Chin J Plant Ecol ›› 2014, Vol. 38 ›› Issue (9): 905-915.DOI: 10.3724/SP.J.1258.2014.00085
LIU Na-Na1,2,TIAN Qiu-Ying1,*(),ZHANG Wen-Hao1
Received:
2014-04-04
Accepted:
2014-07-10
Online:
2014-04-04
Published:
2014-09-22
Contact:
TIAN Qiu-Ying
LIU Na-Na,TIAN Qiu-Ying,ZHANG Wen-Hao. Comparison of adaptive strategies to phosphorus-deficient soil between dominant species Artemisia frigida and Stipa krylovii in typical steppe of Nei Mongol[J]. Chin J Plant Ecol, 2014, 38(9): 905-915.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2014.00085
Fig. 1 Biomass, root/shoot ratio, plant height, branch numbers and tiller numbers in Artemisia frigida and Stipa krylovii grown under varying concentrations of phosphorus (P) supply (mean ± SE, n = 4). Different letters indicate significant differences among phosphorus treatments (p < 0.05). * and ** indicate significant difference between species under the same phosphorus level at p < 0.05 and p < 0.01, respectively.
物种 Species | 供P浓度 P concentration (mmol·L-1) | 植株P浓度 P concentration (mg·g-1) | 植株P累积量 P accumulation (μg·plant-1) | 平均吸P速率Average P uptake rate (ng P·cm-1·d-1) | P利用效率 P utilization efficiency (mg·mg-1 P) | |||
---|---|---|---|---|---|---|---|---|
地上 Aboveground | 地下 Belowground | 地上 Aboveground | 地下 Belowground | |||||
冷蒿 Artemisia frigida | 0.00 | 1.52 ± 0.05d | 1.26 ± 0.04d | 151.07 ± 17.79c | 32.28 ± 2.07c | 5.25 ± 0.64c | 605.14 ± 8.49a | |
0.25 | 2.84 ± 0.25c | 2.88 ± 0.32c | 530.09 ± 35.03bc | 102.03 ± 13.25bc | 14.53 ± 2.97bc | 290.37 ± 20.45b | ||
0.50 | 3.63 ± 0.13b | 4.29 ± 0.35b | 850.36 ± 255.08b | 182.84 ± 2.35b | 19.27 ± 5.89b | 255.86 ± 103.43b | ||
5.00 | 7.17 ± 0.24a | 17.31 ± 0.67a | 1 348.18 ± 295.44a | 530.41 ± 97.69a | 73.14 ± 11.60a | 97.78 ± 4.22c | ||
克氏针茅 Stipa krylovii | 0.00 | 1.09 ± 0.09c** | 0.63 ± 0.06c** | 51.25 ± 5.23d** | 13.58 ± 2.82c** | 4.75 ± 0.38c | 1 076.84 ± 60.87a** | |
0.25 | 2.72 ± 0.29b | 2.59 ± 0.30b | 249.55 ± 5.43c** | 77.47 ± 9.99b | 25.20 ± 2.65b** | 251.52 ± 27.23b | ||
0.50 | 2.77 ± 0.23b* | 2.54 ± 0.24bc** | 263.18 ± 3.96b* | 88.49 ± 9.23b** | 29.70 ± 5.49b | 233.77 ± 7.14b | ||
5.00 | 4.19 ± 0.66a** | 14.92 ± 0.26a** | 275.19 ± 3.79a** | 295.33 ± 39.26a* | 61.80 ± 1.72a | 95.49 ± 8.54c |
Table 1 Phosphorus (P) concentration, P accumulation, average P uptake rate and P utilization efficiency in Artemisia frigida and Stipa krylovii under different concentrations of P supply (mean ± SE, n = 4)
物种 Species | 供P浓度 P concentration (mmol·L-1) | 植株P浓度 P concentration (mg·g-1) | 植株P累积量 P accumulation (μg·plant-1) | 平均吸P速率Average P uptake rate (ng P·cm-1·d-1) | P利用效率 P utilization efficiency (mg·mg-1 P) | |||
---|---|---|---|---|---|---|---|---|
地上 Aboveground | 地下 Belowground | 地上 Aboveground | 地下 Belowground | |||||
冷蒿 Artemisia frigida | 0.00 | 1.52 ± 0.05d | 1.26 ± 0.04d | 151.07 ± 17.79c | 32.28 ± 2.07c | 5.25 ± 0.64c | 605.14 ± 8.49a | |
0.25 | 2.84 ± 0.25c | 2.88 ± 0.32c | 530.09 ± 35.03bc | 102.03 ± 13.25bc | 14.53 ± 2.97bc | 290.37 ± 20.45b | ||
0.50 | 3.63 ± 0.13b | 4.29 ± 0.35b | 850.36 ± 255.08b | 182.84 ± 2.35b | 19.27 ± 5.89b | 255.86 ± 103.43b | ||
5.00 | 7.17 ± 0.24a | 17.31 ± 0.67a | 1 348.18 ± 295.44a | 530.41 ± 97.69a | 73.14 ± 11.60a | 97.78 ± 4.22c | ||
克氏针茅 Stipa krylovii | 0.00 | 1.09 ± 0.09c** | 0.63 ± 0.06c** | 51.25 ± 5.23d** | 13.58 ± 2.82c** | 4.75 ± 0.38c | 1 076.84 ± 60.87a** | |
0.25 | 2.72 ± 0.29b | 2.59 ± 0.30b | 249.55 ± 5.43c** | 77.47 ± 9.99b | 25.20 ± 2.65b** | 251.52 ± 27.23b | ||
0.50 | 2.77 ± 0.23b* | 2.54 ± 0.24bc** | 263.18 ± 3.96b* | 88.49 ± 9.23b** | 29.70 ± 5.49b | 233.77 ± 7.14b | ||
5.00 | 4.19 ± 0.66a** | 14.92 ± 0.26a** | 275.19 ± 3.79a** | 295.33 ± 39.26a* | 61.80 ± 1.72a | 95.49 ± 8.54c |
Fig. 2 Effects of different concentrations of phosphorus (P) supply on total root length, lateral root length, primary root length, and specific root length in Artemisia frigida and Stipa krylovii (mean ± SE, n = 4). Different letters indicate significant differences among treatments at p < 0.05. * and ** indicate significant differences between species under the same phosphorus levels at p < 0.05 and p < 0.01.
Fig. 3 Effects of different concentrations of phosphorus (P) supply on rhizospheric acidification in Artemisia frigida (A) and Stipa krylovii (B). The yellow and purple around roots indicate acidification and alkalization, respectively, of the rhizosphere.
Fig. 4 Exudation of organic acid and acid phosphatase from roots of Artemisia frigida and Stipa krylovii under varying concentrations of phosphorus (P) supply (mean ± SE, n = 4). Different letters indicate significant differences among treatments (p < 0.05). * and ** indicate significant differences between species under the same phosphorus levels at p < 0.05 and p < 0.01, respectively.
[1] | Aerts R (1996). Nutrient resorption from senescing leaves of perennials: Are there general patterns? Journal of Ecology, 84, 597-608. |
[2] | Aerts R, Chapin III FS (2000). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
[3] |
Azizi T, Finnegan PM, Lambers H, Jost R (2013). Organ-specific phosphorus-allocation patterns and transcript profiles linked to phosphorus efficiency in two contrasting wheat genotypes. Plant, Cell & Environment, 37, 943-960.
DOI URL PMID |
[4] | Barber SA, Mackay AD (1986). Root growth and phosphorus and potassium uptake by two corn genotypes in the field. Fertilizer Research, 10, 217-230. |
[5] | Cao LM, Pan XH (2002). A preliminary study on the tolerant mechanism of rice (Oryza sativa L.) cultivars to low phosphorus. Acta Agronomica Sinica, 28, 260-264. (in Chinese with English abstract) |
[ 曹黎明, 潘晓华 (2002). 水稻耐低磷机理的初步研究. 作物学报, 28, 260-264.] | |
[6] |
Cheng LY, Bucciarelli B, Shen JB, Allan D, Vance CP (2011). Update on white lupin cluster root acclimation to phosphorus deficiency. Plant Physiology, 156, 1025-1032.
DOI URL PMID |
[7] |
Chen YF, Wang Y, Wu WH (2008). Membrane transporters for nitrogen, phosphate and potassium uptake in plants. Journal of Integrative Plant Biology, 50, 835-848.
DOI URL PMID |
[8] |
Delhaize E, Ryan PR, Randall PJ (1993). Aluminium tolerance in wheat ( Triticum aestivum L.) II. Aluminium-stimulated excretion of malic acid from root apices. Plant Physiology, 103, 695-702.
URL PMID |
[9] |
Fang Y, Xun F, Bai WM, Zhang WH, Li LH (2012). Long-term nitrogen addition leads to loss of species richness due to litter accumulation and soil acidification in a temperate steppe. PLoS ONE, 7(10), e47369.
DOI URL PMID |
[10] | Geng Y, Wu Y, He JS (2011). Relationship between leaf phosphorus concentration and soil phosphorus availability across Inner Mongolia grassland. Chinese Journal of Plant Ecology, 35, 1-8. (in Chinese with English abstract) |
[ 耿燕, 吴漪, 贺金生 (2011). 内蒙古草地叶片磷含量与土壤有效磷的关系. 植物生态学报, 35, 1-8.] | |
[11] | Gong XY, Chen Q, Dittert K, Taube F, Lin S (2011). Nitrogen, phosphorus and potassium nutritional status of semiarid steppe grassland in Inner Mongolia. Plant and Soil, 340, 265-278. |
[12] | Guo YJ, Ni Y, Han JG, Han L (2009). Effects of steppe cultivation and Alfalfa plantation on the availability of soil phosphorus. Journal of Soil and Water Conservation, 23, 88-92. (in Chinese with English abstract) |
[ 郭彦军, 倪郁, 韩建国, 韩龙 (2009). 开垦草原与种植紫花苜蓿对土壤磷素有效性的影响. 水土保持学报, 23, 88-92.] | |
[13] |
Hamburger D, Rezzonico E, MacDonald-Comber Petetot J, Somerville C, Poirier Y (2002). Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. The Plant Cell, 14, 889-902.
URL PMID |
[14] |
Haran S, Logendra S, Seskar M, Bratanova M, Raskin I (2000) Characterization of Arabidopsis acid phosphatase promoter and regulation of acid phosphatase expression. Plant Physiology, 124, 615-626.
DOI URL PMID |
[15] | He XD, Cong PF, Gao YB, Lu JG, Wang HT, Xue PP, Zhang X (2006). Study on drought resistance of four herbs using pressure-volume curve. Acta Scientiarum Naturalium Universitatis Nankaiensis, 39(3), 16-22. (in Chinese with English abstract) |
[ 何兴东, 丛培芳, 高玉葆, 卢建国, 王海涛, 薛苹苹, 张旭 (2006). 利用压力-容积曲线研究四种草本植物的抗旱性. 南开大学学报(自然科学版), 39(3), 16-22.] | |
[16] |
Hill JO, Simpson RJ, Moore AD, Chapman DF (2006). Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition. Plant and Soil, 286, 7-19.
DOI URL |
[17] |
Hinsinger P (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil, 237, 173-195.
DOI URL |
[18] |
Hodge A (2004). The plastic plant, root responses to heterogeneous supplies of nutrients. New Phytologist, 162, 9-24.
DOI URL |
[19] | Huang JY, Yuan ZY, Li LH (2009). Changes in [N], [P] and specific leaf area of green leaves of Leymus chinensis along nitrogen, phosphorus and water gradients. Chinese Journal of Plant Ecology, 33, 442-448. (in Chinese with English abstract) |
[ 黄菊莹, 袁志友, 李凌浩 (2009). 羊草绿叶氮、磷浓度和比叶面积沿氮、磷和水分梯度的变化. 植物生态学报, 33, 442-448.] | |
[20] |
Jones DL, Darrah PR (1994) Role of root derived organic acids in the mobilization of nutrients in the rhizosphere. Plant and Soil, 166, 247-257.
DOI URL |
[21] |
Lan M, Comerford NB, Fox TR (1995). Organic anions effect on phosphorus release from spodic horizons. Soil Science Society of America Journal, 59, 1745-1749.
DOI URL |
[22] | Li JH, Li ZQ (2002). Clonal morphological plasticity and biomass allocation pattern of Artemisia frigida and Potentilla acaulls under different grazing intensities. Acta Phytoecologica Sinica, 26, 435-440. (in Chinese with English abstract) |
[ 李金花, 李镇清 (2002). 不同放牧强度下冷蒿、星毛委陵菜的形态可塑性及生物量分配格局. 植物生态学报, 26, 435-440.] | |
[23] |
Liu Y, Mi GH, Chen FJ, Zhang JH, Zhang FS (2004). Rhizosphere effect and root growth of two maize ( Zea mays L.) genotypes with contrasting P efficiency at low P availability. Plant Science, 167, 217-223.
DOI URL |
[24] |
Lynch JP, Brown KM (2001). Topsoil foraging―an architect- ural adaptation of plants to low phosphorus availability. Plant and Soil, 237, 225-237.
DOI URL |
[25] |
Miller SS, Liu JQ, Allan DL, Menzhuber CJ, Fedorova M, Vance CP (2001). Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin. Plant Physiology, 127, 594-606.
URL PMID |
[26] |
Neumann G, Martinoia E (2002). Cluster roots―an under- ground adaptation for survival in extreme environments. Trends in Plant Science, 7, 162-167.
DOI URL PMID |
[27] |
Neumann G, Römheld V (1999). Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant and Soil, 211, 121-130.
DOI URL |
[28] |
Nuruzzaman M, Lambers H, Bolland MDA, Veneklaas EJ (2006). Distribution of carboxylates and acid phosphatase and depletion of different phosphorus fraction in the rhizosphere of a cereal and three grain legumes. Plant and Soil, 281, 109-120.
DOI URL |
[29] |
Playsted CWS, Johnston ME, Ramage CM, Edward DG Cawthray GR, Lambers H (2006). Functional significance of dauciform roots: exudation of carboxylates and acid phosphatase under phosphorus deficiency in Caustis blakei(Cyperaceae). New Phytologist, 170, 491-500.
DOI URL PMID |
[30] |
Poirier Y, Bucher M (2002). Phosphate transport and homeostasis in Arabidopsis. Arabidopsis Book, 1, e0024.
URL PMID |
[31] | Ramaekers L, Remans R, Rao MI, Blair WM, Vanderleyden J (2010). Strategies for improving phosphorus acquisition efficiency of crop plants. Fields Crop Research, 117, 169-176. |
[32] |
Ren HY, Xu ZW, Huang JH, Clark C, Chen SP, Han XG (2011). Nitrogen and water addition reduce leaf longevity of steppe species. Annals of Botany, 107, 145-155.
DOI URL |
[33] |
Richardson AE, Hocking PJ, Simpson RJ, George TS (2009). Plant mechanisms to optimize access to soil phosphorus. Crop and Pasture Science, 60, 124-143.
DOI URL |
[34] |
Rose TJ, Liu L, Wissuwa M (2013). Improving phosphorus efficiency in cereal crops: Is breeding for reduced grain phosphorus concentration part of the solution? Frontiers in Plant Science, 4, 1-6.
DOI URL PMID |
[35] | Ryan PR, Delhaize E, Jones D (2001). Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Physiology, 52, 527-560. |
[36] |
Schachtman DP, Reid RJ, Ayling SM (1998). Update on phosphorus uptake. Phosphorus uptake by plants: from soil to cell. Plant Physiology, 116, 447-453.
DOI URL PMID |
[37] | Shen JB, Zhang FS, Huang Q, Mao DR (1998). Determination of organic acids in root exudates by high performance li- quid chromatography. I. Development and assessment of chromatographic conditions for organic acid determina- tion. Pedosphere, 8, 97-104 |
[38] |
Tadano T, Sakai H (1991). Secretion of acid phosphatase by the roots of several crop species under phosphorus deficient conditions. Soil Science and Plant Nutrition, 37, 129-140.
DOI URL |
[39] |
Teng W, Deng Y, Chen XP, Xu XF, Chen RY, Lü Y, Zhao YY, Zhao XQ, He X, Li B, Tong YP, Zhang FS, Li ZS (2013). Characterization of root response to phosphorus supply from morphology to gene analysis in field-grown wheat. Journal of Experimental Botany, 64, 1403-1411.
DOI URL PMID |
[40] | Tomasi N, Kretzschmar T, Espen L, Weisskopf L, Fuglsang AT, Palmgren MG, Neumann G, Varanini Z, Pinton R, Martinoia E, Cesco S (2009). Plasma membrane H+- ATPase-dependent citrate exudation from cluster roots of phosphate-deficient white lupin. Plant, Cell & Environ- ment, 32, 465-475. |
[41] |
Vance CP, Uhde-Stone C, Allan DL (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 157, 423-447.
DOI URL |
[42] | Wang JL, Gao YB, Bai Y, Zhao NX (2005). A comparision of adaptive responses to PEG osmotic stress between Stipa grandis and S. krylovii. Acta Scientiarum Naturalium Universitatis Nankaiensis (Natural Science Edition), 38(4), 127-131. (in Chinese with English abstract) |
[ 王金龙, 高玉葆, 白宇, 赵念席 (2005). 大针茅(Stipa grandis)和克氏针茅(S. krylovii)对PEG渗透胁迫适应性反应的比较研究. 南开大学学报(自然科学版), 38(4), 127-131.] | |
[43] | Wang J, Yang C (2002). A study of cold resistance physiological characteristic of Artemisia frigida. Acta Scientiarum Naturalium Universitatis Neimongol, 33, 673-676. (in Chinese with English abstract) |
[ 王静, 杨持 (2002). 冷蒿抗寒生理特性的研究. 内蒙古大学学报(自然科学版), 33, 673-676.] | |
[44] | Wang SQ, Han XZ, Li XH, Yan J, Qiao YF (2010). Root morphology of soybean ( Glycine max L.) under phosphorus deficiency stress. System Sciences and Comprehensive Studies in Agriculture, 26(2), 193-196. (in Chinese with English abstract) |
[ 王树起, 韩晓增, 李晓慧, 严君, 乔云发 (2010). 缺磷胁迫下的大豆根系形态特征研究. 农业系统科学与综合研究, 26(2), 193-196.] | |
[45] |
Wasaki J, Omura M, Ando M, Shinano T, Osaki M, Tadano T (1999). Secreting portion of acid phosphatase in roots of Lupin ( Lupinus albus L.) and a key signal for the secretion from the roots. Soil Science and Plant Nutrition, 45, 937-945.
DOI URL |
[46] |
Wasaki J, Yamamura T, Shinano T, Osaki M (2003). Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency. Plant and Soil, 248, 129-136.
DOI URL |
[47] |
Williamson LC, Ribrioux SPCP, Fitter AH, Leyser HMO (2001). Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiology, 126, 875-882.
DOI URL PMID |
[48] |
Yan F, Zhu YY, Müller C, Zörb C, Schubert S (2002). Adaptation of H+-Pumping and plasma membrane H+-ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiology, 129, 50-63.
DOI URL PMID |
[49] |
Yang HJ, Wu MY, Liu WX, Zhang Z, Zhang NL, Wan SQ (2011). Community structure and composition in response to climate change in a temperate steppe. Global Change Biology, 17, 452-465.
DOI URL |
[50] | Zhang H, Li X, Jiang FH, Lin GH, Du LH (2005). Effects of different water supply on the reproduction of Stipa krylovii and Artemisia frigida populations in degraded steppe. Acta Agrestia Sinica, 13(2), 106-110. (in Chinese with English abstract) |
[ 张昊, 李鑫, 姜凤和, 林国辉, 杜丽华 (2005). 水分对克氏针茅和冷蒿生殖生长的影响. 草地学报, 13(2), 106-110.] | |
[51] | Zhou HY (2002). Drought-resistant mechanism of two edificatos in Horqin Sandy Land of northeast China. Bulletin of Botanical Research, 22, 51-55. (in Chinese with English abstract) |
[ 周海燕 (2002). 中国东北科尔沁沙地两种建群植物的抗旱机理. 植物研究, 22, 51-55.] | |
[52] |
Zhou LL, Cao J, Zhang FS, Li L (2009). Rhizosphere acidification of faba bean, soybean and maize. Science of the Total Environment, 407, 4356-4362.
URL PMID |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn