Chin J Plant Ecol ›› 2013, Vol. 37 ›› Issue (2): 93-103.DOI: 10.3724/SP.J.1258.2013.00010
• Research Articles • Next Articles
Received:
2012-10-30
Accepted:
2012-12-22
Online:
2013-10-30
Published:
2013-01-31
Contact:
MOU Pu
HU Feng-Qin, MOU Pu. Proliferation and growth of plant fine roots and the influences from nutrient variation― implications from the split-root experiments of Ailanthus altissima, Callistephus chinensis and Solidago canadensis[J]. Chin J Plant Ecol, 2013, 37(2): 93-103.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2013.00010
来源 Source | df | MS | F |
---|---|---|---|
取样时间 Sampling time (A) | 2 | 0.230 | 20.314*** |
养分水平 Nutrient level (B) | 2 | 8.338 | 736.092*** |
取样时间 × 养分水平 (A × B) | 4 | 0.017 | 1.482ns |
误差 Error | 27 | 0.011 |
Table 1 Results of the two-way ANOVA for available N content (log transformed) in the patches according to the sampling time and the nutrient levels
来源 Source | df | MS | F |
---|---|---|---|
取样时间 Sampling time (A) | 2 | 0.230 | 20.314*** |
养分水平 Nutrient level (B) | 2 | 8.338 | 736.092*** |
取样时间 × 养分水平 (A × B) | 4 | 0.017 | 1.482ns |
误差 Error | 27 | 0.011 |
来源 Source | 臭椿 Ailanthus altissima | 翠菊 Callistephus chinensis | 加拿大一枝黄花 Solidago canadensis | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
df | MS | F | df | MS | F | df | MS | F | |||
侧根数 Number of laterals | |||||||||||
组间效应 Between-subject effect | |||||||||||
处理 Treatment | 2 | 1.61 | 11.05*** | 2 | 355.46 | 9.82*** | 2 | 1.44 | 11.77*** | ||
误差 Error | 35 | 0.15 | 37 | 36.19 | 45 | 0.12 | |||||
组内效应 Within-subject effect | |||||||||||
时间 Time | 1.25 | 3.37 | 52.15*** | 1 | 949.13 | 46.13*** | 1 | 4.25 | 216.20*** | ||
处理 × 时间 Treatment × Time | 2.49 | 0.57 | 8.78*** | 2 | 134.11 | 6.52** | 2 | 0.19 | 9.42*** | ||
误差 Error | 43.61 | 0.07 | 37 | 20.58 | 45 | 0.02 | |||||
一级侧根长 Length of 1st order root | |||||||||||
组间效应 Between-subject effect | |||||||||||
处理 Treatment | 2 | 2.24 | 19.16*** | 2 | 0.75 | 2.61ns | 2 | 0.16 | 0.61 | ||
误差 Error | 35 | 0.12 | 37 | 0.29 | 45 | 0.27 | |||||
组内效应 Within-subject effect | |||||||||||
时间 Time | 1.59 | 1.25 | 14.70*** | 1 | 2.43 | 33.41*** | 1 | 0.48 | 3.21ns | ||
处理 × 时间 Treatment × Time | 3.19 | 0.29 | 3.44* | 2 | 0.18 | 2.45ns | 2 | 0.14 | 0.94ns | ||
误差 Error | 55.79 | 0.09 | 37 | 0.07 | 45 | 0.15 | |||||
总根长 Total root length | |||||||||||
组间效应 Between-subject effect | |||||||||||
处理 Treatment | 2 | 1.02 | 13.67*** | 2 | 514.32 | 4.88* | 2 | 0.96 | 8.58*** | ||
误差 Error | 35 | 0.08 | 37 | 105.31 | 45 | 0.11 | |||||
组内效应 Within-subject effect | |||||||||||
时间 Time | 1.30 | 1.58 | 67.55*** | 1 | 3 116.00 | 37.96*** | 1 | 4.37 | 217.30*** | ||
处理 × 时间 Treatment × Time | 2.60 | 0.31 | 13.22*** | 2 | 496.10 | 6.04** | 2 | 0.23 | 11.23*** | ||
误差 Error | 45.43 | 0.02 | 37 | 82.08 | 45 | 0.02 |
Table 2 Results of repeated measure ANOVA for number of laterals, length of 1st order roots and total root length of Ailanthus altissima, Callistephus chinensis and Solidago canadensis
来源 Source | 臭椿 Ailanthus altissima | 翠菊 Callistephus chinensis | 加拿大一枝黄花 Solidago canadensis | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
df | MS | F | df | MS | F | df | MS | F | |||
侧根数 Number of laterals | |||||||||||
组间效应 Between-subject effect | |||||||||||
处理 Treatment | 2 | 1.61 | 11.05*** | 2 | 355.46 | 9.82*** | 2 | 1.44 | 11.77*** | ||
误差 Error | 35 | 0.15 | 37 | 36.19 | 45 | 0.12 | |||||
组内效应 Within-subject effect | |||||||||||
时间 Time | 1.25 | 3.37 | 52.15*** | 1 | 949.13 | 46.13*** | 1 | 4.25 | 216.20*** | ||
处理 × 时间 Treatment × Time | 2.49 | 0.57 | 8.78*** | 2 | 134.11 | 6.52** | 2 | 0.19 | 9.42*** | ||
误差 Error | 43.61 | 0.07 | 37 | 20.58 | 45 | 0.02 | |||||
一级侧根长 Length of 1st order root | |||||||||||
组间效应 Between-subject effect | |||||||||||
处理 Treatment | 2 | 2.24 | 19.16*** | 2 | 0.75 | 2.61ns | 2 | 0.16 | 0.61 | ||
误差 Error | 35 | 0.12 | 37 | 0.29 | 45 | 0.27 | |||||
组内效应 Within-subject effect | |||||||||||
时间 Time | 1.59 | 1.25 | 14.70*** | 1 | 2.43 | 33.41*** | 1 | 0.48 | 3.21ns | ||
处理 × 时间 Treatment × Time | 3.19 | 0.29 | 3.44* | 2 | 0.18 | 2.45ns | 2 | 0.14 | 0.94ns | ||
误差 Error | 55.79 | 0.09 | 37 | 0.07 | 45 | 0.15 | |||||
总根长 Total root length | |||||||||||
组间效应 Between-subject effect | |||||||||||
处理 Treatment | 2 | 1.02 | 13.67*** | 2 | 514.32 | 4.88* | 2 | 0.96 | 8.58*** | ||
误差 Error | 35 | 0.08 | 37 | 105.31 | 45 | 0.11 | |||||
组内效应 Within-subject effect | |||||||||||
时间 Time | 1.30 | 1.58 | 67.55*** | 1 | 3 116.00 | 37.96*** | 1 | 4.37 | 217.30*** | ||
处理 × 时间 Treatment × Time | 2.60 | 0.31 | 13.22*** | 2 | 496.10 | 6.04** | 2 | 0.23 | 11.23*** | ||
误差 Error | 45.43 | 0.02 | 37 | 82.08 | 45 | 0.02 |
Fig. 2 Comparisons of number of laterals, length of 1st order roots and total root length of Ailanthus altissima, Callistephus chinensis, Solidago canadensis on day 4, 8 and 12 under different nutrient treatments with Duncan’s multiple comparison. Different small letters indicate significant differences among nutrient levels on each sampling date (p < 0.05). Different capital letters indicate significant difference among sampling dates at the same nutrient level (p < 0.05).
[1] |
Alpert P, Simms EL (2002). The relative advantages of plasticity and fixity in different environments: When is it good for a plant to adjust? Evolutionary Ecology, 16, 285-297.
DOI URL |
[2] | Bai WM, Wang ZW, Chen QS, Zhang WH, Li LH (2008). Spatial and temporal effects of nitrogen addition on root life span of Leymus chinensis in a typical steppe of Inner Mongolia. Functional Ecology, 22, 583-591. |
[3] | Bao Z (2010). Root Nutrient Foraging Morphological and Physiological Plasticity in Three Woody Species. Master degree dissertation, Beijing Normal University, Beijing. 34. (in Chinese with English abstract) |
[ 鲍喆 (2010). 北美枫香、中国枫香和臭椿的根系营养捕获形态塑性和生理塑性. 硕士学位论文, 北京师范大学, 北京. 34.] | |
[4] | Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J (2003). Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 115, 591-602. |
[5] | Bliss KM, Jones RH, Mitchell RJ, Mou PP (2002). Are competitive interactions influenced by spatial nutrient heterogeneity and root foraging behavior? New Phytologist, 154, 409-417. |
[6] | Block RMA, van Rees KCJ, Knight JD (2006). A review of fine root dynamics in Populus plantations. Agroforestry Systems, 67, 73-84. |
[7] | Blouin M, Puga-Freitas R (2011). Combined effects of contrast between poor and rich patches and overall nitrate concentration on Arabidopsis thaliana root system structure. Functional Plant Biology, 38, 364-371. |
[8] | Burton AJ, Pregitzer KS, Hendrick RL (2000). Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia, 125, 389-399. |
[9] | Caldwell MM, Richards JH (1986). Competing root systems: morphology and models of absorption. In: Givnish TJ ed. On the Economy of Plant Form and Function. Cambridge University Press, New York. 251-273. |
[10] | Casimiro I, Beechman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003). Dissecting Arabidopsis lateral root development. Trends in Plant Science, 8, 165-171. |
[11] | Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inzé D, Sandbery G, Casero P, Bennett MJ (2001). Auxin transport promotes Arabidopsis lateral root initiation. The Plant Cell, 13, 843-852. |
[12] | de Kroon H, Huber H, Stuefer JF, van Groenendael JM (2005). A modular concept of phenotypic plasticity in plants. New Phytologist, 166, 73-82. |
[13] | de Kroon H, Visser EJW, Huber H, Mommer L, Hutchings MJ (2009). A modular concept of plant foraging behaviour: the interplay between local responses and systemic control. Plant, Cell & Environment, 32, 704-712. |
[14] |
Deak KI, Malamy J (2005). Osmotic regulation of root system architecture. The Plant Journal, 43, 17-28.
DOI URL |
[15] |
Dong J, Mou P (2012). Root nutrient foraging of morphological plasticity and physiological mechanism in Callistephus chinensis. Chinese Journal of Plant Ecology, 36, 1172-1183. (in Chinese with English abstract)
DOI URL |
[ 董佳, 牟溥 (2012). 翠菊根系养分捕获形态塑性及其生理机制. 植物生态学报, 36, 1172-1183.] | |
[16] |
Drew MC (1975). Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytologist, 75, 479-490.
DOI URL |
[17] |
Einsmann JC, Jones RH, Mou PP, Mitchell RJ (1999). Nutrient foraging traits in 10 co-occurring plant species of contrasting life forms. Journal of Ecology, 87, 609-619.
DOI URL |
[18] |
Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000). Building roots in a changing environment: implications for root longevity. New Phytologist, 147, 33-42.
DOI URL |
[19] | Eissenstat DM, Yanai RD (1997). The ecology of root lifespan. Advances in Ecological Research, 27, 1-60. |
[20] |
Espeleta JF, Donovan LA (2002). Fine root demography and morphology in response to soil resources availability among xeric and mesic sandhill tree species. Functional Ecology, 16, 113-121.
DOI URL |
[21] |
Farley RA, Fitter AH (1999). Temporal and spatial variation in soil resources in a deciduous woodland. Journal of Ecology, 87, 688-696.
DOI URL |
[22] |
Fransen B, de Kroon H (2001). Long-term disadvantages of selective root placement: root proliferation and shoot biomass of two perennial grass species in a 2-year experiment. Journal of Ecology, 89, 711-722.
DOI URL |
[23] |
Gasch CK, Collier TR, Enloe ST, Prager SD (2011). A GIS-based method for the analysis of digital rhizotron images. Plant Root, 5, 69-78.
DOI URL |
[24] |
Gillespie IMM, Deacon JW (1988). Effects of mineral nutrients on senescence of the cortex of wheat roots and root pieces. Soil Biology & Biochemistry, 20, 525-531.
DOI URL |
[25] |
Gross KL, Peters A, Pregitzer KS (1993). Fine root growth and demographic responses to nutrient patches in four old-field plant species. Oecologia, 95, 61-64.
DOI URL |
[26] |
Guo DL, Mou P, Jones RH, Mitchell RJ (2002). Temporal changes in spatial patterns of soil moisture following disturbance: an experimental approach. Journal of Ecology, 90, 338-347.
DOI URL |
[27] |
Guo DL, Xia MX, Chang WJ, Liu Y, Wang ZQ (2008). Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist, 180, 673-683.
DOI URL |
[28] | Harper JL (1977). Population Biology of Plants. Academic Press, San Diego, USA. 1-30. |
[29] |
Hodge A (2004). The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist, 162, 9-24.
DOI URL |
[30] |
Hodge A (2006). Plastic plants and patchy soils. Journal of Experimental Botany, 57, 401-411.
DOI URL |
[31] |
Hunt R, Cornelissen JHC (1997). Components of relative growth rate and their interrelations in 59 temperate plant species. New Phytologist, 135, 395-417.
DOI URL |
[32] |
Jackson RB, Caldwell MM (1993). Geostatistical patterns of soil heterogeneity around individual perennial plants. Journal of Ecology, 81, 683-692.
DOI URL |
[33] |
Jager A (1982). Effects of localized supply of H2PO4, NO3, SO4, Ca and K on the production and distribution of dry matter in young maize plants. Netherlands Journal of Agricultural Science, 30, 193-203.
DOI URL |
[34] |
Lamb EG, Haag JJ, Cahill F Jr (2004). Patch-background contrast and patch density have limited effects on root proliferation and plant performance in Abutilon theophrasti. Functional Ecology, 18, 836-843.
DOI URL |
[35] |
Lascaris D, Deacon JW (1991). Relationship between root cortical senescence and growth of wheat as influenced by mineral nutrition, Idriella bolleyi (Sprague) von Arx and pruning of leaves. New Phytologist, 118, 391-396.
DOI URL |
[36] | Laskowski MJ, Williams ME, Nusbaum HC, Sussex IM (1995). Formation of lateral root meristems is a two-stage process. Development, 121, 3303-3310. |
[37] |
Leopold LB (1971). Trees and streams: the efficiency of branching patterns. Journal of Theoretical Biology, 31, 339-354.
DOI URL |
[38] | Liu YB, Mou P (2010). Mycorrhizal plasticity of plant nutrient foraging: a review of ectomycorrhizal plasticity. Chinese Journal of Plant Ecology, 34, 1472-1484. (in Chinese with English abstract) |
[ 刘延滨, 牟溥 (2010). 植物养分捕获的菌根塑性——外生菌根的塑性. 植物生态学报, 34, 1472-1484.] | |
[39] | López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L (2003). The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology, 6, 280-287. |
[40] | Lynch JP (2005). Root architecture and nutrient acquisition. In: BassiriRad H ed. Nutrient Acquisition by Plants: an Ecological Perspective. Springer, Berlin. 147-183. |
[41] | Majdi H (2001). Changes in fine root production and longevity in relation to water and nutrient availability in a Norway spruce stand in northern Sweden. Tree Physiology, 21, 1057-1061. |
[42] | Mou P, Mitchell RJ, Jones RH (1997). Root distribution of two tree species under a heterogeneous nutrient environment. Journal of Applied Ecology, 34, 645-656. |
[43] |
Pregitzer KS (2002). Fine roots of trees―a new perspective. New Phytologist, 154, 267-273.
DOI URL |
[44] |
Pregitzer KS, Deforest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002). Fine root architecture of nine north American trees. Ecological Monographs, 72, 293-309.
DOI URL |
[45] |
Pregitzer KS, Hendrick RL, Fogel R (1993). The demography of fine roots in response to patches of water and nitrogen. New Phytologist, 125, 575-580.
DOI URL |
[46] | Preston KA, Ackerly DD (2004). The evolution of allometry in modular organisms. In: Pigliucci M, Preston KA eds. Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes. Oxford University Press, New York. 80-106. |
[47] |
Reed RC, Brady SR, Muday GK (1998). Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiology, 118, 1369-1378.
DOI URL |
[48] | Robertson GP, Sollins P, Ellis BG, Lajtha K (1999). Exchangeable ions, pH, and cation exchange capacity. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P eds. Standard Soil Methods for Long-Term Ecological Research. Oxford University Press, New York. 106-114. |
[49] |
Robinson D (2001). Root proliferation, nitrate inflow and their carbon costs during nitrogen capture by competing plants in patchy soil. Plant and Soil, 232, 41-50.
DOI URL |
[50] | Ruffel S, Krouk G, Ristova D, Shasha D, Birnbaum KD, Coruzzi GM (2011). Nitrogen economics of root foraging: transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand. Proceedings of the National Academy of Sciences of the United States of America, 108, 18524-18529. |
[51] |
Sattelmacher B, Gerendas J, Thoms K, Brück H, Bagdady NH (1993). Interaction between root growth and mineral nutrition. Environmental and Experimental Botany, 33, 63-73.
DOI URL |
[52] |
Schimel JP, Bennett J (2004). Nitrogen mineralization: challenges of a changing paradigm. Ecology, 85, 591-602.
DOI URL |
[53] | Stewart AJA, John EA, Hutchings MJ (2000). The world is heterogeneous: ecological consequences of living in a patchy environment. In: Hutchings MJ, John EA, Stewart AJA eds. The Ecological Consequences of Environmental Heterogeneity. Blackwell Science, Oxford. 1-8. |
[54] | Tan ZQ (2010). The Root Foraging Plasticity in Three Herbaceous Species. Master degree dissertation, Beijing Normal University, Beijing. 55. (in Chinese with English abstract) |
[ 谭增权 (2010). 三种草本植物的根系养分捕获塑性. 硕士学位论文. 北京师范大学, 北京. 55.] | |
[55] | von Ende C (2001). Repeated-measures analysis. In: Scheiner SM, Gurevitch J eds. Design and Analysis of Ecological Experiments. Oxford University Press, Oxford. 134-157. |
[56] |
Wang LX, Mou PP, Jones RH (2006). Nutrient foraging via physiological and morphological plasticity in three plant species. Canadian Journal of Forest Research, 36, 164-173.
DOI URL |
[57] | Wang QC, Cheng YH (2004). Response of fine roots to soil nutrient spatial heterogeneity. Chinese Journal of Applied Ecology, 15, 1063-1068. (in Chinese with English abstract) |
[ 王庆成, 程云环 (2004). 土壤养分空间异质性与植物根系的觅食反应. 应用生态学报, 15, 1063-1068.] | |
[58] | Xia MX, Guo DL, Pregitzer KS (2010). Ephemeral root modules in Fraxinus mandshurica. New Phytologist, 180, 1065-1074. |
[59] |
Zhang H, Forde BG (1998). An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science, 279, 407-409.
DOI URL |
[60] |
Zhang H, Forde BG (2000). Regulation of Arabidopsis root development by nitrate availability. Journal of Experimental Botany, 51, 51-59.
DOI URL |
[1] | ZHANG Hai-Liang,ZHU Min,LI Gan-Jin. Factors influencing the nonrandom abscission of Solidago canadensis seeds [J]. Chin J Plan Ecolo, 2015, 39(3): 258-263. |
[2] | CHEN Tong, LIU Wen-Li, ZHANG Chong-Bang, WANG Jiang. Effects of Solidago canadensis invasion on dynamics of native plant communities and their mechanisms [J]. Chin J Plant Ecol, 2012, 36(3): 253-261. |
[3] | DONG Jia, MOU Pu. Root nutrient foraging of morphological plasticity and physiological mechanism in Calliste- phus chinensis [J]. Chin J Plant Ecol, 2012, 36(11): 1172-1183. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn