Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (2): 139-151.DOI: 10.17521/cjpe.2018.0201
• Research Articles • Previous Articles Next Articles
ZOU Xian-Hua1,2,HU Ya-Nan1,WEI Dan1,CHEN Si-Tong1,WU Peng-Fei1,2,MA Xiang-Qing1,2,*()
Received:
2018-08-16
Accepted:
2018-12-04
Online:
2019-02-20
Published:
2019-06-04
Contact:
MA Xiang-Qing
Supported by:
ZOU Xian-Hua, HU Ya-Nan, WEI Dan, CHEN Si-Tong, WU Peng-Fei, MA Xiang-Qing. Correlation between endogenous hormone and the adaptability of Chinese fir with high phosphorus-use efficiency to low phosphorus stress[J]. Chin J Plant Ecol, 2019, 43(2): 139-151.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2018.0201
Fig. 2 Endogenous hormone contents of Cunninghamia lanceolata M1 at different sampling periods (mean ± SD). A, IAA content. B, ABA content. C, GA3 content. D, ZT content. L-P and H-P represent the low and high phosphorus treatments, respectively. Different lower- and upper-case letters indicate significant differences (p < 0.05) in each variables across different treatment periods under L-P and H-P conditions, respectively.
Fig. 3 Endogenous hormone content of Cunninghamia lanceolata M4 at different sampling periods (mean ± SD). A, IAA content. B, ABA content. C, GA3 content. D, ZT content. L-P and H-P represent the low and high phosphorus treatments, respectively. Different lower- and upper-case letters indicate significant differences (p < 0.05) in each variables across different treatment periods under L-P and H-P conditions, respectively.
Fig. 4 Root morphological changes of different Cunninghamia lanceolata with different high phosphorus-use efficiency at different sampling periods (mean ± SD). A, Root length increments of M1. B, Root length increments of M4. C, Root surface area increments of M1. D, Root surface area increments of M4. E, Root volume increments of M1. F, Root volume increments of M4. G, Averaged root diameter of M1. H, Averaged root diameter of M4. L-P and H-P represent the low and high P treatments, respectively. Different lower- and upper-case letters indicate significant differences (p < 0.05) in each variables across different treatment periods under L-P and H-P conditions, respectively.
Fig. 5 Root/shoot ratio of different Cunninghamia lanceolata with different high P-use efficiency at different sampling periods (mean ± SD). A, Root/shoot ratio of M1. B, Root/shoot ratio of M4. L-P and H-P represent the low and high P treatments, respectively. Different lower- and upper-case letters indicate significant differences (p < 0.05) across different treatment periods under L-P and H-P conditions, respectively.
Fig. 6 Phosphorous distribution patterns of Cunninghamia lanceolata with different high P-use efficiency at different sampling periods (mean ± SD). A, Phosphorous distribution patterns in the aerial part and roots of M1. B, Phosphorous distribution patterns in the aerial part and roots of M4. L-P and H-P represent the low and high P treatments, respectively. Different lower- and upper- case letters indicate significant differences (p < 0.05) across different treatment periods under L-P and H-P conditions, respectively.
家系 Clone | 部位 Organ | 供磷处理 Phosphorus supply level | 内源激素 Endogenous hormone | 根体积 Root volume | 根平均直径 Average root diameter | 根表面积 Root surface area | 根长 Root length | 根冠比 Root/shoot ratio | 地上部磷养分含量 P content in the aerial parts | 根磷养分含量 P content in the roots |
---|---|---|---|---|---|---|---|---|---|---|
M1 | 叶片 Leaves | L-P | ABA | -0.159 | -0.161 | -0.186 | -0.306 | 0.289 | 0.313 | 0.103 |
IAA | -0.075 | 0.100 | 0.046 | 0.136 | -0.190 | -0.072 | 0.046 | |||
GA3 | 0.525 | -0.674 | 0.550 | 0.221 | -0.655 | 0.518 | -0.018 | |||
ZT | -0.644 | 0.443 | -0.663 | -0.495 | 0.382 | -0.170 | 0.604 | |||
H-P | ABA | -0.019 | 0.372 | -0.103 | -0.473 | 0.157 | -0.540 | 0.352 | ||
IAA | 0.250 | -0.548 | 0.364 | 0.435 | -0.186 | 0.546 | 0.006 | |||
GA3 | 0.313 | -0.571 | 0.365 | 0.131 | 0.045 | 0.545 | 0.517 | |||
ZT | -0.391 | 0.701 | -0.423 | -0.210 | 0.589 | -0.208 | 0.237 | |||
根系 Roots | L-P | ABA | -0.958** | 0.442 | -0.921** | -0.863* | 0.077 | -0.073 | 0.682 | |
IAA | 0.891** | -0.777* | 0.880** | 0.627 | -0.245 | 0.381 | -0.675 | |||
GA3 | -0.794* | 0.558 | -0.797* | -0.715 | -0.316 | -0.317 | 0.660 | |||
ZT | -0.554 | 0.276 | -0.564 | -0.482 | -0.415 | -0.346 | 0.693 | |||
H-P | ABA | -0.612 | 0.416 | -0.604 | -0.695 | 0.538 | -0.690 | 0.302 | ||
IAA | 0.672 | -0.456 | 0.619 | 0.128 | -0.599 | -0.180 | -0.230 | |||
GA3 | -0.370 | 0.427 | -0.360 | -0.409 | 0.029 | -0.402 | -0.035 | |||
ZT | -0.383 | 0.364 | -0.360 | -0.374 | -0.010 | -0.359 | -0.110 | |||
M4 | 叶片 Leaves | L-P | ABA | -0.106 | 0.430 | -0.205 | -0.170 | -0.258 | -0.167 | -0.602 |
IAA | -0.045 | -0.239 | 0.006 | -0.205 | -0.027 | -0.099 | 0.572 | |||
GA3 | -0.130 | 0.302 | -0.186 | 0.066 | 0.120 | -0.068 | -0.341 | |||
ZT | -0.344 | 0.563 | -0.432 | -0.376 | -0.071 | -0.281 | -0.336 | |||
H-P | ABA | -0.146 | 0.494 | -0.138 | -0.106 | 0.107 | -0.123 | -0.310 | ||
IAA | 0.338 | -0.394 | 0.393 | 0.453 | -0.278 | 0.012 | 0.219 | |||
GA3 | -0.524 | 0.584 | -0.466 | -0.331 | 0.440 | 0.336 | 0.065 | |||
ZT | 0.054 | -0.361 | 0.078 | 0.103 | 0.230 | -0.038 | -0.357 | |||
根系 Roots | L-P | ABA | -0.079 | 0.368 | -0.114 | -0.120 | -0.170 | -0.248 | -0.625 | |
IAA | 0.772* | -0.876** | 0.963** | 0.810* | -0.647 | 0.481 | -0.906** | |||
GA3 | -0.380 | 0.248 | -0.357 | -0.429 | 0.081 | -0.542 | 0.223 | |||
ZT | -0.434 | 0.286 | -0.402 | -0.473 | 0.157 | -0.533 | 0.282 | |||
H-P | ABA | 0.450 | 0.003 | 0.425 | 0.184 | -0.242 | -0.606 | -0.474 | ||
IAA | 0.692 | -0.475 | 0.735 | 0.689 | -0.512 | -0.313 | -0.694 | |||
GA3 | -0.291 | 0.138 | -0.356 | -0.285 | 0.280 | -0.506 | 0.086 | |||
ZT | -0.497 | 0.111 | -0.481 | -0.266 | 0.362 | 0.126 | 0.644 |
Table 1 Correlation between endogenous hormones and growth characteristics of Chinese fir clones with high phosphorus-use efficiency under different phosphorus levels
家系 Clone | 部位 Organ | 供磷处理 Phosphorus supply level | 内源激素 Endogenous hormone | 根体积 Root volume | 根平均直径 Average root diameter | 根表面积 Root surface area | 根长 Root length | 根冠比 Root/shoot ratio | 地上部磷养分含量 P content in the aerial parts | 根磷养分含量 P content in the roots |
---|---|---|---|---|---|---|---|---|---|---|
M1 | 叶片 Leaves | L-P | ABA | -0.159 | -0.161 | -0.186 | -0.306 | 0.289 | 0.313 | 0.103 |
IAA | -0.075 | 0.100 | 0.046 | 0.136 | -0.190 | -0.072 | 0.046 | |||
GA3 | 0.525 | -0.674 | 0.550 | 0.221 | -0.655 | 0.518 | -0.018 | |||
ZT | -0.644 | 0.443 | -0.663 | -0.495 | 0.382 | -0.170 | 0.604 | |||
H-P | ABA | -0.019 | 0.372 | -0.103 | -0.473 | 0.157 | -0.540 | 0.352 | ||
IAA | 0.250 | -0.548 | 0.364 | 0.435 | -0.186 | 0.546 | 0.006 | |||
GA3 | 0.313 | -0.571 | 0.365 | 0.131 | 0.045 | 0.545 | 0.517 | |||
ZT | -0.391 | 0.701 | -0.423 | -0.210 | 0.589 | -0.208 | 0.237 | |||
根系 Roots | L-P | ABA | -0.958** | 0.442 | -0.921** | -0.863* | 0.077 | -0.073 | 0.682 | |
IAA | 0.891** | -0.777* | 0.880** | 0.627 | -0.245 | 0.381 | -0.675 | |||
GA3 | -0.794* | 0.558 | -0.797* | -0.715 | -0.316 | -0.317 | 0.660 | |||
ZT | -0.554 | 0.276 | -0.564 | -0.482 | -0.415 | -0.346 | 0.693 | |||
H-P | ABA | -0.612 | 0.416 | -0.604 | -0.695 | 0.538 | -0.690 | 0.302 | ||
IAA | 0.672 | -0.456 | 0.619 | 0.128 | -0.599 | -0.180 | -0.230 | |||
GA3 | -0.370 | 0.427 | -0.360 | -0.409 | 0.029 | -0.402 | -0.035 | |||
ZT | -0.383 | 0.364 | -0.360 | -0.374 | -0.010 | -0.359 | -0.110 | |||
M4 | 叶片 Leaves | L-P | ABA | -0.106 | 0.430 | -0.205 | -0.170 | -0.258 | -0.167 | -0.602 |
IAA | -0.045 | -0.239 | 0.006 | -0.205 | -0.027 | -0.099 | 0.572 | |||
GA3 | -0.130 | 0.302 | -0.186 | 0.066 | 0.120 | -0.068 | -0.341 | |||
ZT | -0.344 | 0.563 | -0.432 | -0.376 | -0.071 | -0.281 | -0.336 | |||
H-P | ABA | -0.146 | 0.494 | -0.138 | -0.106 | 0.107 | -0.123 | -0.310 | ||
IAA | 0.338 | -0.394 | 0.393 | 0.453 | -0.278 | 0.012 | 0.219 | |||
GA3 | -0.524 | 0.584 | -0.466 | -0.331 | 0.440 | 0.336 | 0.065 | |||
ZT | 0.054 | -0.361 | 0.078 | 0.103 | 0.230 | -0.038 | -0.357 | |||
根系 Roots | L-P | ABA | -0.079 | 0.368 | -0.114 | -0.120 | -0.170 | -0.248 | -0.625 | |
IAA | 0.772* | -0.876** | 0.963** | 0.810* | -0.647 | 0.481 | -0.906** | |||
GA3 | -0.380 | 0.248 | -0.357 | -0.429 | 0.081 | -0.542 | 0.223 | |||
ZT | -0.434 | 0.286 | -0.402 | -0.473 | 0.157 | -0.533 | 0.282 | |||
H-P | ABA | 0.450 | 0.003 | 0.425 | 0.184 | -0.242 | -0.606 | -0.474 | ||
IAA | 0.692 | -0.475 | 0.735 | 0.689 | -0.512 | -0.313 | -0.694 | |||
GA3 | -0.291 | 0.138 | -0.356 | -0.285 | 0.280 | -0.506 | 0.086 | |||
ZT | -0.497 | 0.111 | -0.481 | -0.266 | 0.362 | 0.126 | 0.644 |
[1] |
Alexova R, Millar AH ( 2013). Proteomics of phosphate use and deprivation in plants. Proteomics, 13, 609-623.
DOI URL |
[2] |
Brenner C, Deplus R, Didelot C, Loriot A, Viré E, Smet CD, Gutierrez A, Danovi D, Bernard D, Boon T ( 2005). Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO Journal, 24, 336-346.
DOI URL |
[3] | Chen BL, Luo J, Jiang PA ( 2016). Effects of different phosphorus concentration on endogenous hormones of cotton. Southwest China Journal of Agricultural Sciences, 29, 1839-1843. |
[ 陈波浪, 罗佳, 蒋平安 ( 2016). 不同磷水平对棉花内源激素的影响. 西南农业学报, 29, 1839-1843.] | |
[4] | Chen J, Zhang YZ, Zhang Q, Shen YO, Gao SB, Tang HT, He WZ, Tan J, Zhang B, Pan GT ( 2013). Dynamic change of endogenous hormones in different maize genotypes under low-phosphorus stress. Journal of Maize Sciences, 21(5), 6-12. |
[ 陈洁, 张永中, 张谦, 沈亚欧, 高世斌, 唐海涛, 何文铸, 谭君, 张彪, 潘光堂 ( 2013). 低磷胁迫下不同基因型玉米内源激素的动态变化. 玉米科学, 21(5), 6-12.] | |
[5] |
Chen ZY, Wu PF, Zou XH, Wang P, Ma J, Ma XQ ( 2016). Relationship between growth and endogenous hormones of Chinese fir seedlings under low phosphorus stress. Scientia Silvae Sinicae, 52(2), 57-66.
DOI |
[ 陈智裕, 吴鹏飞, 邹显花, 汪攀, 马静, 马祥庆 ( 2016). 低磷胁迫下杉木幼苗生长特性与内源激素的关系. 林业科学, 52(2), 57-66.]
DOI |
|
[6] |
Chiou T, Lin S ( 2011). Signaling network in sensing phosphate availability in plants. Annual Review of Plant Biology, 62, 185-206.
DOI URL |
[7] | Ciereszko I, Kleczkowski LA ( 2002). Effects of phosphate deficiency and sugars on expression of rab18 in Arabidopsis: Hexokinase-dependent and okadaic acid-sensitive transduction of the sugar signal. Biochimica et Biophysica Acta (BBA)—Gene Structure and Expression, 1579, 43-49. |
[8] | Devaiah BN, Madhuvanthi R, Karthikeyan AS, Raghothama KG ( 2009). Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis. Molecular Plant, 2, 43-58. |
[9] | Dong J, Mou P ( 2012). Root nutrient foraging of morphological plasticity and physiological mechanism in Callistephus chinensis. Chinese Journal of Plant Ecology, 36, 1172-1183. |
[ 董佳, 牟溥 ( 2012). 翠菊根系养分捕获形态塑性及其生理机制. 植物生态学报, 36, 1172-1183.] | |
[10] | Franco-Zorrilla JM, Martin AC, Solano R, Rubio V, Leyva A, Paz-Ares J ( 2002). Mutations at CRE1 impair cytokinin-induced repression of phosphate starvation responses in Arabidopsis. Plant Journal, 32, 353-360. |
[11] | Fu YP, Yang Y, Xue JB ( 2005). Influence under low P-deficient stress on endogenous hormone and root activities of dark sun-cured tobacco. Chinese Agricultural Science Bulletin , 21, 227-229. |
[ 符云鹏, 杨燕, 薛剑波 ( 2005). 低磷胁迫对晒红烟内源激素和根系活力的影响. 中国农学通报, 21, 227-229.] | |
[12] |
Fukaki H, Tasaka M ( 2009). Hormone interactions during lateral root formation. Plant Molecular Biology, 69, 437-449.
DOI URL |
[13] |
Giehl RFH, Gruber BD, von Wiren N ( 2014). Its time to make changes: Modulation of root system architecture by nutrient signals. Journal of Experimental Botany, 65, 769-778.
DOI URL |
[14] | Huang RH, Yang HL, Huang W, Lu YM, Chen K ( 2015). Effects of Funneliformis mosseae on endogenous hormones and photosynthesis of Sorghum haipense under Cs stress. Chinese Journal of Applied Ecology, 26, 2146-2150. |
[ 黄仁华, 杨会玲, 黄炜, 陆云梅, 陈珂 ( 2015). 核素铯胁迫下接种摩西球囊霉对宿根高粱内源激素和光合的影响. 应用生态学报, 26, 2146-2150.] | |
[15] | Jiang C, Gao X, Liao L, Harberd NP, Fu X ( 2007). Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis. Plant Physiology, 145, 1460-1470. |
[16] |
Johnston AE, Poulton PR, Fixen PE, Curtin D ( 2014). Phosphorus: Its efficient use in agriculture. Advances in Agronomy, 123, 177-228.
DOI URL |
[17] | Lai F, Thacker J, Li Y, Doerner P ( 2007). Cell division activity determines the magnitude of phosphate starvation responses in Arabidopsis. Pant Journal, 50, 545-556. |
[18] | Li JH, Chong K ( 2006). Current research advances on polar auxin transport in plant. Chinese Bulletin of Botany , 23, 466-477. |
[ 李俊华, 种康 ( 2006). 植物生长素极性运输调控机理的研究进展. 植物学通报, 23, 466-477.] | |
[19] | Li K, Xu CK, Yang A, Zhang J ( 2010). Proteomic analysis of roots growth and metabolic changes under phosphorus deficit in maize (Zea mays L.) plants. Proteomics, 7, 1501-1512. |
[20] | Li YK (1989). Methods of Conventional Analysis of Soil Agricultural Chemistry. Science Press, Beijing. |
[ 李酉开 (1989). 土壤农业化学常规分析方法. 科学出版社, 北京.] | |
[21] | Liu H, Wang SG ( 2003). Influences of P deficiency stress on endogenous hormones in Barley. Journal of Southwest Agricultural University, 25, 48-51. |
[ 刘辉, 王三根 ( 2003). 低磷胁迫对大麦内源激素的影响. 西南农业大学学报, 25, 48-51.] | |
[22] | Liu HC, Kuang YH, Chen RY ( 2003). Changes of IAA contents in different Asparagus Bean cultivars under phosphorus- deficient stress. Plant Physiology Communications, 39, 125-127. |
[ 刘厚诚, 邝炎华, 陈日远 ( 2003). 缺磷胁迫下不同长豇豆品种幼苗中IAA含量的变化. 植物生理学报, 39, 125-127.] | |
[23] | Martin AC, Del Pozo JC, Iglesias J, Rubio V, Solano R, de La Pena A, Leyva A, Paz-Ares J ( 2000). Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. The Plant Journal, 24, 559-567. |
[24] | Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Somerville S, Rolland N ( 2005). A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proceedings of the National Academy of Sciences of the United States of America, 102, 11934-11939. |
[25] |
Miura K, Lee J, Gong Q, Ma S, Jin JB, Yoo CY, Miura T, Sato A, Bohnert HJ, Hasegawa PM ( 2011). SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation. Plant Physiology, 155, 1000-1012.
DOI URL |
[26] | Morcuende R, Bari R, Gibon Y, Zheng W, Pant BD, Blasing O, Usadel B, Czechowski T, Udvardi MK, Stitt M, Scheible W ( 2007). Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant, Cell & Environment, 30, 85-112. |
[27] | Nacry P, Canivenc G, Muller B, Azmi A, Van Onckelen H, Rossignol M, Doumas P ( 2005). A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiology, 138, 2061-2074. |
[28] | Pérez-Torres CA, López-Bucio J, Cruz-Ramírez A, Ibarra- Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L ( 2008). Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell, 20, 3258-3272. |
[29] |
Postma JA, Lynch JP ( 2011). Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability. Annals of Botany, 107, 829-841.
DOI URL |
[30] |
Radin JW, Parker LL, Guinn G ( 1982). Water relations of cotton plants under nitrogen deficiency: V. Environmental control of abscisic acid accumulation and stomatal sensitivity to abscisic acid. Plant Physiology, 70, 1066-1070.
DOI URL |
[31] |
Rubio V, Bustos R, Irigoyen ML, Cardona-Lopez X, Rojas- Triana M, Paz-Ares J ( 2009). Plant hormones and nutrient signaling. Plant Molecular Biology, 69, 361-373.
DOI URL |
[32] |
Sakakibara H ( 2006). Cytokinins: Activity, biosynthesis, and translocation. Annual Review of Plant Biology, 57, 431-449.
DOI URL |
[33] | Shao LM, Hao B (1986). Plant Hormones. People’s Education Press, Beijing. |
[ 邵莉楣, 郝斌 (1986). 植物激素. 人民教育出版社, 北京.] | |
[34] | Shen Y, Zhang Y, Lin H, Gao S, Pan G ( 2012). Effect of low phosphorus stress on endogenous hormone levels of different maize genotypes in seedling stage. Journal of Biological Sciences, 12, 208-314. |
[35] | Sheng WT, Fan SH (2005). Long-term Productivity of Chinese fir Plantations. Science Press, Beijing. |
[ 盛炜彤, 范少辉 (2005). 杉木人工林长期生产力保持机制研究. 科学出版社, 北京.] | |
[36] | Shi CJ, Liu Y, Jing T ( 2006). Review on stress-resistance of phytohormone. World Forestry Research, 19(5), 21-26. |
[ 师晨娟, 刘勇, 荆涛 ( 2006). 植物激素抗逆性研究进展. 世界林业研究, 19(5), 21-26.] | |
[37] | Shi T, Zhao D, Li D, Wang N, Meng J, Xu F, Shi L ( 2012). Brassica napus root mutants insensitive to exogenous cytokinin show phosphorus efficiency. Plant and Soil, 358, 57-70. |
[38] | Sun HG, Zhang FS ( 2000). Growth response of wheat roots to phosphorus deficiency. Acta Botanice Sinica , 42, 913-919. |
[ 孙海国, 张福锁 ( 2000). 小麦根系生长对缺磷胁迫的反应. 植物学报, 42, 913-919.] | |
[39] |
Vitousek PM, Porder S, Houlton BZ, Chadwick OA ( 2010). Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecologigal Applications, 20, 5-15.
DOI URL |
[40] | Wei XW, Gou C, Xu MZ, Xu HW, Zhou XF ( 2013). Study on the improvement of HPLC method for analyzing endogenous hormone in Maize. Journal of Maize Sciences, 21, 144-148. |
[ 未晓巍, 勾畅, 徐民泽, 徐洪伟, 周晓馥 ( 2013). 高效液相色谱法测定玉米内源激素方法的改进研究. 玉米科学, 21, 144-148.] | |
[41] | Wu P, Ma LG, Hou XL, Wang MY, Wu YR, Liu FY, Deng XW ( 2003). Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiology, 132, 1260-1271. |
[42] | Wu PF, Ma XQ ( 2009). Research advances in the mechanisms of high nutrient use efficiency in plants. Acta Ecologica Sinica , 29, 427-437. |
[ 吴鹏飞, 马祥庆 ( 2009). 植物养分高效利用机制研究进展. 生态学报, 29, 427-437.] | |
[43] |
Wu PF, Ma XQ, Tigabu MT, Wang CW, Liu AQ, Oden PC ( 2011). Root morphological plasticity and biomass production of two Chinese fir clones with high phosphorus efficiency under low phosphorus stress. Canadian Journal of Forest Research, 41, 228-234.
DOI URL |
[44] | Wu PF, Wang GY, El-Kassaby YA, Wang P, Zou XH, Ma XQ ( 2016). Solubilization of aluminum-bound phosphorus by root cell walls: Evidence from Chinese fir, Cunninghamia lanceolata(Lamb.) Hook. Canadian Journal of Forest Research, 47, 419-423. |
[45] |
Wu PF, Wang GY, Farooq TH, Li Q, Zou XH, Ma XQ ( 2017). Low phosphorus and competition affect Chinese fir cutting growth and root organic acid content: Does neighboring root activity aggravate P nutrient deficiency? Journal of Soils and Sediments, 17, 2775-2785.
DOI URL |
[46] | Wu PF, Zang GZ, Ma XQ ( 2006). Advances in the mechanism of chemical communication of plants under stress. Subtropical Agriculture Research , 2, 271-277. |
[ 吴鹏飞, 臧国长, 马祥庆 ( 2006). 逆境中植物化学通讯机制的研究进展. 亚热带农业研究, 2, 271-277.] | |
[47] | Xiong GS, Li JY, Wang YH ( 2009). Advances in the regulation and crosstalks of phytohomones. Chinese Science Bulletin, 54, 2718-2733. |
[ 熊国胜, 李家洋, 王永红 ( 2009). 植物激素调控研究进展. 科学通报, 54, 2718-2733.] | |
[48] |
Yamagishi M, Zhou K, Osaki M, Miller SS, Vance CP ( 2011). Real-time RT-PCR profiling of transcription factors including 34 MYBs and signaling components in white lupin reveals their P status dependent and organ-specific expression. Plant and Soil, 342, 481-493.
DOI URL |
[49] |
Yang CC, Huang QJ, Su XH ( 2013). Correlation between endogenous IAA, ABA contents and height growth of black poplar at the seedling stage. Scientia Silvae Sinicae , 49(8), 35-42.
DOI |
[ 杨成超, 黄秦军, 苏晓华 ( 2013). 内源激素IAA和ABA含量与黑杨苗期高生长关系. 林业科学, 49(8), 35-42.]
DOI |
|
[50] | Yuan Y, Huang LQ, Lü DM, Mao Y, Fu GF ( 2008). Effect of low pH on endogenous hormones and root development in Chinese medicine Atractylodes lancea(Thunb.) DC. Chinese Pharmaceutical Journal, 43, 101-104. |
[ 袁媛, 黄璐琦, 吕冬梅, 毛莹, 付桂芳 ( 2008). 低pH对苍术根组织内源激素水平和生长发育的影响. 中国药学杂志, 43, 101-104.] | |
[51] |
Zou XH, Wei D, Wu PF, Zhang Y, Hu YN, Chen ST, Ma XQ ( 2018). Strategies of organic acid production and exudation in response to low-phosphorus stress in Chinese fir genotypes differing in phosphorus-use efficiencies. Trees, 32, 897-912.
DOI |
[52] |
Zou XH, Wu PF, Chen NL, Wang P, Ma XQ ( 2015). Chinese fir root response to spatial and temporal heterogeneity of phosphorus availability in the soil. Canadian Journal of Forest Research, 45, 402-410.
DOI URL |
[53] | Zou XH, Wu PF, Jia YY, Ma J, Ma XQ ( 2016). Periodical response of Chinese fir root to the phosphorus concentrations in patches and heterogeneous distribution in different growing stages. Journal of Plant Nutrition and Fertilizer, 22, 1056-1063. |
[ 邹显花, 吴鹏飞, 贾亚运, 马静, 马祥庆 ( 2016). 杉木根系对不同磷斑块浓度与异质分布的阶段性响应. 植物营养与肥料学报, 22, 1056-1063.] |
[1] | QU Ze-Kun, ZHU Li-Qin, JIANG Qi, WANG Xiao-Hong, YAO Xiao-Dong, CAI Shi-Feng, LUO Su-Zhen, sCHEN Guang-Shui. Nutrient foraging strategies of arbuscular mycorrhizal tree species in a subtropical evergreen broadleaf forest and their relationship with fine root morphology [J]. Chin J Plant Ecol, 2024, 48(4): 416-427. |
[2] | GAO Min, GOU Qian-Qian, WANG Guo-Hua, GUO Wen-Ting, ZHANG Yu, ZHANG Yan. Effects of low temperature stress on the physiology and growth of Caragana korshinskii seedlings from different mother tree ages [J]. Chin J Plant Ecol, 2024, 48(2): 201-214. |
[3] | MA Ju-Feng, XIN Min, XU Chen-Chao, ZHU Wan-Ying, MAO Chuan-Zao, CHEN Xin, CHENG Lei. Effects of arbuscular mycorrhizal fungi and nitrogen addition on nitrogen uptake of rice genotypes with different root morphologies [J]. Chin J Plant Ecol, 2021, 45(7): 728-737. |
[4] | DING Kai, ZHANG Yu-Ting, ZHANG Jun-Hong, CHAI Xiong, ZHOU Shi-Shui, TONG Zai-Kang. Effects of Chinese fir plantations with different densities on understory vegetation and soil microbial community structure [J]. Chin J Plant Ecol, 2021, 45(1): 62-73. |
[5] | CHEN Si-Tong, ZOU Xian-Hua, CAI Yi-Bing, WEI Dan, LI Tao, WU Peng-Fei, MA Xiang-Qing. Phosphorus distribution inside Chinese fir seedlings under different P supplies based on 32P tracer [J]. Chin J Plant Ecol, 2018, 42(11): 1103-1112. |
[6] | Guan-Tao CHEN, Yong PENG, Jun ZHENG, Shun LI, Tian-Chi PENG, Xi-Rong QIU, Li-Hua TU. Effects of short-term nitrogen addition on fine root biomass, lifespan and morphology of Castanopsis platyacantha in a subtropical secondary evergreen broad-leaved forest [J]. Chin J Plant Ecol, 2017, 41(10): 1041-1050. |
[7] | Zhi-Yu CHEN, Qi LI, Xian-Hua ZOU, Xiang-Qing MA, Peng-Fei WU. Effect of neighboring competition on photosynthetic characteristics and biomass allocation of Chinese fir seedlings under low phosphorus stress [J]. Chin J Plant Ecol, 2016, 40(2): 177-. |
[8] | ZHOU Hong-Hua,LI Wei-Hong. Responses and adaptation of xylem hydraulic conductivity to salt stress in Populus euphratica [J]. Chin J Plan Ecolo, 2015, 39(1): 81-91. |
[9] | PANG Li, ZHANG Yi, ZHOU Zhi-Chun, FENG Zhong-Ping, CHU De-Yu. Effects of simulated nitrogen deposition on root exudates and phosphorus efficiency in Pinus massoniana families under low phosphorus stress [J]. Chin J Plant Ecol, 2014, 38(1): 27-35. |
[10] | ZHENG Ya-Ping,XIN Cai-Yun,WANG Cai-Bin,SUN Xiu-Shan,YANG Wei-Qiang,WAN Shu-Bo,ZHENG Yong-Mei,FENG Hao,CHEN Dian-Xu,SUN Xue-Wu,WU Zheng-Feng. Effects of phosphorus fertilizer on root morphology, physiological characteristics and yield in peanut (Arachis hypogaea) [J]. Chin J Plant Ecol, 2013, 37(8): 777-785. |
[11] | MA Xiao-Dong, ZHU Cheng-Gang, LI Wei-Hong. Response of root morphology and biomass of Tamarix ramosissima seedlings to different water irrigations [J]. Chin J Plant Ecol, 2012, 36(10): 1024-1032. |
[12] | GU Dong-Xiang, TANG Liang, XU Qi-Jun, LEI Xiao-Jun, CAO Wei-Xing, ZHU Yan. Root growth and distribution in rice cultivars as affected by nitrogen and water supply [J]. Chin J Plant Ecol, 2011, 35(5): 558-566. |
[13] | CHEN Guang-Shui, YANG Yu-Sheng, GAO Ren, XIE Jin-Sheng, YANG Zhi-Jie, MAO Yan-Ling. CHANGES IN BELOWGROUND CARBON ALLOCATION IN A CHINESE FIR CHRONOSEQUENCE IN FUJIAN PROVINCE, CHINA [J]. Chin J Plant Ecol, 2008, 32(6): 1285-1293. |
[14] | LIANG Xia, LIU Ai-Qin, MA Xiang-Qing, FENG Li-Zhen, HUANG Yi-Jiang. COMPARISON OF THE PHOSPHORUS CHARACTERISTICS OF DIFFERENT CHINESE FIR CLONES [J]. Chin J Plant Ecol, 2006, 30(6): 1005-1011. |
[15] | LIANG Xia, LIU Ai-Qin, MA Xiang-Qing, FENG Li-Zhen, CHEN You-Li. THE EFFECT OF PHOSPHORUS DEFICIENCY STRESS ON ACTIVITIES OF ACID PHOSPHATASE IN DIFFERENT CLONES OF CHINESE FIR [J]. Chin J Plan Ecolo, 2005, 29(1): 54-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn