Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (5): 601-611.DOI: 10.17521/cjpe.2023.0201
Special Issue: 植物功能性状
• Research Articles • Previous Articles Next Articles
LI Shan-Shan1,2, LIU Xue-Qin1,*()
Received:
2023-07-11
Accepted:
2024-01-03
Online:
2024-05-20
Published:
2024-06-13
Contact:
(LI Shan-Shan, LIU Xue-Qin. Analysis of functional traits of wetland plants in floodplains in middle reaches of Yangtze River[J]. Chin J Plant Ecol, 2024, 48(5): 601-611.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0201
编号 Code | 种 Species | 科 Family | 寿命 Life span | 地下茎 Rhizome | 整株样本数 Number of whole-plant samples | 叶片样本数 Number of leaf samples |
---|---|---|---|---|---|---|
SP1 | 朝天委陵菜 Potentilla supina | 蔷薇科 Rosaceae | 一年生 Annual | 无 Absent | 15 | 18 |
SP2 | 刺儿菜 Cirsium arvense var. integrifolium | 菊科 Asteraceae | 多年生 Perennial | 有 Present | 8 | 17 |
SP3 | 鼠曲草 Pseudognaphalium affine | 菊科 Asteraceae | 一年生 Annual | 无 Absent | 19 | 20 |
SP4 | 小蓬草 Erigeron canadensis | 菊科 Asteraceae | 一年生 Annual | 无 Absent | 16 | 27 |
SP5 | 野莴苣 Lactuca serriola | 菊科 Asteraceae | 一年生 Annual | 无 Absent | 4 | 12 |
SP6 | 钻叶紫菀 Symphyotrichum subulatum | 菊科 Asteraceae | 一年生 Annual | 无 Absent | 18 | 20 |
SP7 | 风花菜 Rorippa globosa | 十字花科 Brassicaceae | 一年生 Annual | 无 Absent | 17 | 39 |
SP8 | 红蓼 Persicaria orientalis | 蓼科 Polygonaceae | 一年生 Annual | 无 Absent | 10 | 20 |
SP9 | 水蓼 Persicaria hydropiper | 蓼科 Polygonaceae | 一年生 Annual | 无 Absent | 15 | 18 |
SP10 | 长刺酸模 Rumex trisetifer | 蓼科 Polygonaceae | 一年生 Annual | 无 Absent | 9 | 20 |
SP11 | 荔枝草 Salvia plebeia | 唇形科 Lamiaceae | 一年生 Annual | 无 Absent | 15 | 20 |
SP12 | 益母草 Leonurus japonicus | 唇形科 Lamiaceae | 一年生 Annual | 无 Absent | 10 | 20 |
SP13 | 芦苇 Phragmites australis | 禾本科 Poaceae | 多年生 Perennial | 有 Present | 5 | 16 |
SP14 | 马唐 Digitaria sanguinalis | 禾本科 Poaceae | 一年生 Annual | 无 Absent | 5 | 20 |
SP15 | 牛鞭草 Hemarthria sibirica | 禾本科 Poaceae | 多年生 Perennial | 有 Present | 15 | 20 |
SP16 | 千金子 Leptochloa chinensis | 禾本科 Poaceae | 一年生 Annual | 无 Absent | 4 | 10 |
SP17 | 菵草 Beckmannia syzigachne | 禾本科 Poaceae | 一年生 Annual | 无 Absent | 27 | 40 |
SP18 | 长芒稗 Echinochloa caudata | 禾本科 Poaceae | 一年生 Annual | 无 Absent | 10 | 12 |
SP19 | 葎草 Humulus scandens | 大麻科 Cannabaceae | 多年生 Perennial | 无 Absent | 10 | 38 |
SP20 | 毛茛 Ranunculus japonicus | 毛茛科 Ranunculaceae | 多年生 Perennial | 有 Present | 12 | 8 |
SP21 | 铁线莲 Clematis florida | 毛茛科 Ranunculaceae | 多年生 Perennial | 无 Absent | 6 | 20 |
SP22 | 破铜钱 Hydrocotyle sibthorpioides var. batrachium | 五加科 Araliaceae | 多年生 Perennial | 有 Present | 15 | 20 |
SP23 | 碎米莎草 Cyperus iria | 莎草科 Cyperaceae | 一年生 Annual | 无 Absent | 10 | 12 |
SP24 | 香附子 Cyperus rotundus | 莎草科 Cyperaceae | 多年生 Perennial | 有 Present | 18 | 22 |
SP25 | 铁苋菜 Acalypha australis | 大戟科 Euphorbiaceae | 一年生 Annual | 无 Absent | 14 | 20 |
SP26 | 喜旱莲子草 Alternanthera philoxeroides | 苋科 Amaranthaceae | 多年生 Perennial | 有 Present | 15 | 41 |
SP27 | 杖藜 Chenopodium giganteum | 苋科 Amaranthaceae | 一年生 Annual | 无 Absent | 8 | 15 |
SP28 | 香蒲 Typha orientalis | 香蒲科 Typhaceae | 多年生 Perennial | 有 Present | 9 | 14 |
SP29 | 小苜蓿 Medicago minima | 豆科 Fabaceae | 一年生 Annual | 无 Absent | 9 | 10 |
SP30 | 野胡萝卜 Daucus carota | 伞形科 Apiaceae | 多年生 Perennial | 无 Absent | 14 | 10 |
Table 1 List of wetland plant species and number of samples collected in the studied river floodplains in middle reaches of Yangtze River
编号 Code | 种 Species | 科 Family | 寿命 Life span | 地下茎 Rhizome | 整株样本数 Number of whole-plant samples | 叶片样本数 Number of leaf samples |
---|---|---|---|---|---|---|
SP1 | 朝天委陵菜 Potentilla supina | 蔷薇科 Rosaceae | 一年生 Annual | 无 Absent | 15 | 18 |
SP2 | 刺儿菜 Cirsium arvense var. integrifolium | 菊科 Asteraceae | 多年生 Perennial | 有 Present | 8 | 17 |
SP3 | 鼠曲草 Pseudognaphalium affine | 菊科 Asteraceae | 一年生 Annual | 无 Absent | 19 | 20 |
SP4 | 小蓬草 Erigeron canadensis | 菊科 Asteraceae | 一年生 Annual | 无 Absent | 16 | 27 |
SP5 | 野莴苣 Lactuca serriola | 菊科 Asteraceae | 一年生 Annual | 无 Absent | 4 | 12 |
SP6 | 钻叶紫菀 Symphyotrichum subulatum | 菊科 Asteraceae | 一年生 Annual | 无 Absent | 18 | 20 |
SP7 | 风花菜 Rorippa globosa | 十字花科 Brassicaceae | 一年生 Annual | 无 Absent | 17 | 39 |
SP8 | 红蓼 Persicaria orientalis | 蓼科 Polygonaceae | 一年生 Annual | 无 Absent | 10 | 20 |
SP9 | 水蓼 Persicaria hydropiper | 蓼科 Polygonaceae | 一年生 Annual | 无 Absent | 15 | 18 |
SP10 | 长刺酸模 Rumex trisetifer | 蓼科 Polygonaceae | 一年生 Annual | 无 Absent | 9 | 20 |
SP11 | 荔枝草 Salvia plebeia | 唇形科 Lamiaceae | 一年生 Annual | 无 Absent | 15 | 20 |
SP12 | 益母草 Leonurus japonicus | 唇形科 Lamiaceae | 一年生 Annual | 无 Absent | 10 | 20 |
SP13 | 芦苇 Phragmites australis | 禾本科 Poaceae | 多年生 Perennial | 有 Present | 5 | 16 |
SP14 | 马唐 Digitaria sanguinalis | 禾本科 Poaceae | 一年生 Annual | 无 Absent | 5 | 20 |
SP15 | 牛鞭草 Hemarthria sibirica | 禾本科 Poaceae | 多年生 Perennial | 有 Present | 15 | 20 |
SP16 | 千金子 Leptochloa chinensis | 禾本科 Poaceae | 一年生 Annual | 无 Absent | 4 | 10 |
SP17 | 菵草 Beckmannia syzigachne | 禾本科 Poaceae | 一年生 Annual | 无 Absent | 27 | 40 |
SP18 | 长芒稗 Echinochloa caudata | 禾本科 Poaceae | 一年生 Annual | 无 Absent | 10 | 12 |
SP19 | 葎草 Humulus scandens | 大麻科 Cannabaceae | 多年生 Perennial | 无 Absent | 10 | 38 |
SP20 | 毛茛 Ranunculus japonicus | 毛茛科 Ranunculaceae | 多年生 Perennial | 有 Present | 12 | 8 |
SP21 | 铁线莲 Clematis florida | 毛茛科 Ranunculaceae | 多年生 Perennial | 无 Absent | 6 | 20 |
SP22 | 破铜钱 Hydrocotyle sibthorpioides var. batrachium | 五加科 Araliaceae | 多年生 Perennial | 有 Present | 15 | 20 |
SP23 | 碎米莎草 Cyperus iria | 莎草科 Cyperaceae | 一年生 Annual | 无 Absent | 10 | 12 |
SP24 | 香附子 Cyperus rotundus | 莎草科 Cyperaceae | 多年生 Perennial | 有 Present | 18 | 22 |
SP25 | 铁苋菜 Acalypha australis | 大戟科 Euphorbiaceae | 一年生 Annual | 无 Absent | 14 | 20 |
SP26 | 喜旱莲子草 Alternanthera philoxeroides | 苋科 Amaranthaceae | 多年生 Perennial | 有 Present | 15 | 41 |
SP27 | 杖藜 Chenopodium giganteum | 苋科 Amaranthaceae | 一年生 Annual | 无 Absent | 8 | 15 |
SP28 | 香蒲 Typha orientalis | 香蒲科 Typhaceae | 多年生 Perennial | 有 Present | 9 | 14 |
SP29 | 小苜蓿 Medicago minima | 豆科 Fabaceae | 一年生 Annual | 无 Absent | 9 | 10 |
SP30 | 野胡萝卜 Daucus carota | 伞形科 Apiaceae | 多年生 Perennial | 无 Absent | 14 | 10 |
功能性状 Functional trait | 平均值±标准误 Mean ± SE | 最大值 Max | 最小值 Min | 变异系数 Coefficient of variation (%) |
---|---|---|---|---|
株高 Plant height (cm) | 58.1 ± 7.3 | 192.0 | 13.7 | 68.4 |
根冠比 Root to shoot ratio | 0.40 ± 0.11 | 3.21 | 0.06 | 152.5 |
叶面积 Leaf area (mm2) | 1 545.69 ± 384.54 | 10 153.36 | 18.60 | 136.3 |
比叶面积 Specific leaf area (mm2·mg-1) | 17.66 ± 0.98 | 27.17 | 4.31 | 30.5 |
叶干物质含量 Leaf dry matter content (mg·g-1) | 236.47 ± 19.23 | 566.89 | 107.61 | 44.5 |
叶碳含量 Leaf carbon content (mg·g-1) | 479.11 ± 9.18 | 587.24 | 401.73 | 10.5 |
叶氮含量 Leaf nitrogen content (mg·g-1) | 36.98 ± 2.16 | 78.81 | 16.47 | 32.0 |
叶碳氮比 Leaf carbon to nitrogen ratio | 14.06 ± 0.74 | 26.93 | 6.78 | 28.6 |
Table 2 Characteristics of functional traits of wetland plants in the studied river floodplains in middle reaches of Yangtze River
功能性状 Functional trait | 平均值±标准误 Mean ± SE | 最大值 Max | 最小值 Min | 变异系数 Coefficient of variation (%) |
---|---|---|---|---|
株高 Plant height (cm) | 58.1 ± 7.3 | 192.0 | 13.7 | 68.4 |
根冠比 Root to shoot ratio | 0.40 ± 0.11 | 3.21 | 0.06 | 152.5 |
叶面积 Leaf area (mm2) | 1 545.69 ± 384.54 | 10 153.36 | 18.60 | 136.3 |
比叶面积 Specific leaf area (mm2·mg-1) | 17.66 ± 0.98 | 27.17 | 4.31 | 30.5 |
叶干物质含量 Leaf dry matter content (mg·g-1) | 236.47 ± 19.23 | 566.89 | 107.61 | 44.5 |
叶碳含量 Leaf carbon content (mg·g-1) | 479.11 ± 9.18 | 587.24 | 401.73 | 10.5 |
叶氮含量 Leaf nitrogen content (mg·g-1) | 36.98 ± 2.16 | 78.81 | 16.47 | 32.0 |
叶碳氮比 Leaf carbon to nitrogen ratio | 14.06 ± 0.74 | 26.93 | 6.78 | 28.6 |
Fig. 2 Correlations between pairs of functional traits of wetland plants in river floodplains in middle reaches of Yangtze River. *, p < 0.05; **, p < 0.01. C:N, leaf carbon to nitrogen ratio; H, plant height; LA, leaf area; LCC, leaf carbon content; LDMC, leaf dry matter content; LNC, leaf nitrogen content; RSR, root to shoot ratio; SLA, specific leaf area.
Fig. 3 Quality of functional trait spaces at different dimensions of wetland plants in river floodplains in middle reaches of Yangtze River. D, dimension.
主坐标轴 PCoA axes | 性状 Trait | R2/eta2 | p |
---|---|---|---|
PCoA1 (50.46%) | 寿命 Life span | 0.69 | <0.001 |
地下茎 Rhizome | 0.52 | <0.001 | |
根冠比 Root to shoot ratio | 0.20 | 0.014 | |
比叶面积 Specific leaf area | 0.19 | 0.015 | |
株高 Plant height | 0.19 | 0.016 | |
叶面积 Leaf area | 0.15 | 0.033 | |
叶氮含量 Leaf nitrogen content | 0.14 | 0.043 | |
PCoA2 (13.57%) | 叶碳含量 Leaf carbon content | 0.41 | <0.001 |
叶干物质含量 Leaf dry matter content | 0.38 | <0.001 | |
株高 Plant height | 0.27 | 0.004 | |
叶面积 Leaf area | 0.24 | 0.006 | |
根冠比 Root to shoot ratio | 0.19 | 0.015 | |
PCoA3 (10.79%) | 叶氮含量 Leaf nitrogen content | 0.30 | 0.002 |
比叶面积 Specific leaf area | 0.25 | 0.005 | |
叶干物质含量 Leaf dry matter content | 0.22 | 0.009 | |
叶碳含量 Leaf carbon content | 0.22 | 0.010 | |
PCoA4 (7.56%) | 叶碳氮比 Leaf carbon to nitrogen ratio | 0.41 | <0.001 |
叶面积 Leaf area | 0.32 | 0.001 |
Table 3 Correlations between traits and axes of the functional space of wetland plants in river floodplains in middle reaches of Yangtze River
主坐标轴 PCoA axes | 性状 Trait | R2/eta2 | p |
---|---|---|---|
PCoA1 (50.46%) | 寿命 Life span | 0.69 | <0.001 |
地下茎 Rhizome | 0.52 | <0.001 | |
根冠比 Root to shoot ratio | 0.20 | 0.014 | |
比叶面积 Specific leaf area | 0.19 | 0.015 | |
株高 Plant height | 0.19 | 0.016 | |
叶面积 Leaf area | 0.15 | 0.033 | |
叶氮含量 Leaf nitrogen content | 0.14 | 0.043 | |
PCoA2 (13.57%) | 叶碳含量 Leaf carbon content | 0.41 | <0.001 |
叶干物质含量 Leaf dry matter content | 0.38 | <0.001 | |
株高 Plant height | 0.27 | 0.004 | |
叶面积 Leaf area | 0.24 | 0.006 | |
根冠比 Root to shoot ratio | 0.19 | 0.015 | |
PCoA3 (10.79%) | 叶氮含量 Leaf nitrogen content | 0.30 | 0.002 |
比叶面积 Specific leaf area | 0.25 | 0.005 | |
叶干物质含量 Leaf dry matter content | 0.22 | 0.009 | |
叶碳含量 Leaf carbon content | 0.22 | 0.010 | |
PCoA4 (7.56%) | 叶碳氮比 Leaf carbon to nitrogen ratio | 0.41 | <0.001 |
叶面积 Leaf area | 0.32 | 0.001 |
Fig. 4 Distribution of functional traits of wetland plants in floodplains in middle reaches of Yangtze River in the four-dimensional space. See Table 1 for species information. PCoA, principal co-ordinates analysis。
[1] |
Bai JS, Tang HR, Lou YJ (2021). Effects of water depth and nitrogen addition on functional traits of wetland plants: a review. Chinese Journal of Ecology, 40, 2987-2995.
DOI |
[白江珊, 唐浩然, 娄彦景 (2021). 水深和氮添加对湿地植物功能性状的影响研究进展. 生态学杂志, 40, 2987-2995.] | |
[2] | Barclay AM, Crawford RMM (1982). Plant-growth and survival under strict anaerobiosis. Journal of Experimental Botany, 33, 541-549. |
[3] | Bedford BL, Walbridge MR, Aldous A (1999). Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology, 80, 2151-2169. |
[4] | Blom CWPM, Voesenek LACJ, Banga M, Engelaar WMHG, Rijnders JHGM, van de Steeg HM, Visser EJW (1994). Physiological ecology of riverside species: adaptive responses of plants to submergence. Annals of Botany, 74, 253-263. |
[5] |
Colmer TD, Voesenek LACJ (2009). Flooding tolerance: suites of plant traits in variable environments. Functional Plant Biology, 36, 665-681.
DOI PMID |
[6] | Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
[7] | Crawford RMM, Braendle R (1996). Oxygen deprivation stress in a changing environment. Journal of Experimental Botany, 47, 145-159. |
[8] | Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, et al.(2016). The global spectrum of plant form and function. Nature, 529, 167-171. |
[9] | Ding M, Wen ZM, Zheng Y (2014). Scale change and dependence of plant functional traits in hilly areas of the loess region, Shaanxi Province, China. Acta Ecologica Sinica, 34, 2308-2315. |
[丁曼, 温仲明, 郑颖 (2014). 黄土丘陵区植物功能性状的尺度变化与依赖. 生态学报, 34, 2308-2315.] | |
[10] | Dong HF, Yu JB, Sun ZG, Mu XJ, Chen XB, Mao PL, Wu CF, Guan B (2010). Spatial distribution characteristics of organic carbon in the soil-plant systems in the Yellow River estuary tidal flat wetland. Environmental Science, 31, 1594-1599. |
[董洪芳, 于君宝, 孙志高, 牟晓杰, 陈小兵, 毛培利, 吴春发, 管博 (2010). 黄河口滨岸潮滩湿地植物-土壤系统有机碳空间分布特征. 环境科学, 31, 1594-1599.] | |
[11] | Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408, 578-580. |
[12] |
Fang JY, Wang XP, Shen ZH, Tang ZY, He JS, Yu D, Jiang Y, Wang ZH, Zheng CY, Zhu JL, Guo ZD (2009). Methods and protocols for plant community inventory. Biodiversity Science, 17, 533-548.
DOI |
[方精云, 王襄平, 沈泽昊, 唐志尧, 贺金生, 于丹, 江源, 王志恒, 郑成洋, 朱江玲, 郭兆迪 (2009). 植物群落清查的主要内容、方法和技术规范. 生物多样性, 17, 533-548.]
DOI |
|
[13] | Fu H, Yuan GX, Cao T, Ni LY, Zhang M, Wang SR (2012). An alternative mechanism for shade adaptation: implication of allometric responses of three submersed macrophytes to water depth. Ecological Research, 27, 1087-1094. |
[14] | Fu H, Zhong JY, Yuan GX, Guo CJ, Ding HJ, Feng Q, Fu Q (2015). A functional-trait approach reveals community diversity and assembly processes responses to flood disturbance in a subtropical wetland. Ecological Research, 30, 57-66. |
[15] | Guerrero I, Carmona CP, Morales MB, Oñate JJ, Peco B (2014). Non-linear responses of functional diversity and redundancy to agricultural intensification at the field scale in Mediterranean arable plant communities. Agriculture, Ecosystems & Environment, 195, 36-43. |
[16] | Güsewell S (2002). Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology, Evolution and Systematics, 5, 37-61. |
[17] |
Hodgson JG, Montserrat-Martí G, Charles M, Jones G, Wilson P, Shipley B, Sharafi M, Cerabolini BEL, Cornelissen JHC, Band SR, Bogard A, Castro-Díez P, Guerrero-Campo J, Palmer C, Pérez-Rontomé MC, et al. (2011). Is leaf dry matter content a better predictor of soil fertility than specific leaf area. Annals of Botany, 108, 1337-1345.
DOI PMID |
[18] | Hu WF, Zhang WL, Zhang LH, Chen XY, Lin W, Zeng CS, Tong C (2014). Stoichiometric characteristics of nitrogen and phosphorus in major wetland vegetation of China. Chinese Journal of Plant Ecology, 38, 1041-1052. |
[胡伟芳, 章文龙, 张林海, 陈晓艳, 林伟, 曾从盛, 仝川 (2014). 中国主要湿地植被氮和磷生态化学计量学特征. 植物生态学报, 38, 1041-1052.]
DOI |
|
[19] | Hussey A, Long SP (1982). Seasonal-changes in weight of above-ground and below-ground vegetation and dead plant-material in a salt-marsh at Colne Point, Essex. Journal of Ecology, 70, 757-771. |
[20] | Kludze HK, DeLaune RD (1996). Soil redox intensity effects on oxygen exchange and growth of cattail and sawgrass. Soil Science Society of America Journal, 60, 616-621. |
[21] | Laughlin DC, Wilson S (2014). The intrinsic dimensionality of plant traits and its relevance to community assembly. Journal of Ecology, 102, 186-193. |
[22] | Li XH, Li XL, Jiang DM, Luo YM, Wang HM (2009). A comparative study of individual biomass and modular biomass of 70 herbaceous species found in the Horqin Sandy Land. Arid Zone Research, 26, 200-205. |
[李雪华, 李晓兰, 蒋德明, 骆永明, 王红梅 (2009). 科尔沁沙地70种草本植物个体和构件生物量比较研究. 干旱区研究, 26, 200-205.] | |
[23] | Li Y, Yang SY, Luo HW, Chen J, Pan WJ, Pan BZ, Jiang WX (2023). Assessing the efficiency of multidimensional functional spaces for macroinvertebrate traits of functional diversity. Journal of Hydroecology, 44, 49-55. |
[李杨, 杨顺益, 罗宏伟, 陈静, 潘文杰, 潘保柱, 蒋万祥 (2023). 底栖动物功能多样性度量的功效分析. 水生态学杂志, 44, 49-55.] | |
[24] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339. |
[刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[25] | Liu ZG, Zhao M, Zhang HX, Ren TT, Liu CC, He NP (2023). Divergent response and adaptation of specific leaf area to environmental change at different spatio-temporal scales jointly improve plant survival. Global Change Biology, 29, 1144-1159. |
[26] | Maberly SC (1993). Morphological and photosynthetic characteristics of potamogeton obtusifolius from different depths. Journal of Aquatic Plant Management, 31, 34-39. |
[27] | Magneville C, Loiseau N, Albouy C, Casajus N, Claverie T, Escalas A, Leprieur F, Maire E, Mouillot D, Villéger S (2022). mFD: an R package to compute and illustrate the multiple facets of functional diversity. Ecography, 2022, e05904. DOI: 10.1111/ecog.05904. |
[28] | Maire E, Grenouillet G, Brosse S, Villéger S (2015). How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Global Ecology and Biogeography, 24, 728-740. |
[29] | Mammola S, Carmona CP, Guillerme T, Cardoso P (2021). Concepts and applications in functional diversity. Functional Ecology, 35, 1869-1885. |
[30] | McGroddy ME, Daufresne T, Hedin LO (2004.) Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios. Ecology, 85, 2390-2401. |
[31] | Moles AT, Westoby M (2000). Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage. Oikos, 90, 517-524. |
[32] | Mouillot D, Loiseau N, Grenié M, Algar AC, Allegra M, Cadotte MW, Casajus N, Denelle P, Guéguen M, Maire A, Maitner B, McGill BJ, McLean M, Mouquet N, Munoz F, et al. (2021). The dimensionality and structure of species trait spaces. Ecology Letters, 24, 1988-2009. |
[33] | Nie LQ, Wu Q, Yao B, Fu S, Hu QW (2016). Leaf litter and soil carbon, nitrogen, and phosphorus stoichiometry of dominant plant species in the Poyang Lake wetland. Acta Ecologica Sinica, 36, 1898-1906. |
[聂兰琴, 吴琴, 尧波, 付姗, 胡启武 (2016). 鄱阳湖湿地优势植物叶片-凋落物-土壤碳氮磷化学计量特征. 生态学报, 36, 1898-1906.] | |
[34] | Pan YJ, Cieraad E, Armstrong J, Armstrong W, Clarkson BR, Colmer TD, Pedersen O, Visser EJW, Voesenek LACJ, van Bodegom PM (2020). Global patterns of the leaf economics spectrum in wetlands. Nature Communications, 11, 4519. DOI: 10.1038/s41467-020-18354-3. |
[35] | Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, et al.(2016). Corrigendum to: new handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 64, 715-716. |
[36] | Richards JH, Troxler TG, Lee DW, Zimmerman MS (2011). Experimental determination of effects of water depth on Nymphaea odorata growth, morphology and biomass allocation. Aquatic Botany, 95, 9-16. |
[37] |
Shipley B, Lechowicz MJ, Wright I, Reich PB (2006). Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology, 87, 535-541.
PMID |
[38] | Strand JA, Weisner SEB (2001). Morphological plastic responses to water depth and wave exposure in an aquatic plant (Myriophyllum spicatum). Journal of Ecology, 89, 166-175. |
[39] | Vandersman AJM, Voesenek LACJ, Blom CWPM, Harren FJM, Reuss J (1991). The role of ethylene in shoot elongation with respect to survival and seed output of flooded Rumex maritimus L. plants. Functional Ecology, 5, 304-313. |
[40] | Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892. |
[41] | Voesenek LACJ, Banga MK, Rijnders JGHM, Visser EJW, Blom CWPM (1996). Hormone sensitivity and plant adaptations to flooding. Folia Geobotanica & Phytotaxonomica, 31, 47-56. |
[42] | Voesenek LACJ, Pierik R (2008). Plant stress profiles. Science, 320, 880-881. |
[43] | Wang LH, Yang L, Liu L, He L, Jiang WX, Shen HL, Zhu TS, Pan BZ (2020). Species diversity and functional diversity of submerged vegetation community in response to water depth gradient in Nansi Lake, China. Acta Ecologica Sinica, 40, 6233-6242. |
[王丽虹, 杨磊, 刘玲, 何亮, 蒋万祥, 申恒伦, 朱天顺, 潘保柱 (2020). 南四湖沉水植物物种多样性和功能多样性对水深梯度的响应. 生态学报, 40, 6233-6242.] | |
[44] | Wilson PJ, Thompson KEN, Hodgson JG (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143, 155-162. |
[45] | Wright IJ, Reich PB, Westoby M (2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Functional Ecology, 15, 423-434. |
[46] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[47] | Yang ZD, Yuan SB, Liu XQ, Wang HZ (2019). Water level fluctuation requirements of emergent macrophyte Typha angustifolia L. Water, 12, 127. DOI: 10.3390/w12010127. |
[48] | Yuan SB, Yang ZD, Liu XQ, Wang HZ (2017). Key parameters of water level fluctuations determining the distribution of Carex in shallow lakes. Wetlands, 37, 1005-1014. |
[49] | Yuan SB, Yang ZD, Liu XQ, Wang HZ (2019). Water level requirements of a Carex hygrophyte in Yangtze floodplain lakes. Ecological Engineering, 129, 29-37. |
[50] | Zhang L, Luo TX (2004). Advances in ecological studies on leaf lifespan and associated leaf traits. Acta Phytoecologica Sinica, 28, 844-852. |
[张林, 罗天祥 (2004). 植物叶寿命及其相关叶性状的生态学研究进展. 植物生态学报, 28, 844-852.]
DOI |
|
[51] | Zhang QJ, Yu XB, Hu BH (2013). Research on the characteristics of plant communities in the Poyang Nanji wetlands, China. Resources Science, 35, 42-49. |
[张全军, 于秀波, 胡斌华 (2013). 鄱阳湖南矶湿地植物群落分布特征研究. 资源科学, 35, 42-49.] | |
[52] | Zhao KY, Jiang M, Tian K, Lou YJ (2020). Wetland Vegetation and Plant of China in Colour. Science Press, Beijing. |
[赵魁义, 姜明, 田昆, 娄彦景 (2020). 中国湿地植被与植物图鉴. 科学出版社, 北京.] | |
[53] | Zheng YM, Yao B, Wu Q, Hu BH, Hu QW (2013). Dynamics of leaf carbon, nitrogen and phosphorus of two dominant species in a Poyang Lake wetland. Acta Ecologica Sinica, 33, 6488-6496. |
[郑艳明, 尧波, 吴琴, 胡斌华, 胡启武 (2013). 鄱阳湖湿地两种优势植物叶片C、N、P动态特征. 生态学报, 33, 6488-6496.] |
[1] | ZHANG Xue-Jiao, GAO Xian-Ming, JI Cheng-Jun, KANG Mu-Yi, WANG Ren-Qing, YUE Ming, ZHANG Feng, TANG Zhi-Yao. Response of abundance distribution of five species of Quercus to climate change in northern China [J]. Chin J Plant Ecol, 2019, 43(9): 774-782. |
[2] | LIU Xiao-Tong, YUAN Quan, NI Jian. Research advances in modelling plant species distribution in China [J]. Chin J Plant Ecol, 2019, 43(4): 273-283. |
[3] | Rui-Fang HAO, De-Yong YU, Jian-Guo WU, Qin-Feng GUO, Yu-Peng LIU. Constraint line methods and the applications in ecology [J]. Chin J Plan Ecolo, 2016, 40(10): 1100-1109. |
[4] | JIN Jia-Xin,JIANG Hong,PENG Wei,ZHANG Lin-Jing,LU Xue-He,XU Jian-Hui,ZHANG Xiu-Ying,WANG Ying. Evaluating the impact of soil factors on the potential distribution of Phyllostachys edulis (bamboo) in China based on the species distribution model [J]. Chin J Plant Ecol, 2013, 37(7): 631-640. |
[5] | XU Han, LI Yi-De, LUO Tu-Shou, CHEN De-Xiang, LIN Ming-Xian. Environmental factors correlated with species diversity in different tropical rain forest types in Jianfengling, Hainan Island, China [J]. Chin J Plant Ecol, 2013, 37(1): 26-36. |
[6] | SHAO Hui, TIAN Jia-Qian, GUO Ke, Osbert Jianxin Sun. EFFECTS OF SAMPLE SIZE AND SPECIES TRAITS ON PERFORMANCE OF BIOCLIM IN PREDICTING GEOGRAPHICAL DISTRIBUTION OF TREE SPECIES—A CASE STUDY WITH 12 DECIDUOUS QUERCUS SPECIES INDIGENOUS TO CHINA [J]. Chin J Plant Ecol, 2009, 33(5): 870-877. |
[7] | ZUO Wen-Yun, LAO Ni, GENG Yu-Ying, MA Ke-Pin. PREDICTING SPECIES' POTENTIAL DISTRIBUTION—SVM COMPARED WITH GARP [J]. Chin J Plant Ecol, 2007, 31(4): 711-719. |
[8] | ZHANG Mi, XIONG Gao-Ming, CHEN Zhi-Gang, FAN Da-Yong, XIE Zong-Qiang. THE APPLICATION OF DIGITAL ELEVATION MODELS IN COMMUNITY BIODIVERSITY RESEARCH WITH AN EXAMPLE FROM A FAGUS ENGLERIANA-CYCLOBALANOPSIS OXYODON COMMUNITY IN SHENNONGJIA AREA [J]. Chin J Plant Ecol, 2005, 29(2): 197-201. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn