0.733** |
水分含量反射指数 Water content reflectance index | -0.312** | -0.315** | -0.510** | -0.485** | -0.306** | -0.308** | -0.503** | -0.465** | -0.356** | -0.359** | -0.600** | -0.468** | -0.331** | -0.336** | -0.584** | -0.461** |
三波段复合指数 Three-band composite index | -0.426** | -0428** | -0.469** | -0.485** | -0.422** | -0423** | -0.466** | -0.473** | -0.486** | -0.505** | -0.529** | -0.535** | -0.568** | -0.577** | -0.578** | -0.592** |
四波段干旱指数 Four bands drought index | 0.463** | 0.466** | 0.496** | 0.382** | 0.456** | 0.459** | 0.485** | 0.367** | 0.163 | 0.164 | 0.414** | 0.193 | 0.023 | 0.024 | 0.364** | 0.176 |
归一化多波段干旱指数 Normalized multi-band drought index | 0.571** | 0.574** | 0.793** | 0.796** | 0.553** | 0.550** | 0.807** | 0.811** | 0.531** | 0.533** | 0.788** | 0.797** | 0.536** | 0.536** | 0.781** | 0.783** |
三波段比值指数 Three-band ratio index975 | -0.127 | -0.129 | -0.398** | -0.309** | -0.143 | -0.145 | -0.421** | -0.316** | -0.182* | -0.185* | -0.600** | -0.416** | -0.302** | -0.305** | -0.585** | -0.431** |
三波段比值指数 Three-band ratio index1200 | -0.093 | -0.096 | -0.355** | -0.202* | -0.085 | -0.088 | -0.322** | -0.182 | -0.103 | -0.106 | -0.565** | -0.382** | -0.233* | -0.236* | -0.537** | -0.379** |
双差值指数 Double difference index | 0.636** | 0.634** | 0.734** | 0.835** | 0.650** | 0.651** | 0.728** | 0.857** | 0.621** | 0.625** | 0.727** | 0.852** | 0.608** | 0.609** | 0.736** | 0.821** |
Table 3 Correlation between different reflectance spectral indices and water indices of Quercus aliena var. acuteserrata leaf
反射光谱指数 Reflectance spectral index | 下部新展叶 Bottom new expended leaf | 顶部新展叶 Top new expended leaf | 下部成熟叶 Bottom mature leaf | 顶部成熟叶 Top mature leaf | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SWC | LMP | RWC | EWT | SWC | LMP | RWC | EWT | SWC | LMP | RWC | EWT | SWC | LMP | RWC | EWT | |
水分指数 Water index | 0.751** | 0.751** | 0.836** | 0.801** | 0.831** | 0.830** | 0.894** | 0.867** | 0.678** | 0.685** | 0.876** | 0.806** | 0.708** | 0.713** | 0.818** | 0.776** |
水分指数/归一化植被指数 Water index/ normalized difference vegetation index | 0.400** | 0.401** | 0.439** | 0.432** | 0.413** | 0.415** | 0.457** | 0.465** | 0.372** | 0.376** | 0.626** | 0.634* | 0.553** | 0.556** | 0.594** | 0.602** |
水分胁迫指数 Moisture stress index | 0.411** | 0.412** | 0.493** | 0.336** | 0.401** | 0.403** | 0.483** | 0.330** | 0.251* | 0.253* | 0.633** | 0.471** | 0.338** | 0.340** | 0.603** | 0.475** |
简单比值指数 Simple ratio index(760,1650) | 0.491** | 0.494** | 0.565** | 0.463** | 0.462** | 0.465** | 0.505** | 0.393** | 0.283* | 0.285* | 0.682** | 0.550** | 0.404** | 0.406** | 0.655** | 0.536** |
简单比值指数 Simple ratio index(1300,1450) | 0.366** | 0.364** | 0.601** | 0.726** | 0.385** | 0.386** | 0.612** | 0.732** | 0.421** | 0.426** | 0.716** | 0.811** | 0.488** | 0.495** | 0.708** | 0.808** |
简单比值水分指数 Simple ratio water index | 0.722** | 0.722** | 0.798** | 0.736** | 0.771** | 0.773** | 0.829** | 0.786** | 0.619** | 0.617** | 0.801** | 0.695** | 0.663** | 0.665** | 0.756** | 0.732** |
归一化红外指数 Normalized difference infrared index | -0.363** | -0.363** | -0.477** | -0.373** | -0.377** | -0.375** | -0.472** | -0.395** | -0.217* | -0.219* | -0.631** | -0.465** | -0.317** | -0.319** | -0.577** | -0.452** |
归一化水分指数 Normalized difference water index | 0.715** | 0.717** | 0.787** | 0.726** | 0.763** | 0.764** | 0.824** | 0.777** | 0.621** | 0.623** | 0.808** | 0.697** | 0.664** | 0.667** | 0.758** | 0.733** |
水分含量反射指数 Water content reflectance index | -0.312** | -0.315** | -0.510** | -0.485** | -0.306** | -0.308** | -0.503** | -0.465** | -0.356** | -0.359** | -0.600** | -0.468** | -0.331** | -0.336** | -0.584** | -0.461** |
三波段复合指数 Three-band composite index | -0.426** | -0428** | -0.469** | -0.485** | -0.422** | -0423** | -0.466** | -0.473** | -0.486** | -0.505** | -0.529** | -0.535** | -0.568** | -0.577** | -0.578** | -0.592** |
四波段干旱指数 Four bands drought index | 0.463** | 0.466** | 0.496** | 0.382** | 0.456** | 0.459** | 0.485** | 0.367** | 0.163 | 0.164 | 0.414** | 0.193 | 0.023 | 0.024 | 0.364** | 0.176 |
归一化多波段干旱指数 Normalized multi-band drought index | 0.571** | 0.574** | 0.793** | 0.796** | 0.553** | 0.550** | 0.807** | 0.811** | 0.531** | 0.533** | 0.788** | 0.797** | 0.536** | 0.536** | 0.781** | 0.783** |
三波段比值指数 Three-band ratio index975 | -0.127 | -0.129 | -0.398** | -0.309** | -0.143 | -0.145 | -0.421** | -0.316** | -0.182* | -0.185* | -0.600** | -0.416** | -0.302** | -0.305** | -0.585** | -0.431** |
三波段比值指数 Three-band ratio index1200 | -0.093 | -0.096 | -0.355** | -0.202* | -0.085 | -0.088 | -0.322** | -0.182 | -0.103 | -0.106 | -0.565** | -0.382** | -0.233* | -0.236* | -0.537** | -0.379** |
双差值指数 Double difference index | 0.636** | 0.634** | 0.734** | 0.835** | 0.650** | 0.651** | 0.728** | 0.857** | 0.621** | 0.625** | 0.727** | 0.852** | 0.608** | 0.609** | 0.736** | 0.821** |
Fig. 4 Linear fitting relationship of water index - relative water content (WI-RWC)(A) and double difference index - equivalent water thickness (DDn(1530,525)-EWT)(B) of Quercus aliena var. acuteserrata leaves in different growth stages and canopy positions.
[1] |
Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests.Forest Ecology and Management, 259, 660-684.
DOI URL |
[2] |
Aoki M, Yabuki K, Totsuka T (1988). Effective spectral characteristics of leaf for the remote sensing of leaf water content.Journal of Agricultural Meteorology, 44, 111-117.
DOI URL |
[3] |
Augusti A, Scartazza A, Navari-Izzo F, Sgherri CLM, Stevanovic B, Brugnoli E (2001). Photosystem II photochemical efficiency, zeaxanthin and antioxidant contents in the poikilohydric Ramonda serbica during dehydration and rehydration.Photosynthesis Research, 67, 79-88.
DOI URL PMID |
[4] |
Cao Z, Wang Q, Zheng C (2015). Best hyperspectral indices for tracing leaf water status as determined from leaf dehydration experiments. Ecological Indicators, 54, 96-107.
DOI URL |
[5] |
Carter GA (1991). Primary and secondary effects of water content on the spectral reflectance of leaves.American Journal of Botany, 916-924.
DOI URL |
[6] |
Caturegli L, Grossi N, Saltari M, Gaetani M, Magni S, Nikolopoulou AE, Bonari E, Volterrani M (2015). Spectral reflectance of tall fescue (Festuca arundinacea Schreb.) under different irrigation and nitrogen conditions.Agriculture and Agricultural Science Procedia, 4, 59-67.
DOI URL |
[7] |
Ceccato P, Flasse S, Grégoire JM (2002a). Designing a spectral index to estimate vegetation water content from remote sensing data: Part 2. Validation and applications.Remote Sensing of Environment, 82, 198-207.
DOI URL |
[8] |
Ceccato P, Flasse S, Tarantola S, Jacquemoud S, Grégoire JM (2001). Detecting vegetation leaf water content using reflectance in the optical domain.Remote Sensing of Environment, 77, 22-33.
DOI URL |
[9] |
Ceccato P, Gobron N, Flasse S, Pinty B, Tarantola S (2002b). Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1: Theoretical approach.Remote Sensing of Environment, 82, 188-197.
DOI URL |
[10] |
Cheng T, Rivard B, Sanchez-Azofeifa A (2011). Spectroscopic determination of leaf water content using continuous wavelet analysis.Remote Sensing of Environment, 115, 659-670.
DOI URL |
[11] |
Curran PJ (1989). Remote sensing of foliar chemistry.Remote Sensing of Environment, 30, 271-278.
DOI URL |
[12] |
Danson FM, Steven MD, Malthus TJ, Clark JA (1992). High-spectral resolution data for determining leaf water content.International Journal of Remote Sensing, 13, 461-470.
DOI URL |
[13] | Du PX, Sun PS, Liu SR, Liu XL (2011). Response of reflectance spectra of Quercus aquifolioides leaves to different degrees of water stress.Modern Agricultural Sciences and Technology, 15, 210-213.(in Chinese with English abstract)[杜朋选, 孙鹏森, 刘世荣, 刘兴良 (2011). 川滇高山栎幼树叶片反射光谱对不同程度水分胁迫的响应. 现代农业科技, 15, 210-213.] |
[14] |
Foley S, Rivard B, Sanchez-Azofeifa GA, Calvo J (2006). Foliar spectral properties following leaf clipping and implications for handling techniques.Remote Sensing of Environment, 103, 265-275.
DOI URL |
[15] |
Gao BC (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space.Remote Sensing of Environment, 58, 257-266.
DOI URL |
[16] |
Gerhards M, Rock G, Schlerf M, Udelhoven T (2016). Water stress detection in potato plants using leaf temperature, emissivity, and reflectance.International Journal of Applied Earth Observation and Geoinformation, 53, 27-39.
DOI URL |
[17] |
Graeff S, Claupein W (2007). Identification and discrimination of water stress in wheat leaves (Triticum aestivum L.) by means of reflectance measurements.Irrigation Science, 26, 61-70.
DOI URL |
[18] | Hardisky MA, Klemas V, Smart RM (1983). The influences of soil salinity, growth form, and leaf moisture on the spectral reflectance of Spartina alterniflora canopies.Photogrammetric Engineering & Remote Sensing, 49, 77-83. |
[19] |
Hunt ER, Rock BN (1989). Detection of changes in leaf water content using near- and middle-infrared reflectances.Remote Sensing of Environment, 30, 43-54.
DOI URL |
[20] |
Hunt ER, Rock BN, Nobel PS (1987). Measurement of leaf relative water content by infrared reflectance.Remote Sensing of Environment, 22, 429-435.
DOI URL |
[21] |
Inoue Y, Morinaga S, Shibayama M (1993). Non-destructive estimation of water status of intact crop leaves based on spectral reflectance measurements.Japanese Journal of Crop Science, 62, 462-469.
DOI URL |
[22] |
Jacquemoud S, Baret F (1990). PROSPECT: A model of leaf optical properties spectra.Remote Sensing of Environment, 34, 75-91.
DOI URL |
[23] |
Jacquemoud S, Ustin SL, Verdebout J, Schmuck G, Andreoli G, Hosgood B (1996). Estimating leaf biochemistry using the PROSPECT leaf optical properties model.Remote Sensing of Environment, 56, 194-202.
DOI URL |
[24] |
Knipling EB (1970). Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation.Remote Sensing of Environment, 1, 155-159.
DOI URL |
[25] |
Lawlor DW, Cornic G (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants.Plant, Cell & Environment, 25, 275-294.
DOI URL PMID |
[26] |
le Maire G, Fran?ois C, Soudani K, Berveiller D, Pontailler JY, Bréda N, Genet H, Davi H, Dufrêne E (2008). Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass.Remote Sensing of Environment, 112, 3846-3864.
DOI URL |
[27] | Liu C, Sun PS, Liu SR (2016). A review of plant spectral reflectance response to water physiological changes.Chinese Journal of Plant Ecology, 40, 80-91.(in Chinese with English abstract)[刘畅, 孙鹏森, 刘世荣 (2016). 植物反射光谱对水分生理变化响应的研究进展. 植物生态学报, 40, 80-91.] |
[28] |
McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?New Phytologist, 178, 719-739.
DOI URL |
[29] |
McDowell NG, Fisher RA, Xu C, Domec JC, H?ltt? T, Mackay DS, Sperry JS, Boutz A, Dickman L, Gehres N, Limousin JM, Macalady A, Martinez-Vilalta J, Mencuccini M, Plaut JA, Ogee J, Pangle RE, Rasse DP, Ryan MG, Sevanto S, Waring RH, Williams AP, Yepez EA, Pockman WT (2013). Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework.New Phytologist, 200, 304-321.
DOI URL |
[30] | Muttiah RS (2002). From Laboratory Spectroscopy to Remotely Sensed Spectra of Terrestrial Ecosystems. Kluwer Academic Publishers, Dordrecht, the Netherlands. |
[31] |
Osório J, Osório ML, Romano A (2012). Reflectance indices as nondestructive indicators of the physiological status of Ceratonia siliqua seedlings under varying moisture and temperature regimes.Functional Plant Biology, 39, 588-597.
DOI URL |
[32] |
Pe?uelas J, Filella I, Biel C, Serrano L, Save R (1993). The reflectance at the 950-970 nm region as an indicator of plant water status.International Journal of Remote Sensing, 14, 1887-1905.
DOI URL |
[33] |
Pe?uelas J, Inoue Y (1999). Reflectance indices indicative of changes in water and pigment contents of peanut and wheat leaves.Photosynthetica, 36, 355-360.
DOI URL |
[34] |
Pe?uelas J, Pinol J, Ogaya R, Filella I (1997). Estimation of plant water concentration by the reflectance Water Index WI (R900/R970).International Journal of Remote Sensing, 18, 2869-2875.
DOI URL |
[35] |
Pu R, Ge S, Kelly NM, Gong P (2003). Spectral absorption features as indicators of water status in coast live oak (Quercus agrifolia) leaves.International Journal of Remote Sensing, 24, 1799-1810.
DOI URL |
[36] |
Seelig HD, Hoehn A, Stodieck LS, Klaus DM, Adams III WW, Emery WJ (2008). The assessment of leaf water content using leaf reflectance ratios in the visible, near-, and short-wave-infrared.International Journal of Remote Sensing, 29, 3701-3713.
DOI URL |
[37] |
Sevanto S, McDowell NG, Dickman LT, Pangle R, Pockman WT (2014). How do trees die? A test of the hydraulic failure and carbon starvation hypotheses.Plant, Cell & Environment, 37, 153-161.
DOI URL PMID |
[38] | Shi ZM, Cheng RM, Liu SR (1999). Niche characteristics of plant populations in deciduous broad-leaved forest in Baotianman.Chinese Journal of Applied Ecology, 10, 265-269.(in Chinese with English abstract)[史作民, 程瑞梅, 刘世荣 (1999). 宝天曼落叶阔叶林种群生态位特征. 应用生态学报, 10, 265-269. ] |
[39] |
Sims DA, Gamon JA (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages.Remote Sensing of Environment, 81, 337-354.
DOI URL |
[40] |
Souza RP, Machado EC, Silva JAB, Lag?a AMMA, Silveira JAG (2004). Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery.Environmental and Experimental Botany, 51, 45-56.
DOI URL |
[41] |
Sun P, Grignetti A, Liu S, Casacchia R, Salvatori R, Pietrini F, Loreto F, Centritto M (2008). Associated changes in physiological parameters and spectral reflectance indices in olive (Olea europaea L.) leaves in response to different levels of water stress.International Journal of Remote Sensing, 29, 1725-1743.
DOI URL |
[42] | Tian YC, Zhu Y, Cao WX, Dai TB (2004). Relationship between canopy reflectance and plant water status of wheat.Chinese Journal of Applied Ecology, 15, 2072-2076.(in Chinese with English abstract)[田永超, 朱艳, 曹卫星, 戴廷波 (2004). 小麦冠层反射光谱与植株水分状况的关系. 应用生态学报, 15, 2072-2076. ] |
[43] | Tian YC, Zhu Y, Yao X, Zhou CJ, Cao WX (2006). Quantitative relationships between canopy spectral reflectance and leaf stomatal conductance in rice. Journal of Plant Ecology (Chinese Version), 30, 261-267.(in Chinese with English abstract)[田永超, 朱艳, 姚霞, 周昌俊, 曹卫星 (2006). 水稻叶片气孔导度与冠层反射光谱的定量关系分析. 植物生态学报, 30, 261-267.] |
[44] |
Tucker CJ (1980). Remote sensing of leaf water content in the near infrared.Remote Sensing of Environment, 10, 23-32.
DOI URL |
[45] |
Wang L, Qu JJ (2007). NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing.Geophysical Research Letters, 34, L20405. doi: 10.1029/2007GL031021.
DOI URL |
[46] |
Wang Q, Li P (2012). Hyperspectral indices for estimating leaf biochemical properties in temperate deciduous forests: Comparison of simulated and measured reflectance data sets.Ecological Indicators, 14, 56-65.
DOI URL |
[47] |
Yu GR, Miwa T, Nakayama K, Matsuoka N, Kon H (2000). A proposal for universal formulas for estimating leaf water status of herbaceous and woody plants based on spectral reflectance properties.Plant and Soil, 227, 47-58.
DOI URL |
[48] |
Zarco-Tejada PJ, Rueda CA, Ustin SL (2003). Water content estimation in vegetation with MODIS reflectance data and model inversion methods.Remote Sensing of Environment, 85, 109-124.
DOI URL |
[49] |
Zhang J, Guo W (2006). Quantitative retrieval of crop water content under different soil moistures levels.Agriculture and Hydrology Applications of Remote Sensing, 6411, 64110D. doi: 10.1117/12.697957.
DOI URL |
[50] | Zhao S, Wang Q, Yao Y, Du S, Zhang C, Li J, Zhao J (2016). Estimating and validating wheat leaf water content with three MODIS spectral indexes: A case study in Ningxia Plain, China.Journal of Agricultural Science and Technology, 18, 387-398. |
[1] | LI Lu, JIN Guang-Ze, LIU Zhi-Li. Variations and correlations of lamina and petiole traits of three broadleaved species in a broadleaved Korean pine forest [J]. Chin J Plant Ecol, 2022, 46(6): 687-699. |
[2] | YANG Jian-Ying, MEI Xu-Rong, LIU Qin, YAN Chang-Rong, HE Wen-Qing, LIU En-Ke, LIU Shuang. Variations of winter wheat growth stages under climate changes in northern China [J]. Chin J Plant Ecol, 2011, 35(6): 623-631. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn