Chin J Plant Ecol ›› 2014, Vol. 38 ›› Issue (9): 916-928.DOI: 10.3724/SP.J.1258.2014.00086
Special Issue: 植物功能性状
Previous Articles Next Articles
LÜ Mei-Qiang1,ZHU Zhi-Hong1,*(),LI Ying-Nian2,YAO Tian-Hua1,PAN Shi-Yu1,KONG Bin-Bin1
Received:
2014-01-08
Accepted:
2014-07-14
Online:
2014-01-08
Published:
2014-09-22
Contact:
ZHU Zhi-Hong
LÜ Mei-Qiang,ZHU Zhi-Hong,LI Ying-Nian,YAO Tian-Hua,PAN Shi-Yu,KONG Bin-Bin. Assembly patterns of plant functional traits in alpine meadow under disturbances by mowing and fertilization[J]. Chin J Plant Ecol, 2014, 38(9): 916-928.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2014.00086
性状 Trait | FDvar | Mean p | NM | NL | Rq (%) | |
---|---|---|---|---|---|---|
植株性状 Plant trait | 生长型 Growth form | 0.250 | 0.635 | 2 | 2 | 96.3 |
植株倾斜度 Plant inclination | 0.262 | 0.388 | 17 | 1 | 84.3 | |
繁殖方式 Reproductive mode | 0.105 | 0.396 | 46 | 0 | 57.4 | |
生活周期 Life cycle | 0.006 | 0.321 | 1 | 16 | 84.2 | |
固氮性 Nitrogen fixation | 0.046 | 0.365 | 1 | 18 | 82.4 | |
株高 Plant height (cm) | 0.083 | 0.133 | 14 | 10 | 77.8 | |
单株地上干质量 Aboveground dry mass per plant (mg) | 0.541 | 0.362 | 18 | 2 | 81.5 | |
叶性状 Leaf trait | 叶面积 Leaf area (cm2) | 0.375 | 0.589 | 14 | 1 | 86.1 |
比叶面积 Specific leaf area (m2·kg-1) | 0.613 | 0.461 | 14 | 0 | 87.0 | |
叶干质量 Leaf dry mass (mg) | 0.537 | 0.368 | 10 | 1 | 89.8 |
Table 1 Mean value of Mason’s index of functional diversity FDvar for each trait and the mean probability that the value differs significantly from the calculated FDvar
性状 Trait | FDvar | Mean p | NM | NL | Rq (%) | |
---|---|---|---|---|---|---|
植株性状 Plant trait | 生长型 Growth form | 0.250 | 0.635 | 2 | 2 | 96.3 |
植株倾斜度 Plant inclination | 0.262 | 0.388 | 17 | 1 | 84.3 | |
繁殖方式 Reproductive mode | 0.105 | 0.396 | 46 | 0 | 57.4 | |
生活周期 Life cycle | 0.006 | 0.321 | 1 | 16 | 84.2 | |
固氮性 Nitrogen fixation | 0.046 | 0.365 | 1 | 18 | 82.4 | |
株高 Plant height (cm) | 0.083 | 0.133 | 14 | 10 | 77.8 | |
单株地上干质量 Aboveground dry mass per plant (mg) | 0.541 | 0.362 | 18 | 2 | 81.5 | |
叶性状 Leaf trait | 叶面积 Leaf area (cm2) | 0.375 | 0.589 | 14 | 1 | 86.1 |
比叶面积 Specific leaf area (m2·kg-1) | 0.613 | 0.461 | 14 | 0 | 87.0 | |
叶干质量 Leaf dry mass (mg) | 0.537 | 0.368 | 10 | 1 | 89.8 |
性状 Trait | 协变量 Covariates df = (1, 4) | 变异来源 Source of variance | |||
---|---|---|---|---|---|
主区 Whole plot | 副区 Subplot | ||||
C df = (2, 4) | F df = (1, 2) | C × F df = (2, 4) | |||
固氮性 Nitrogen fixation | D | 1.347 | 10.269* | 6.801 | |
繁殖方式 Reproductive mode | ANPP | 7.688* | 0.001 | 1.424 | |
固氮性 Nitrogen fixation | ANPP | 12.237* | 1.910 | 5.557 | |
株高 Plant height (cm) | ANPP | 0.879* | 9.382* | 0.474 |
Table 2 ANCOVA for the effects of mowing and fertilization on plant functional diversity in alpine meadow
性状 Trait | 协变量 Covariates df = (1, 4) | 变异来源 Source of variance | |||
---|---|---|---|---|---|
主区 Whole plot | 副区 Subplot | ||||
C df = (2, 4) | F df = (1, 2) | C × F df = (2, 4) | |||
固氮性 Nitrogen fixation | D | 1.347 | 10.269* | 6.801 | |
繁殖方式 Reproductive mode | ANPP | 7.688* | 0.001 | 1.424 | |
固氮性 Nitrogen fixation | ANPP | 12.237* | 1.910 | 5.557 | |
株高 Plant height (cm) | ANPP | 0.879* | 9.382* | 0.474 |
性状 Trait | 协变量 Covariate | 刈割处理 Mowing treatment | 施肥处理 Fertilization treatment | ||||
---|---|---|---|---|---|---|---|
不刈割 Un-mowed | 中度刈割 Moderate mowing | 重度刈割 Heavy mowing | 不施肥 Unfertilized | 施肥 Fertilized | |||
固氮性 Nitrogen fixation | D | 0.038 ± 0.017a | 0.065 ± 0.007a | 0.065 ± 0.005a | 0.073 ± 0.006b | 0.039 ± 0.011a | |
繁殖方式 Reproductive modes | ANPP | 0.056 ± 0.020a | 0.099 ± 0.016b | 0.116 ± 0.013b | 0.090 ± 0.026a | 0.090 ± 0.018a | |
固氮性 Nitrogen fixation | ANPP | 0.003 ± 0.013a | 0.043 ± 0.010b | 0.046 ± 0.009b | 0.046 ± 0.017a | 0.015 ± 0.012a | |
株高 Plant height (cm) | ANPP | 0.065 ± 0.022b | 0.017 ± 0.017a | 0.048 ± 0.014ab | -0.012 ± 0.028a | 0.098 ± 0.019b |
Table 3 ANOVA for the effects of mowing and fertilization on plant functional diversity and the multiple comparison test of means among different levels within mowing or fertilization treatments in alpine meadow (mean ± SE)
性状 Trait | 协变量 Covariate | 刈割处理 Mowing treatment | 施肥处理 Fertilization treatment | ||||
---|---|---|---|---|---|---|---|
不刈割 Un-mowed | 中度刈割 Moderate mowing | 重度刈割 Heavy mowing | 不施肥 Unfertilized | 施肥 Fertilized | |||
固氮性 Nitrogen fixation | D | 0.038 ± 0.017a | 0.065 ± 0.007a | 0.065 ± 0.005a | 0.073 ± 0.006b | 0.039 ± 0.011a | |
繁殖方式 Reproductive modes | ANPP | 0.056 ± 0.020a | 0.099 ± 0.016b | 0.116 ± 0.013b | 0.090 ± 0.026a | 0.090 ± 0.018a | |
固氮性 Nitrogen fixation | ANPP | 0.003 ± 0.013a | 0.043 ± 0.010b | 0.046 ± 0.009b | 0.046 ± 0.017a | 0.015 ± 0.012a | |
株高 Plant height (cm) | ANPP | 0.065 ± 0.022b | 0.017 ± 0.017a | 0.048 ± 0.014ab | -0.012 ± 0.028a | 0.098 ± 0.019b |
性状 Trait | 最优模型变量 Variables in best-fit model | 置信比 Confidence ratio |
---|---|---|
植株性状 Plant trait | ||
生长型 Growth form | ﹢VegHt | 1.12 |
植株倾斜度 Plant inclination | ﹢ANPP﹣BioL | 321 258.06 |
繁殖方式 Reproductive modes | ﹣VegHt | 1 933 804.76 |
生活周期 Life cycle | Intercept | 1.00 |
固氮性 Nitrogen fixation | ﹣ANPP﹢BioL | 18 769.72 |
株高 Plant height (cm) | ﹣BioL | 1 373.34 |
单株地上干质量 Aboveground dry mass per plant (mg) | ﹢ANPP | 1.42 |
叶性状 Leaf trait | ||
叶面积 Leaf area (cm2) | ﹣BioL | 1.36 |
比叶面积 Specific leaf area (m2·kg-1) | ﹣BioL | 275.34 |
叶干质量 Leaf dry mass (mg) | ﹢ANPP | 2.39 |
Table 4 Best-fit models of regressions of the Mason’s index of functional diversity FDvar of 10 functional traits with community characteristics
性状 Trait | 最优模型变量 Variables in best-fit model | 置信比 Confidence ratio |
---|---|---|
植株性状 Plant trait | ||
生长型 Growth form | ﹢VegHt | 1.12 |
植株倾斜度 Plant inclination | ﹢ANPP﹣BioL | 321 258.06 |
繁殖方式 Reproductive modes | ﹣VegHt | 1 933 804.76 |
生活周期 Life cycle | Intercept | 1.00 |
固氮性 Nitrogen fixation | ﹣ANPP﹢BioL | 18 769.72 |
株高 Plant height (cm) | ﹣BioL | 1 373.34 |
单株地上干质量 Aboveground dry mass per plant (mg) | ﹢ANPP | 1.42 |
叶性状 Leaf trait | ||
叶面积 Leaf area (cm2) | ﹣BioL | 1.36 |
比叶面积 Specific leaf area (m2·kg-1) | ﹣BioL | 275.34 |
叶干质量 Leaf dry mass (mg) | ﹢ANPP | 2.39 |
[1] |
Aiba M, Katabuchi M, Takafumi H, Matsuzaki SIS, Sasaki T, Hiura T (2013). Robustness of trait distribution metrics for community assembly studies under the uncertainties of assembly processes. Ecology, 94, 2873-2885.
DOI URL |
[2] | Beisner BE, Haydon DT, Cuddington K (2003). Alternative stable states in ecology. Frontiers in Ecology and the Environment, 1, 376-382. |
[3] | Bersier LF, Sugihara G (1997). Species abundance patterns: the problem of testing stochastic models. Journal of Animal Ecology, 66, 769-774. |
[4] | Burnham KP, Anderson DR (2002). Model Selection and Multi-model Inference: a Practical Information-Theoretic Approach. 2nd edn. Springer, New York. |
[5] | Cingolani AM, Cabido M, Gurvich DE, Renison D, Díaz S (2007). Filtering processes in the assembly of plant communities: Are species presence and abundance driven by the same traits? Journal of Vegetation Science, 18, 911-920. |
[6] | Cleland EE, Clark CM, Collins SL, Fargione JE, Gough L, Gross KL, Pennings SC, Suding KN (2011). Patterns of trait convergence and divergence among native and exotic species in herbaceous plant communities are not modified by nitrogen enrichment. Journal of Ecology, 99, 1327-1338. |
[7] | Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Ter Steege H, Morgan HD, van der Heijden MGA, Pansas JG, Poorter H (2003). A handbook of protocols for standardised and easy measure- ment of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
[8] | Cornwell WK, Ackerly DD (2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs, 79, 109-126. |
[9] | de Bello F, Lepš J, Sebastià MT (2006). Variations in species and functional plant diversity along climatic and grazing gradients. Ecography, 29, 801-810. |
[10] | de Bello F, Thuiller W, Lepš J, Choler P, Clément JC, Macek P, Sebastià MT, Lavorel S (2009). Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence. Journal of Vegetation Science, 20, 475-486. |
[11] | Diamond JM (1975). Assembly of species communities. In: Cody ML, Diamond JM eds. Ecology and Evolution of Communities. Harvard University Press, Cambridge, USA. 342-444. |
[12] | Díaz S, Cabido M (2001). Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 16, 646-655. |
[13] | Du XG, Zhou SR (2008). Testing the neutral theory of plant communities in subalpine meadow. Journal of Plant Ecology (Chinese Version), 32, 347-354. (in Chinese with English abstract) |
[ 杜晓光, 周淑荣 (2008). 亚高寒草甸植物群落的中性理论验证. 植物生态学报, 32, 347-354.] | |
[14] | Fukami T, Bezemer TM, Mortimer SR, van der Putten WH (2005). Species divergence and trait convergence in experimental plant community assembly. Ecology Letters, 8, 1283-1290. |
[15] | Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85, 2630-2637. |
[16] | Gotelli NJ, McCabe DJ (2002). Species co-occurrence: a meta-analysis of J. M. diamond’s assembly rules model. Ecology, 83, 2091-2096. |
[17] |
Götzenberger L, de Bello F, Bråthen KA, Davison J, Dubuis A, Guisan A, Lepš J, Lindberg R, Moora M, Pärtel M, Pellissier L, Pottier J, Vittoz P, Zobel K, Zobel M (2012). Ecological assembly rules in plant communities— approaches, patterns and prospects. Biological Reviews, 87, 111-127.
URL PMID |
[18] | Grime JP (2006). Trait convergence and trait divergence in herbaceous plant communities: mechanisms and conseq- uences. Journal of Vegetation Science, 17, 255-260. |
[19] | Grman E, Suding KN (2010). Within-year soil legacies contribute to strong priority effects of exotics on native California grassland communities. Restoration Ecology, 18, 664-670. |
[20] | Helsen K, Hermy M, Honnay O (2012). Trait but not species convergence during plant community assembly in restored semi-natural grasslands. Oikos, 121, 2121-2130. |
[21] |
Hillebrand H, Bennett DM, Cadotte MW (2008). Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology, 89, 1510-1520.
URL PMID |
[22] |
Hillebrand H, Matthiessen B (2009). Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecology Letters, 12, 1405-1419.
URL PMID |
[23] | Hubbell SP (2001). The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32) (Vol. 32). Princeton University Press, Princeton, USA. |
[24] | Inouye RS, Tilman D (1995). Convergence and divergence of old-field vegetation after 11 yr of nitrogen addition. Ecology, 76, 1872-1887. |
[25] | Kraft NJB, Ackerly DD (2010). Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs, 80, 401-422. |
[26] |
Kraft NJB, Crutsinger GM, Forrestel EJ, Emery NC (2014). Functional trait differences and the outcome of community assembly: an experimental test with vernal pool annual plants. Oikos, doi: 10.1111/oik.01311.
DOI URL PMID |
[27] | Kühner A, Kleyer M (2008). A parsimonious combination of functional traits predicting plant response to disturbance and soil fertility. Journal of Vegetation Science, 19, 681-692. |
[28] | Lepš J, de Bello F, Lavorel S, Berman S (2006). Quantifying and interpreting functional diversity of natural comm.- unities: practical considerations matter. Preslia, 78, 481-501. |
[29] | Li YN, Wang QX, Gu S, Fu YL, Du MY, Zhao L, Zhao XQ, Yu GR (2004). Integrated monitoring of alpine vegetation types and its primary production. Acta Geographica Sinica, 59, 40-48. (in Chinese with English abstract) |
[ 李英年, 王勤学, 古松, 伏玉玲, 杜明远, 赵亮, 赵新全, 于贵瑞 (2004). 高寒植被类型及其植物生产力的监测. 地理学报, 59, 40-48.] | |
[30] | MacArthur R, Levins R (1967). The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101, 377-385. |
[31] | Mason NWH, MacGillivray K, Steel JB, Wilson JB (2003). An index of functional diversity. Journal of Vegetation Science, 14, 571-578. |
[32] |
McGill BJ, Enquist BJ, Weiher E, Westoby M (2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21, 178-185.
DOI URL PMID |
[33] | Niu KC, Liu YN, Shen ZH, He FL, Fang JY (2009). Community assembly: the relative importance of neutral theory and niche theory. Biodiversity Science, 17, 579-593. (in Chinese with English abstract) |
[ 牛克昌, 刘怿宁, 沈泽昊, 何芳良, 方精云 (2009). 群落构建的中性理论和生态位理论. 生物多样性, 17, 579-593.] | |
[34] | Pakeman RJ (2004). Consistency of plant species and trait responses to grazing along a productivity gradient: a multi-site analysis. Journal of Ecology, 92, 893-905. |
[35] |
Pakeman RJ, Lennon JJ, Brooker RW (2011). Trait assembly in plant assemblages and its modulation by productivity and disturbance. Oecologia, 167, 209-218.
URL PMID |
[36] |
Perry LG, Neuhauser C, Galatowitsch SM (2003). Founder control and coexistence in a simple model of asymmetric competition for light. Journal of Theoretical Biology, 222, 425-436.
DOI URL PMID |
[37] | Pillar VD, Duarte LDS, Sosinski EE, Joner F (2009). Discri- minating trait-convergence and trait-divergence assembly patterns in ecological community gradients. Journal of Vegetation Science, 20, 334-348. |
[38] | Qiao AH, Han JG, Gong AQ, Li W, Wang YW, Qing GJ, Guo SD, Wu JM, Zhao DZ (2006). Effect of nitrogen fertilizer application on Elymus nutans seed quality and yield in Qinghai-Tibet Plateau. Acta Agrestia Sinica, 14, 48-51, 56. (in Chinese with English abstract) |
[ 乔安海, 韩建国, 巩爱岐, 李伟, 王赟文, 秦歌菊, 郭树栋, 吴精明, 赵殿智 (2006). 氮肥对垂穗披碱草种子产量和质量的影响. 草地学报, 14, 48-51, 56.] | |
[39] |
Sasaki T, Okubo S, Okayasu T, Jamsran U, Ohkuro T, Takeuchi K (2009). Two-phase functional redundancy in plant communities along a grazing gradient in Mongolian rangelands. Ecology, 90, 2598-2608.
DOI URL PMID |
[40] | Schamp BS, Aarssen LW (2009). The assembly of forest communities according to maximum species height along resource and disturbance gradients. Oikos, 118, 564-572. |
[41] | Sonnier G, Shipley B, Navas ML (2010). Quantifying relationships between traits and explicitly measured gradients of stress and disturbance in early successional plant communities. Journal of Vegetation Science, 21, 1014-1024. |
[42] | Stubbs WJ, Wilson JB (2004). Evidence for limiting similarity in a sand dune community. Journal of Ecology, 92, 557-567. |
[43] |
Swenson NG, Enquist BJ (2007). Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. American Journal of Botany, 94, 451-459.
URL PMID |
[44] |
Swenson NG, Enquist BJ (2009). Opposing assembly mechanisms in a Neotropical dry forest: implications for phylogenetic and functional community ecology. Ecology, 90, 2161-2170.
DOI URL PMID |
[45] | Thompson K, Petchey OL, Askew AP, Dunnett NP, Beckerman AP, Willis AJ (2010). Little evidence for limiting similarity in a long-term study of a roadside plant community. Journal of Ecology, 98, 480-487. |
[46] | Walker B, Kinzig A, Langridge J (1999). Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems, 2, 95-113. |
[47] | Wang HD, Zhang LL, Zhu ZH (2013). Effects of clipping and fertilizing on the relationships between species diversity and ecosystem functioning and mechanisms of community stability in alpine meadow. Chinese Journal of Plant Ecology, 37, 279-295. (in Chinese with English abstract) |
[ 王海东, 张璐璐, 朱志红 (2013). 刈割、施肥对高寒草甸物种多样性与生态系统功能关系的影响及群落稳定性机制. 植物生态学报, 37, 279-295.] | |
[48] | Weiher E, Keddy PA (1995). Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos, 74, 159-164. |
[49] | Weiher E, Clarke GDP, Keddy PA (1998). Community ass- embly rules, morphological dispersion, and the coexis- tence of plant species. Oikos, 81, 309-322. |
[50] | Wilson JB (2007). Trait-divergence assembly rules have been demonstrated: limiting similarity lives! a reply to grime. Journal of Vegetation Science, 18, 451-452. |
[51] |
Yamaoka K, Nakagawa T, Uno T (1978). Application of Akaike’s information criterion (AIC) in the evaluation of linear pharmacokinetic equations. Journal of Pharmacokinetics and Biopharmaceutics, 6, 165-175.
DOI URL PMID |
[52] | Yang FT (1982). Natural geography survey of Haibei Alpine Meadow Ecosystem Research Station in Qinghai,. In: Xia WP ed. Alpine Meadow Ecosystem. Facs.1. Gansu People’s Publishing House, Lanzhou. 1-7. (in Chinese) |
[ 杨福囤 (1982). 青海高寒草甸生态系统定位站的自然地理概况. 见: 夏武平主编. 高寒草甸生态系统. 第1集. 甘肃人民出版社, 兰州. 1-7.] | |
[53] | Yang ZL, van Ruijven J, Du GZ (2011). The effects of long- term fertilization on the temporal stability of alpine meadow communities. Plant and Soil, 345, 315-324. |
[54] | Young TP, Chase JM, Huddleston RT (2001). Community succession and assembly comparing, contrasting and com- bining paradigms in the context of ecological restoration. Ecological Restoration, 19, 5-18. |
[55] | Zhao XQ (2009). Global Change and Ecological System in Alpine Meadow. Science Press, Beijing. (in Chinese) |
[ 赵新全 (2009). 高寒草甸生态系统与全球变化. 科学出版社, 北京.] | |
[56] | Zhou XS, Zhu ZH, Li YN, Yuan FR, Fan RJ (2011). Community compensatory mechanism under clipping, fertilizing and watering treatment in alpine meadow. Journal of Lanzhou University (Natural Science), 47(3), 50-57. (in Chinese with English abstract) |
[ 周晓松, 朱志红, 李英年, 袁芙蓉, 樊瑞俭 (2011). 刈割、施肥和浇水处理下高寒矮嵩草草甸补偿机制. 兰州大学学报(自然科学版), 47(3), 50-57.] | |
[57] | Zhu ZH, Wang G, Zhao SL (1994). Aboveground biomass dynamics of clonal ramet population of Kobresia humilis in alpine meadow under different stocking intensities. Grassland of China, (3), 10-14. (in Chinese with English abstract) |
[ 朱志红, 王刚, 赵松岭 (1994). 不同放牧强度下高寒草甸矮嵩草(Kobresia humilis)无性系分株种群的地上生物量动态. 中国草地, (3), 10-14.] | |
[58] | Zhu ZH, Wang G (1996). An approach to analyzing nature of community structure: with examples of alpine meadow and alpine brushland. Acta Phytoecologica Sinica, 20, 184-192. (in Chinese with English abstract) |
[ 朱志红, 王刚 (1996). 群落结构特性的分析方法探讨——以高寒草甸和高寒灌丛为例. 植物生态学报, 20, 184-192.] | |
[59] |
Zhu ZH, Wang XA, Li YN, Wang G, Guo H (2012). Predicting plant traits and functional types response to grazing in an alpine shrub meadow on the Qinghai-Tibet Plateau. Science China Earth Sciences, 55, 837-851.
DOI URL |
[1] | CHEN Zhao-Quan, WANG Ming-Hui, HU Zi-Han, LANG Xue-Dong, HE Yun-Qiong, LIU Wan-De. Mechanisms of seedling community assembly in a monsoon evergreen broadleaf forest in Pu’er, Yunnan, China [J]. Chin J Plant Ecol, 2024, 48(1): 68-79. |
[2] | LÜ Zi-Li, LIU Bin, CHANG Feng, MA Zi-Jing, CAO Qiu-Mei. Relationship between plant functional diversity and ecosystem multifunctionality in Bayanbulak alpine meadow along an altitude gradient [J]. Chin J Plant Ecol, 2023, 47(6): 822-832. |
[3] | YANG Yuan-He, ZHANG Dian-Ye, WEI Bin, LIU Yang, FENG Xue-Hui, MAO Chao, XU Wei-Jie, HE Mei, WANG Lu, ZHENG Zhi-Hu, WANG Yuan-Yuan, CHEN Lei-Yi, PENG Yun-Feng. Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 1-24. |
[4] | LI Wan-Nian, LUO Yi-Min, HUANG Ze-Yue, YANG Mei. Effects of mixed young plantations of Parashorea chinensis on soil microbial functional diversity and carbon source utilization [J]. Chin J Plant Ecol, 2022, 46(9): 1109-1124. |
[5] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[6] | ZHANG Yi, CHENG Jie, SU Ji-Shuai, CHENG Ji-Min. Diversity-productivity relationship of plant communities in typical grassland during the long- term grazing exclusion succession [J]. Chin J Plant Ecol, 2022, 46(2): 176-187. |
[7] | ZHAO Yan-Ping, WANG Zhong-Wu, WENDU Rigen, ZHAO Yu-Jin, BAI Yong-Fei. Remotely sensed monitoring method of grassland plant functional diversity and its relationship with productivity based on Sentinel-2 satellite data [J]. Chin J Plant Ecol, 2022, 46(10): 1234-1250. |
[8] | DING Wei,WANG Yu-Bing,XIANG Guan-Hai,CHI Yong-Gang,LU Shun-Bao,ZHENG Shu-Xia. Effects of Caragana microphylla encroachment on community structure and ecosystem function of a typical steppe [J]. Chin J Plant Ecol, 2020, 44(1): 33-43. |
[9] | WANG Yu-Bing,SUN Yi-Han,DING Wei,ZHANG En-Tao,LI Wen-Huai,CHI Yong-Gang,ZHENG Shu-Xia. Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe [J]. Chin J Plant Ecol, 2020, 44(1): 22-32. |
[10] | XU Jin-Shi,CHAI Yong-Fu,LIU Xiao,YUE Ming,GUO Yao-Xin,KANG Mu-Yi,LIU Quan-Ru,ZHENG Cheng-Yang,JI Cheng-Jun,YAN Ming,ZHANG Feng,GAO Xian-Ming,WANG Ren-Qing,SHI Fu-Chen,ZHANG Qin-Di,WANG Mao. Community assembly, diversity patterns and distributions of broad-leaved forests in North China [J]. Chin J Plant Ecol, 2019, 43(9): 732-741. |
[11] | CHAI Yong-Fu, XU Jin-Shi, LIU Hong-Yan, LIU Quan-Ru, ZHENG Cheng-Yang, KANG Mu-Yi, LIANG Cun-Zhu, WANG Ren-Qing, GAO Xian-Ming, ZHANG Feng, SHI Fu-Chen, LIU Xiao, YUE Ming. Species composition and phylogenetic structure of major shrublands in North China [J]. Chin J Plant Ecol, 2019, 43(9): 793-805. |
[12] | SHI Jing-Jing,ZHAO Ming-Fei,WANG Yu-Hang,XUE Feng,KANG Mu-Yi,JIANG Yuan. Community assembly of herbaceous layer of the planted forests in the central Loess Plateau, China [J]. Chin J Plant Ecol, 2019, 43(9): 834-842. |
[13] | TANG Li-Li, ZHANG Mei, ZHAO Xiang-Lin, KANG Mu-Yi, LIU Hong-Yan, GAO Xian-Ming, YANG Tong, ZHENG Pu-Fan, SHI Fu-Chen. Species distribution and community assembly rules of Juglans mandshurica in North China [J]. Chin J Plant Ecol, 2019, 43(9): 753-761. |
[14] | QIN Hao, ZHANG Yin-Bo, DONG Gang, ZHANG Feng. Altitudinal patterns of taxonomic, phylogenetic and functional diversity of forest communities in Mount Guandi, Shanxi, China [J]. Chin J Plant Ecol, 2019, 43(9): 762-773. |
[15] | HAO Shu-Jun, LI Xiao-Yu, HOU Man-Man, ZHAO Xiu-Hai. Spatial variations of community functional traits at different successional stages in temperate forests of Changbai Mountains, Northeast China [J]. Chin J Plant Ecol, 2019, 43(3): 208-216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn