Chin J Plant Ecol ›› 2012, Vol. 36 ›› Issue (11): 1172-1183.DOI: 10.3724/SP.J.1258.2012.01172
Previous Articles Next Articles
Received:
2012-04-25
Revised:
2012-09-18
Online:
2012-04-25
Published:
2012-11-09
Contact:
MOU Pu
DONG Jia, MOU Pu. Root nutrient foraging of morphological plasticity and physiological mechanism in Calliste- phus chinensis[J]. Chin J Plant Ecol, 2012, 36(11): 1172-1183.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2012.01172
氮肥种类 N fertilizer type | 处理 Treatment | 氮肥浓度 Nitrogen concentration (mmol·L-1) | 施用方式 Applications | 每周期处理时间 Treatment time per period (h) |
---|---|---|---|---|
NO3- | A | 0.2/18.0 | 脉冲 Pulse | 62/10 |
B | 1.0/18.0 | 脉冲 Pulse | 62/10 | |
C | 0.2 | 稳定 Stable | 72 | |
D | 1.0 | 稳定 Stable | 72 | |
E | 18.0 | 稳定 Stable | 72 | |
NH4+ | A | 0.2/20.0 | 脉冲 Pulse | 62/10 |
B | 4.0/20.0 | 脉冲 Pulse | 62/10 | |
C | 0.2 | 稳定 Stable | 72 | |
D | 4.0 | 稳定 Stable | 72 | |
E | 20.0 | 稳定 Stable | 72 |
Table 1 A list of N fertilization treatments (concentration and concentration pulse change) applied to Callistephus chinensis
氮肥种类 N fertilizer type | 处理 Treatment | 氮肥浓度 Nitrogen concentration (mmol·L-1) | 施用方式 Applications | 每周期处理时间 Treatment time per period (h) |
---|---|---|---|---|
NO3- | A | 0.2/18.0 | 脉冲 Pulse | 62/10 |
B | 1.0/18.0 | 脉冲 Pulse | 62/10 | |
C | 0.2 | 稳定 Stable | 72 | |
D | 1.0 | 稳定 Stable | 72 | |
E | 18.0 | 稳定 Stable | 72 | |
NH4+ | A | 0.2/20.0 | 脉冲 Pulse | 62/10 |
B | 4.0/20.0 | 脉冲 Pulse | 62/10 | |
C | 0.2 | 稳定 Stable | 72 | |
D | 4.0 | 稳定 Stable | 72 | |
E | 20.0 | 稳定 Stable | 72 |
Fig. 1 Effects of N fertilizer type, application method and concentration on root biomass (A), contents of auxin (IAA) (B), abscisic acid (ABA) (C), cytokinins (CK(ZR + Z)) (D) in roots, length of the 1st order roots (E), internode length of the 1st order laterals (F), and the density of the 1st order lateral roots (G) (mean ± SE).
来源 Source | 自由度df | log(根生物量 Root biomass) | log (IAA) | log (ABA) | Log (CK (ZR + Z)) | 1级根长 Length of 1st order root | 1级侧根密度 Density of 1st order lateral roots | 1级侧根间距 Internode length of the 1st order laterals | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
均方 MS | F | 显著性 sig. | 均方 MS | F | 显著性 sig. | 均方 MS | F | 显著性 sig. | 均方 MS | F | 显著性 sig. | 均方 MS | F | 显著性 sig. | 均方 MS | F | 显著性 sig. | 均方 MS | F | 显著性 sig. | ||
模型修正 Model corr. | 9 | 0.270 | 44.64 | *** | 0.850 | 106.40 | *** | 0.140 | 11.39 | *** | 0.100 | 18.11 | *** | 5.030 | 23.15 | *** | 0.016 | 3.31 | ** | 3.360 | 25.85 | *** |
施氮种类 N-type (A) | 1 | 0.720 | 119.00 | *** | 6.770 | 844.19 | *** | 0.250 | 19.86 | *** | 0.810 | 142.90 | *** | 19.170 | 88.22 | *** | 0.013 | 2.67 | 18.280 | 140.63 | *** | |
施氮方式 Application (B) | 1 | 0.300 | 50.05 | *** | 0.180 | 22.66 | *** | 0.140 | 11.22 | *** | 0.003 | 0.00 | 3.140 | 14.44 | *** | 0.004 | 0.88 | 2.430 | 18.67 | *** | ||
施氮浓度 Concentration (C) | 2 | 0.740 | 122.62 | *** | 0.300 | 37.83 | *** | 0.190 | 14.55 | *** | 0.009 | 1.64 | 5.400 | 24.85 | *** | 0.012 | 2.64 | 0.090 | 0.70 | |||
AB | 1 | 0.000 | 0.06 | 0.110 | 13.55 | ** | 0.100 | 7.76 | 0.008 | 1.44 | 1.220 | 5.62 | * | 0.040 | 8.60 | ** | 7.040 | 54.15 | *** | |||
AC | 2 | 0.022 | 3.64 | * | 0.110 | 13.87 | *** | 0.260 | 20.73 | * | 0.001 | 0.26 | 2.860 | 13.15 | *** | 0.005 | 1.03 | 0.900 | 6.89 | ** | ||
BC | 1 | 0.008 | 1.34 | 0.007 | 0.82 | 0.069 | 5.45 | 0.007 | 1.25 | 0.300 | 1.36 | 0.016 | 3.35 | 1.520 | 11.66 | ** | ||||||
ABC | 1 | 0.023 | 3.83 | 0.038 | 4.71 | * | 0.120 | 9.30 | * | 0.000 | 0.01 | 0.200 | 0.94 | <0.001 | 0.00 | 0.640 | 4.93 | * | ||||
误差 Error | 36 | 0.001 | 0.008 | 0.013 | 0.006 | 0.220 | 0.005 | 0.130 |
Table 2 MANOAV results illustrating the influences of N fertilizer types (NO3-, NH4+), application methods (stable & pulse) and concentration on root biomass, content of auxin (IAA), abscisic acid (ABA) and cytokinins (CK (ZR + Z)) in roots, and root structure (length of the 1st order roots, internode length of the 1st order laterals and density of the 1st order laterals) for Callistephus chinensis
来源 Source | 自由度df | log(根生物量 Root biomass) | log (IAA) | log (ABA) | Log (CK (ZR + Z)) | 1级根长 Length of 1st order root | 1级侧根密度 Density of 1st order lateral roots | 1级侧根间距 Internode length of the 1st order laterals | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
均方 MS | F | 显著性 sig. | 均方 MS | F | 显著性 sig. | 均方 MS | F | 显著性 sig. | 均方 MS | F | 显著性 sig. | 均方 MS | F | 显著性 sig. | 均方 MS | F | 显著性 sig. | 均方 MS | F | 显著性 sig. | ||
模型修正 Model corr. | 9 | 0.270 | 44.64 | *** | 0.850 | 106.40 | *** | 0.140 | 11.39 | *** | 0.100 | 18.11 | *** | 5.030 | 23.15 | *** | 0.016 | 3.31 | ** | 3.360 | 25.85 | *** |
施氮种类 N-type (A) | 1 | 0.720 | 119.00 | *** | 6.770 | 844.19 | *** | 0.250 | 19.86 | *** | 0.810 | 142.90 | *** | 19.170 | 88.22 | *** | 0.013 | 2.67 | 18.280 | 140.63 | *** | |
施氮方式 Application (B) | 1 | 0.300 | 50.05 | *** | 0.180 | 22.66 | *** | 0.140 | 11.22 | *** | 0.003 | 0.00 | 3.140 | 14.44 | *** | 0.004 | 0.88 | 2.430 | 18.67 | *** | ||
施氮浓度 Concentration (C) | 2 | 0.740 | 122.62 | *** | 0.300 | 37.83 | *** | 0.190 | 14.55 | *** | 0.009 | 1.64 | 5.400 | 24.85 | *** | 0.012 | 2.64 | 0.090 | 0.70 | |||
AB | 1 | 0.000 | 0.06 | 0.110 | 13.55 | ** | 0.100 | 7.76 | 0.008 | 1.44 | 1.220 | 5.62 | * | 0.040 | 8.60 | ** | 7.040 | 54.15 | *** | |||
AC | 2 | 0.022 | 3.64 | * | 0.110 | 13.87 | *** | 0.260 | 20.73 | * | 0.001 | 0.26 | 2.860 | 13.15 | *** | 0.005 | 1.03 | 0.900 | 6.89 | ** | ||
BC | 1 | 0.008 | 1.34 | 0.007 | 0.82 | 0.069 | 5.45 | 0.007 | 1.25 | 0.300 | 1.36 | 0.016 | 3.35 | 1.520 | 11.66 | ** | ||||||
ABC | 1 | 0.023 | 3.83 | 0.038 | 4.71 | * | 0.120 | 9.30 | * | 0.000 | 0.01 | 0.200 | 0.94 | <0.001 | 0.00 | 0.640 | 4.93 | * | ||||
误差 Error | 36 | 0.001 | 0.008 | 0.013 | 0.006 | 0.220 | 0.005 | 0.130 |
变量间相互关系 Relationship between variables | 响应变量 Dependent variable (Y) | 因变量(X) Independent variable | 回归关系 Regression | R2 | p |
---|---|---|---|---|---|
根生长和根构型关系 Relationships between root growth and root architecture parameters | 根干重 Root dry mass (g) | 1级根长 Length of 1st order roots (mm) | Y = 0.02162 + 0.03696X - 0.00348X2 | 0.693 | p < 0.0001 |
1级侧根间距 Internode length of the 1st order laterals (mm) | 无显著回归关系 Insignificant regression relation | ||||
1级侧根密度 Density of 1st order lateral roots (no.·mm-1) | Y = 0.0801 - 0.01265X | 0.156 | p = 0.017 | ||
根生长和激素关系 Relationships between root growth and hormones | 根干重 Root dry mass (g) | IAA | Y = 125.434 + 1.5829X | 0.633 | p < 0.0001 |
ABA | 关系复杂 Complex relationship | ||||
CK (ZR + Z) | Y = 110.3072e(-5.9906X) | 0.257 | p < 0.0001 | ||
根构型和激素关系 Relationships between root architecture parameters and hormones | IAA (ng·g-1) | 1级根长 Length of 1st order roots (mm) | Y = 0.319895e(0.003427X) | 0.845 | p < 0.0001 |
1级侧根间距 Internode length of the 1st order laterals (mm) | 无显著回归关系 Insignificant regression relation | ||||
1级侧根密度 Density of 1st order lateral roots (no.·mm-1) | Y = 3.2525 - 0.00975X + 1.04299(e-005X2) | 0.515 | p < 0.0001 | ||
ABA (ng·g-1) | 1级根长 Length of 1st order roots (mm) | 无显著回归关系 Insignificant regression relation | |||
1级侧根间距 Internode length of the 1st order laterals (mm) | 无显著回归关系 Insignificant regression relation | ||||
1级侧根密度 Density of 1st order lateral roots (no.·mm-1) | Y = 2.3737e(-0.0045X) | 0.171 | p = 0.012 | ||
CK (ZR + Z) ( ng·g-1) | 1级根长 Length of 1st order roots (mm) | Y = 5.2567e(-0.02124X) | 0.527 | p < 0.0001 | |
1级侧根间距 Internode length of the 1st order laterals (mm) | 无显著回归关系 Insignificant regression relation | ||||
1级侧根密度 Density of 1st order lateral roots (no.·mm-1) | Y = 2.0851 + 0.07907X - 0.000345X2 | 0.402 | p < 0.0001 | ||
激素间相互关系 Relationships among hormones | IAA | ABA | Y = 48.3898 + 0.3154X - 0.0004X2 | 0.117 | p = 0.069 |
CK (ZR + Z) | Y = 116.1967 - 0.103X | 0.647 | p < 0.0001 | ||
ABA | CK (ZR + Z) | 无显著回归关系 Insignificant regression relation |
Table 3 Regression relationships among root mass, root architecture parameters, root hormones for Callistephus chinensis
变量间相互关系 Relationship between variables | 响应变量 Dependent variable (Y) | 因变量(X) Independent variable | 回归关系 Regression | R2 | p |
---|---|---|---|---|---|
根生长和根构型关系 Relationships between root growth and root architecture parameters | 根干重 Root dry mass (g) | 1级根长 Length of 1st order roots (mm) | Y = 0.02162 + 0.03696X - 0.00348X2 | 0.693 | p < 0.0001 |
1级侧根间距 Internode length of the 1st order laterals (mm) | 无显著回归关系 Insignificant regression relation | ||||
1级侧根密度 Density of 1st order lateral roots (no.·mm-1) | Y = 0.0801 - 0.01265X | 0.156 | p = 0.017 | ||
根生长和激素关系 Relationships between root growth and hormones | 根干重 Root dry mass (g) | IAA | Y = 125.434 + 1.5829X | 0.633 | p < 0.0001 |
ABA | 关系复杂 Complex relationship | ||||
CK (ZR + Z) | Y = 110.3072e(-5.9906X) | 0.257 | p < 0.0001 | ||
根构型和激素关系 Relationships between root architecture parameters and hormones | IAA (ng·g-1) | 1级根长 Length of 1st order roots (mm) | Y = 0.319895e(0.003427X) | 0.845 | p < 0.0001 |
1级侧根间距 Internode length of the 1st order laterals (mm) | 无显著回归关系 Insignificant regression relation | ||||
1级侧根密度 Density of 1st order lateral roots (no.·mm-1) | Y = 3.2525 - 0.00975X + 1.04299(e-005X2) | 0.515 | p < 0.0001 | ||
ABA (ng·g-1) | 1级根长 Length of 1st order roots (mm) | 无显著回归关系 Insignificant regression relation | |||
1级侧根间距 Internode length of the 1st order laterals (mm) | 无显著回归关系 Insignificant regression relation | ||||
1级侧根密度 Density of 1st order lateral roots (no.·mm-1) | Y = 2.3737e(-0.0045X) | 0.171 | p = 0.012 | ||
CK (ZR + Z) ( ng·g-1) | 1级根长 Length of 1st order roots (mm) | Y = 5.2567e(-0.02124X) | 0.527 | p < 0.0001 | |
1级侧根间距 Internode length of the 1st order laterals (mm) | 无显著回归关系 Insignificant regression relation | ||||
1级侧根密度 Density of 1st order lateral roots (no.·mm-1) | Y = 2.0851 + 0.07907X - 0.000345X2 | 0.402 | p < 0.0001 | ||
激素间相互关系 Relationships among hormones | IAA | ABA | Y = 48.3898 + 0.3154X - 0.0004X2 | 0.117 | p = 0.069 |
CK (ZR + Z) | Y = 116.1967 - 0.103X | 0.647 | p < 0.0001 | ||
ABA | CK (ZR + Z) | 无显著回归关系 Insignificant regression relation |
营养元素 Nutrient element | 化学式 Chemical formula | 浓度 Concentration (mg·L-1) |
---|---|---|
铁盐 Ferric salt | FeSO4·7H2O | 27.850 |
EDTA·2Na | 37.250 | |
微量元素 Micro-nutrient element | H3BO4 | 3.090 |
MnSO4·H2O | 0.340 | |
ZnSO4·7H2O | 0.290 | |
CuSO4·5H2O | 0.075 | |
KI | 0.830 | |
Na2Mo4·2H2O | 0.024 | |
CoCl2·6H2O | 0.048 | |
大量元素 Macro-nutrient element | KH2PO4 | 169.880 |
MgSO4·7H2O | 369.000 | |
CaCl2·2H2O | 294.000 |
Appendix I Recipe of the nutrient solution
营养元素 Nutrient element | 化学式 Chemical formula | 浓度 Concentration (mg·L-1) |
---|---|---|
铁盐 Ferric salt | FeSO4·7H2O | 27.850 |
EDTA·2Na | 37.250 | |
微量元素 Micro-nutrient element | H3BO4 | 3.090 |
MnSO4·H2O | 0.340 | |
ZnSO4·7H2O | 0.290 | |
CuSO4·5H2O | 0.075 | |
KI | 0.830 | |
Na2Mo4·2H2O | 0.024 | |
CoCl2·6H2O | 0.048 | |
大量元素 Macro-nutrient element | KH2PO4 | 169.880 |
MgSO4·7H2O | 369.000 | |
CaCl2·2H2O | 294.000 |
1 |
Benková E, Hejátko J ( 2009). Hormone interactions at the root apical meristem. Plant Molecular Biology, 69, 383-396.
DOI URL |
2 | Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B ( 2005). The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature, 433, 39-44. |
3 | Bradshaw AD ( 1965). Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics, 13, 115-155. |
4 | Brewitz E, Larsson CM, Larsson M ( 1995). Influence of nitrate supply on concentrations and translocation of abscisic acid in barley ( Hordeum vulgare). Physiologia Plantarum, 95, 499-506. |
5 | Britto TD, Kronzucker HJ ( 2002). NH4 + toxicity in higher plants: a critical review . Journal of Plant Physiology, 159, 567-584. |
6 | Cao Y, Class ADM, Crawford NM ( 1993). Ammonium inhibition of Arabidopsis root growth can be reversed by potassium and by auxin resistance mutations aux1, axr1, and axr2. Plant Physiology, 102, 983-989. |
7 | Collier MD, Fotelli MN, Nahm M, Kopriva S, Rennenberg H, Hanke DE, Geßler A ( 2003). Regulation of nitrogen uptake by Fagus sylvatica on a whole plant level- interactions between cytokinins and soluble N compounds. Plant, Cell & Environment, 26, 1549-1560. |
8 | de Smet I, Zhang HM, Inzé D, Beeckman T ( 2006). A novel role for abscisic acid emerges from underground. Trends in Plant Science, 11, 434-439. |
9 | Drew MC, Saker LR ( 1978). Nutrient supply and the growth of the seminal root system in barley. Journal of Experimental Botany, 29, 435-451. |
10 | Drew MC, Saker LR, Ashley TW ( 1973). Nutrient supply and the growth of the seminal root system in barley. Journal of Experimental Botany, 24, 1189-1202. |
11 | Editorial Committee for Flora of China of Chinese Academy of Sciences ( 中国科学院中国植物志编辑委员会) ( 1985). The Flora of China (中国植物志), Tomus 74. Science Press, Beijing. 109-110. (in Chinese) |
12 | Eghball B, Maranvill JW ( 1993). Root development and nitrogen influx of corn genotypes grown under combined drought and nitrogen stresses. Agronomy Journal, 85, 147-152. |
13 | Einsmann JC, Jones RH, Mou P, Mitchell RJ ( 1999). Nutrient foraging traits in 10 co-occurring plant species of contrasting life forms. Journal of Ecology, 87, 609-619. |
14 | Eissenstat DM ( 1992). Costs and benefits of constructing roots of small diameter. Journal of Plant Nutrition, 15, 763-782. |
15 |
Ettema CH, Wardle DA ( 2002). Spatial soil ecology. Trends in Ecology and Evolution, 17, 177-183.
DOI URL |
16 | Farley RA, Fitter AH ( 1999). The responses of seven co-occurring woodland herbaceous perennials to localized nutrient-rich patches. Journal of Ecology, 87, 849-859. |
17 | Fitter AH (1994). Architecture and biomass allocation as components of the plastic response of root systems to soil heterogeneity. In: Caldwell MM, Pearcy RW eds. Exploitation of Environmental Heterogeneity by Plants. Academic Press, San Diego, USA. 305-323. |
18 | Fitter AH, Stickland TR, Harvey ML, Wilson GW ( 1991). Architectural analysis of plant root systems 1. Architectural correlates of exploitation efficiency. New Phytologist, 118, 375-382. |
19 |
Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G ( 2003). Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature, 426, 147-153.
PMID |
20 |
Fukaki H, Tasaka M ( 2009). Hormone interactions during lateral root formation. Plant Molecular Biology, 69, 437-449.
DOI URL |
21 | He ZP ( 何钟佩 ) ( 1993). Guidance to Experiment on Chemical Control in Crop Plants (农作物化学控制试验指导). Beijing Agricultural University Publishers, Beijing. 60-68. (in Chinese) |
22 | Hodge A ( 2004). The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist, 162, 9-24. |
23 | Hodge A ( 2006). Plastic plants and patchy soils. Journal of Experimental Botany, 57, 401-411. |
24 | Jackson RB, Caldwell MM ( 1993). The scale of nutrient heterogeneity around individual plants and its quantification with geostatistics. Ecology, 74, 612-614. |
25 | Jackson RB, Manwaring JH, Caldwell MM ( 1990). Rapid physiological adjustment of roots to localized soil enrichment. Nature, 344, 58-60. |
26 | Kume T, Sekiya N, Yano K ( 2006). Heterogeneity in spatial P-distribution and foraging capability by Zea mays: effect of patch size and barriers to restrict root proliferation within a patch. Annals of Botany, 98, 1271-1277. |
27 |
Kutz A, Müller A, Henning P, Kaiser WM, Piotrowski M, Weiler EW ( 2002). A role for nitrilase 3 in the regulation of root morphology in sulphur-starving Arabidopsis thaliana. The Plant Journal, 30, 95-106.
DOI URL |
28 | Laskowski MJ, Williams ME, Nusbaum HC, Sussex IM ( 1995). Formation of lateral root meristems is a two-stage process. Development, 121, 3303-3310. |
29 | Leopold LB ( 1971). Trees and streams: the efficiency of branching patterns. Journal of Theoretical Biology, 31, 339-354. |
30 | Li X, Mo XR, Shou HX, Wu P ( 2006). Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis. Plant Cell Physiology, 47, 1112-1123. |
31 | López-Bucio J, Cruz-Ramírez A, Herrera-Estrella H ( 2003). The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology, 6, 280-287. |
32 | Lu YL, Xu YC, Shen QR, Dong CX ( 2009). Effects of different nitrogen forms on the growth and cytokinin content in xylem sap of tomato ( Lycopersicon esculentum Mill.) seedlings. Plant and Soil, 315, 67-77. |
33 | Lynch J ( 1995). Root architecture and plant productivity. Plant Physiology, 109, 7-13. |
34 | Marschner H (1995). Mineral Nutrition of Higher Plants 2nd edn. Academic Press, New York. |
35 | Mi GH, Chen FJ, Zhang FS ( 2008). Multiple signaling pathways control nitrogen-mediated root elongation in maize. Plant Signaling and Behavior, 3, 1030-1032. |
36 | Mou P, Jones RH, Tan ZQ, Bao Z, Chen HM ( 2012). Morphological and physiological plasticity of plant roots when nutrients are both spatially and temporally heterogeneous. Plant and Soils, DOI:10.1007/S11104-012-1336-y. |
37 | Mou P, Michell RJ, Jones RH ( 1997). Root distribution of two tree species under a heterogeneous nutrient environment. Journal of Applied Ecology, 34, 645-656. |
38 | Nordström A, Tarkowski P, Tarkowska D, Norbaek R, Åstot C, Dolezal K, Sandberg G ( 2004). Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin- regulated development. Proceedings of the National Academy of Sciences of the United States of America, 101, 8039-8044. |
39 | Pregitzer KS, Hendrick RL, Fogel R ( 1993). The demography of fine roots in response to patches of water and nitrogen. New Phytologist, 125, 575-580. |
40 | Rahayu YS, Pia WL, Neumann G, Römheld V, von Wirén N, Bangerth F ( 2005). Root-derived cytokinins as long-distance signals for NO3 --induced stimulation of leaf growth . Journal of Experimental Botany, 56, 1143-1152. |
41 | Razem FA, El-Kereamy A, Abrams SR, Hill RD ( 2006). The RNA-binding protein FCA is an abscisic acid receptor. Nature, 439, 290-294. |
42 | Reed RC, Brady SR, Muday GK ( 1998). Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiology, 118, 1369-1378. |
43 | Robinson D ( 1994). The responses of plants to non-uniform supplies of nutrients. New Phytologist, 127, 635-674. |
44 | Sánchez-Calderón L, López-Bucio J, Chacón-López L, Cruz-Ramírez A, Nieto-Jacobo F, Dubrovsky JG, Herrera-Estrella L ( 2005). Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiology, 46, 174-184. |
45 | Scheiner SM (2001). MANOVA: multiple response variables and multispecies interactions. In: Schneiner SM, Gurevitch J eds. Design and Analysis of Ecological Experiments. Oxford University Press, New York. 99-115. |
46 | Signora L, de Smet I, Foyer CH, Zhang H ( 2001). ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis. The Plant Journal, 28, 655-662. |
47 | Tian QY, Chen FJ, Liu JX, Zhang FS, Mi GH ( 2008). Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots. Journal of Plant Physiology, 165, 942-951. |
48 | Wang LX, Mou PP, Jones RH ( 2006). Nutrient foraging via physiological and morphological plasticity in three plant species. Canadian Journal of Forest Research, 36, 164-173. |
49 | Wang XT, Below FE (1996). Cytokinins in enhanced growth and tillering of wheat induced by mixed nitrogen source. Crop Science, 36, 121-126. |
50 | Weiler EW, Jourdan PS, Conrad W ( 1981). Levels of indole-3-acetic acid in intact and decapitated coleoptiles as determined by a specific and highly sensitive solid-phase enzyme immunoassay. Planta, 153, 561-571. |
51 | Werner T, Motyka V, Laucou V, Smets R, van Onckelen H, Schmϋlling T ( 2003). Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. The Plant Cell, 15, 2532-2550. |
52 | Werner T, Motyka V, Strnad M, Schmϋlling T ( 2001). Regulation of plant growth by cytokinin. Proceedings of the National Academy of Sciences of the United States of America, 98, 10487-10492. |
53 | Yan XL ( 严小龙 ) (2007). Principles and Applications of Root Biology (根系生物学原理与应用). Science Press, Beijing. 30-46. (in Chinese) |
54 | Yang JC, Zhang JH, Wang ZQ, Zhu QS, Wang W ( 2001). Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiology, 127, 315-323. |
55 | Zhang HM, Jennings A, Barlow PW, Forde BG ( 1999). Dual pathways for regulation of root branching by nitrate. Proceedings of the National Academy of Sciences of the United States of America, 96, 6529-6534. |
[1] | LIU Na-Na,TIAN Qiu-Ying,ZHANG Wen-Hao. Comparison of adaptive strategies to phosphorus-deficient soil between dominant species Artemisia frigida and Stipa krylovii in typical steppe of Nei Mongol [J]. Chin J Plant Ecol, 2014, 38(9): 905-915. |
[2] | HU Feng-Qin, MOU Pu. Proliferation and growth of plant fine roots and the influences from nutrient variation― implications from the split-root experiments of Ailanthus altissima, Callistephus chinensis and Solidago canadensis [J]. Chin J Plant Ecol, 2013, 37(2): 93-103. |
[3] | GAO Yan, TIAN Qiu-Ying, SHI Feng-Ling, LI Ling-Hao, ZHANG Wen-Hao. Comparative studies on adaptive strategies of Medicago falcata and M. truncatula to phosphorus deficiency in soil [J]. Chin J Plant Ecol, 2011, 35(6): 632-640. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn