Chin J Plant Ecol ›› 2011, Vol. 35 ›› Issue (6): 632-640.DOI: 10.3724/SP.J.1258.2011.00632
• Research Articles • Previous Articles Next Articles
GAO Yan1, TIAN Qiu-Ying2,*(), SHI Feng-Ling1,*(), LI Ling-Hao2, ZHANG Wen-Hao2
Received:
2011-02-28
Accepted:
2011-04-20
Online:
2011-02-28
Published:
2011-06-30
Contact:
TIAN Qiu-Ying,SHI Feng-Ling
GAO Yan, TIAN Qiu-Ying, SHI Feng-Ling, LI Ling-Hao, ZHANG Wen-Hao. Comparative studies on adaptive strategies of Medicago falcata and M. truncatula to phosphorus deficiency in soil[J]. Chin J Plant Ecol, 2011, 35(6): 632-640.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2011.00632
Fig. 1 Biomass of shoots and roots, and shoot/root ratio in Medicago falcata and M. truncatula under supply of normal (+P, 500 μmol·L-1) and low P (-P, 5 μmol·L-1) (mean ± SE, n = 4). Different letters indicate significant difference between species and treatments at p < 0.05.
植物种 Species | 供P水平 P level | 地上P含量 Shoot P concentration (mg·g-1 DW) | 地下P含量 Root P concentration (mg·g-1 DW) | 植株P含量 Plant P concentration (mg·g-1 DW) | P累积量 Accumulative P (μg·plant-1) |
---|---|---|---|---|---|
黄花苜蓿 M. falcata | + P - P | 4.837 ± 0.060a 1.157 ± 0.067b | 5.679 ± 0.153a 1.631 ± 0.043c | 5.43 ± 0.16a 1.45 ± 0.05c | 97.72 ± 2.07b 12.50 ± 0.77d |
蒺藜苜蓿 M. truncatula | + P - P | 4.260 ± 0.272a 1.130 ± 0.023b | 3.909 ± 0.202b 1.796 ± 0.021c | 4.02 ± 0.23b 1.26 ± 0.02c | 124.11 ± 5.47a 26.47 ± 0.56c |
Table 1 P contents in shoots, roots, whole plants and accumulative amounts of P in Medicago falcata and M. truncatula under conditions of normal (+P, 500 μmol·L-1) and low P (-P, 5 μmol·L-1 ) supply (mean ± SE, n = 4)
植物种 Species | 供P水平 P level | 地上P含量 Shoot P concentration (mg·g-1 DW) | 地下P含量 Root P concentration (mg·g-1 DW) | 植株P含量 Plant P concentration (mg·g-1 DW) | P累积量 Accumulative P (μg·plant-1) |
---|---|---|---|---|---|
黄花苜蓿 M. falcata | + P - P | 4.837 ± 0.060a 1.157 ± 0.067b | 5.679 ± 0.153a 1.631 ± 0.043c | 5.43 ± 0.16a 1.45 ± 0.05c | 97.72 ± 2.07b 12.50 ± 0.77d |
蒺藜苜蓿 M. truncatula | + P - P | 4.260 ± 0.272a 1.130 ± 0.023b | 3.909 ± 0.202b 1.796 ± 0.021c | 4.02 ± 0.23b 1.26 ± 0.02c | 124.11 ± 5.47a 26.47 ± 0.56c |
Fig. 2 Primary root length, lateral root length, lateral root density and total root length of Medicago falcata and M. truncatula under supply of normal (+P, 500 μmol·L-1) and low P (- P, 5 μmol·L-1) (mean ± SE, n = 4). Different letters indicate significant difference between species and treatments at p < 0.05.
植物种 Species | 供磷水平 P level | 根表面积 Root surface area (cm2) | 根体积 Root volume (cm3) | 比根长 Specific root length (cm·g-1 DW) |
---|---|---|---|---|
黄花苜蓿 M. falcata | +P | 13.74 ± 2.39a | 0.104 ± 0.012b | 32.36 ± 5.07a |
-P | 6.40 ± 0.67b | 0.053 ± 0.003c | 19.51 ± 2.52b | |
蒺藜苜蓿 M. truncatula | +P | 18.43 ± 2.61a | 0.148 ± 0.021a | 15.47 ± 2.80b |
-P | 14.50 ± 1.43a | 0.116 ± 0.011ab | 13.39 ± 1.79b |
Table 2 Root surface area, root volume and specific root length of Medicago falcata and M. truncatula under conditions of normal (+P, 500 μmol·L-1) and low P (-P, 5 μmol·L-1 ) supply (mean ± SE, n = 4)
植物种 Species | 供磷水平 P level | 根表面积 Root surface area (cm2) | 根体积 Root volume (cm3) | 比根长 Specific root length (cm·g-1 DW) |
---|---|---|---|---|
黄花苜蓿 M. falcata | +P | 13.74 ± 2.39a | 0.104 ± 0.012b | 32.36 ± 5.07a |
-P | 6.40 ± 0.67b | 0.053 ± 0.003c | 19.51 ± 2.52b | |
蒺藜苜蓿 M. truncatula | +P | 18.43 ± 2.61a | 0.148 ± 0.021a | 15.47 ± 2.80b |
-P | 14.50 ± 1.43a | 0.116 ± 0.011ab | 13.39 ± 1.79b |
Fig. 3 Exudation of citrate from roots of Medicago falcata and M. truncatula under supply of normal (+P, 500 μmol·L-1) and low (- P, 5 μmol·L-1) P (mean ± SE, n = 4). Different letters indicate significant difference between species and treatments at p < 0.05.
[1] | Barber SA, Mackay AD (1986). Root growth and phosphorus and potassium uptake by two corn genotypes in the field. Fertilizer Research, 10, 217-230. |
[2] |
Bonser AM, Lynch J, Snapp S (1996). Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris. New Phytologist, 132, 281-288.
URL PMID |
[3] | Borch K, Bouma TJ, Lynch JP, Brown KM (1999). Ethylene: a regulator of root architectural responses to soil phosphorus availability. Plant, Cell & Environment, 22, 425-431. |
[4] | Chen AM (陈爱民), Lian RL (连瑞丽), Sun J (孙杰), Wang YZ (王彦章) (2006). Leguminous model plant—Med- icago truncatula. Plant Physiology Communications (植物生理学通讯), 42, 997-1003. (in Chinese with English abstract) |
[5] |
Desnos T (2008). Root branching responses to phosphate and nitrate. Current Opinion in Plant Biology, 11, 82-87.
DOI URL PMID |
[6] | Dinkelaker B, Römheld V, Marschner H (1989). Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant, Cell & Environment, 12, 285-292. |
[7] | Geng HZ (耿华珠) (1995). Alfalfa in China (中国苜蓿). China Agriculture Press, Beijing. (in Chinese) |
[8] |
Gilroy S, Jones DL (2000). Through form to function: root hair development and nutrient uptake. Trends in Plant Science, 5, 56-60.
URL PMID |
[9] |
Johnson JF, Allan DL, Vance CP (1994). Phosphorus stress- induced proteoid roots show altered metabolism in Lupinus albus. Plant Physiology, 104, 657-665.
URL PMID |
[10] |
Johnson JF, Vance CP, Allan DL (1996). Phosphorus deficiency in Lupinus albus (altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase). Plant Physiology, 112, 31-41.
DOI URL PMID |
[11] | Li HB (李海波), Xia M (夏铭), Wu P (吴平) (2001). Effect of phosphorus deficiency stress on rice lateral root growth and nutrient absorption. Acta Botanica Sinica (植物学报), 43, 1154-1160. (in Chinese with English abstract) |
[12] |
Liao H, Rubio G, Yan XL, Cao AQ, Brown KM, Lynch JP (2001). Effect of phosphorus availability on basal root shallowness in common bean. Plant and Soil, 232, 69-79.
URL PMID |
[13] | Liao H (廖红), Yan XL (严小龙) (2000). Adaptive changes and genotypic variation for root architecture of common bean in response to phosphorus deficiency. Acta Botanica Sinica (植物学报), 42, 158-163. (in Chinese with English abstract) |
[14] | Liu Y, Mi GH, Chen FJ, Zhang JH, Zhang FS (2004). Rhizosphere effect and root growth of two maize (Zea mays L.) genotypes with contrasting P efficiency at low P availability. Plant Science, 167, 217-223. |
[15] | Lü SJ (吕世杰) (2007). Primary Studies on Physiological Characteristics of Drought and Salt Resisting and Resistance Mechanism of Medicago falcata L. (黄花苜蓿抗旱、耐盐生理特性及其抗性机理的初步研究). Master dissertation, Inner Mongolia Agricultural University, Hohhot. (in Chinese with English abstract) |
[16] |
Lynch J (1995). Root architecture and plant productivity. Plant Physiology, 109, 7-13.
DOI URL PMID |
[17] |
Lynch JP, Brown KM (2001). Topsoil foraging―an architectural adaptation of plants to low phosphorus availability. Plant and Soil, 237, 225-237.
DOI URL |
[18] |
Neumann G, Martinoia E (2002). Cluster roots―an underground adaptation for survival in extreme environments. Trends in Plant Science, 7, 162-167.
DOI URL PMID |
[19] |
Neumann G, Römheld V (1999). Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant and Soil, 211, 121-130.
DOI URL |
[20] |
Pennycooke JC, Cheng HM, Stockinger EJ (2008). Comparative genomic sequence and expression analyses of Medicago truncatula and alfalfa subspecies falcata COLD- ACCLIMATION-SPECIFIC genes. Plant Physiology, 146, 1242-1254.
URL PMID |
[21] |
Raghothama KG (1999). Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 665-693.
DOI URL PMID |
[22] |
Raghothama KG, Karthikeyan AS (2005). Phosphate acquisition. Plant and Soil, 274, 37-49.
DOI URL |
[23] |
Richardson AE (2009). Regulating the phosphorus nutrition of plants: molecular biology meeting agronomic needs. Plant and Soil, 322, 17-24.
DOI URL |
[24] |
Ryan PR, Delhaize E, Jones DL (2001). Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 527-560.
DOI URL PMID |
[25] | Sanderson MA, Jones RM (1993). Stand dynamics and yield components of alfalfa as affected by phosphorus fertility. Agronomy Journal, 85, 241-246. |
[26] | Shen JB, Zhang FS, Huang Q, Mao DR (1998). Determination of organic acids in root exudates by high performance liquid chromatography. I. Development and assessment of chromatographic conditions for organic acid determination. Pedosphere, 8, 97-104. |
[27] |
Vance CP (2001). Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiology, 127, 390-397.
URL PMID |
[28] |
Vance CP, Uhde-Stone C, Allan DL (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 157, 423-447.
DOI URL |
[29] | Wang JJ (王俊杰) (2008). Germplasm Resources of Native Sickle Alfalfa in China (中国黄花苜蓿野生种质资源研究). PhD dissertation, Inner Mongolia Agricultural University, Hohhot. (in Chinese with English abstract) |
[30] | Wang QR (王庆仁), Li JY (李继云), Li ZS (李振声) (1998). Dynamics and prospect on studies of high acquisition of soil unavailable phosphorus by plants. Plant Nutrition and Fertilizer Science, 4, 107-116. (in Chinese with English abstract) |
[31] | Wang SP (汪诗平), Chen MJ (陈默君) (1992). Effect of P-fertilization on the performance and quality of alfalfa. Chinese Journal of Grassland (中国草地), (6), 66-69. (in Chinese with English abstract) |
[32] | Wang SQ (王树起), Han XZ (韩晓增), Yan J (严君), Li XH (李晓慧), Qiao YF (乔云发) (2010). Impact of phosphorus deficiency stress on root morphology, nitrogen concentration and phosphorus accumulation of soybean (Glycine max L.). Chinese Journal of Soil Science (土壤通报), 41, 645-650. (in Chinese with English abstract) |
[33] | Wei ZW (魏臻武), Gai JY (盖钧镒) (2008). Model legume: Medicago truncatula. Acta Prataculturae Sinica (草业学报), 17, 114-120. (in Chinese with English abstract) |
[34] | Wen Y (温洋), Jin JY (金继运) (2007). Effect of phosphorus levels on photosynthesis and herbage yield and quality of alfalfa. Soil and Fertilizer Sciences in China (中国土壤与肥料), (6), 34-37, 45. (in Chinese with English abstract) |
[35] |
Williamson LC, Ribrioux SPCP, Fitter AH, Leyser HMO (2001). Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiology, 126, 875-882.
DOI URL PMID |
[36] | Yan XL (严小龙), Huang ZB (黄志斌), Lu RJ (卢仁俊) (1992). Genetics study about crop phosphorus efficiency. Soils (土壤), 24, 102-105. (in Chinese with English abstract) |
[37] | Yan XL (严小龙), Liao H (廖红), Ge ZY (戈振扬), Luo XW (罗锡文) (2000). Root architectural characteristics and phosphorus acquisition efficiency in plants. Chinese Bulletin of Botany (植物学通报), 17, 511-519 . (in Chinese with an English abstract) |
[38] | Yan XL (严小龙), Zhang FS (张福锁) (1997). Genetics Plant Nutrition (植物营养遗传学). China Agriculture Press, Beijing. (in Chinese) |
[39] | Zhao H (赵华), Xu FS (徐芳森), Shi L (石磊), Wang YH (王运华) (2006). Advances in plant root morphology adaptability to phosphorous deficiency stress. Chinese Bulletin of Botany (植物学通报), 23, 409-417. (in Chinese with English abstract) |
[1] | LIU Na-Na,TIAN Qiu-Ying,ZHANG Wen-Hao. Comparison of adaptive strategies to phosphorus-deficient soil between dominant species Artemisia frigida and Stipa krylovii in typical steppe of Nei Mongol [J]. Chin J Plant Ecol, 2014, 38(9): 905-915. |
[2] | DONG Jia, MOU Pu. Root nutrient foraging of morphological plasticity and physiological mechanism in Calliste- phus chinensis [J]. Chin J Plant Ecol, 2012, 36(11): 1172-1183. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn