Chin J Plant Ecol ›› 2025, Vol. 49 ›› Issue (7): 1128-1143.DOI: 10.17521/cjpe.2024.0165 cstr: 32100.14.cjpe.2024.0165
• Research Articles • Previous Articles Next Articles
ZHANG Xiao-Di1,*, WANG Xiao-Xia1,*, ZHANG Yu-Wen2, HOU Jing-Yu1, SHI Xiao-Peng1, HE Lu-Lu1, LIU Ya-Dong1, XUE Liu3, HE Bao-Hua3, DUAN Jie1,**()
Received:
2024-05-21
Accepted:
2024-10-09
Online:
2025-07-20
Published:
2024-10-11
Contact:
DUAN Jie
About author:
First author contact:*Contributed equally to this work
ZHANG Xiao-Di, WANG Xiao-Xia, ZHANG Yu-Wen, HOU Jing-Yu, SHI Xiao-Peng, HE Lu-Lu, LIU Ya-Dong, XUE Liu, HE Bao-Hua, DUAN Jie. Hydraulic architecture, leaf functional traits and environmental adaptation strategies of three understory shrubs in Beijing mountainous areas[J]. Chin J Plant Ecol, 2025, 49(7): 1128-1143.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0165
样方 Plot | 灌木及幼树 Shrubs and young trees | 草本 Herb | ||||||
---|---|---|---|---|---|---|---|---|
盖度 Coverage (%) | 平均高度 Mean height (m) | 香农-威纳指数 Shannon-Winer index | 辛普森指数 Simpson index | 盖度 Coverage (%) | 平均高度 Mean height (m) | 香农-威纳指数 Shannon-Winer index | 辛普森指数 Simpson index | |
P1 | 60.568 | 0.560 | 1.508 | 0.777 | 17.706 | 0.122 | 0.505 | 0.437 |
P2 | 72.113 | 0.578 | 1.593 | 0.767 | 8.687 | 0.121 | 0.336 | 0.400 |
P3 | 32.537 | 0.360 | 1.202 | 0.750 | 6.667 | 0.008 | 0.339 | 0.252 |
Table 1 Characteristics of understory plant communities of three plots in West Mountain of Beijing
样方 Plot | 灌木及幼树 Shrubs and young trees | 草本 Herb | ||||||
---|---|---|---|---|---|---|---|---|
盖度 Coverage (%) | 平均高度 Mean height (m) | 香农-威纳指数 Shannon-Winer index | 辛普森指数 Simpson index | 盖度 Coverage (%) | 平均高度 Mean height (m) | 香农-威纳指数 Shannon-Winer index | 辛普森指数 Simpson index | |
P1 | 60.568 | 0.560 | 1.508 | 0.777 | 17.706 | 0.122 | 0.505 | 0.437 |
P2 | 72.113 | 0.578 | 1.593 | 0.767 | 8.687 | 0.121 | 0.336 | 0.400 |
P3 | 32.537 | 0.360 | 1.202 | 0.750 | 6.667 | 0.008 | 0.339 | 0.252 |
样方 Plot | 黄荆 Vitex negundo | 扁担杆 Grewia biloba | 蒙桑 Morus mongolica | ||||||
---|---|---|---|---|---|---|---|---|---|
重要值及序次 Importance value & order | 取样数 Sampling frequency | 重要值及序次 Importance value & order | 取样数 Sampling frequency | 重要值及序次 Importance value & order | 取样数 Sampling frequency | ||||
P1 | 0.219 ± 0.041a | I | 7 | 0.146 ± 0.037b | II | 7 | 0.106 ± 0.039b | III | 4 |
P2 | 0.134 ± 0.037b | II | 6 | 0.238 ± 0.052a | I | 6 | 0.134 ± 0.013b | III | 3 |
P3 | 0.095 ± 0.006b | II | 4 | 0.362 ± 0.073a | I | 6 | 0.109 ± 0.013b | III | 6 |
总计 Total | 0.149 ± 0.025b | II | 17 | 0.269 ± 0.042a | I | 19 | 0.114 ± 0.014b | III | 13 |
Table 2 Order of importance values and sampling frequency of three shrub species in three plots in West Mountain of Beijing (mean ± SE)
样方 Plot | 黄荆 Vitex negundo | 扁担杆 Grewia biloba | 蒙桑 Morus mongolica | ||||||
---|---|---|---|---|---|---|---|---|---|
重要值及序次 Importance value & order | 取样数 Sampling frequency | 重要值及序次 Importance value & order | 取样数 Sampling frequency | 重要值及序次 Importance value & order | 取样数 Sampling frequency | ||||
P1 | 0.219 ± 0.041a | I | 7 | 0.146 ± 0.037b | II | 7 | 0.106 ± 0.039b | III | 4 |
P2 | 0.134 ± 0.037b | II | 6 | 0.238 ± 0.052a | I | 6 | 0.134 ± 0.013b | III | 3 |
P3 | 0.095 ± 0.006b | II | 4 | 0.362 ± 0.073a | I | 6 | 0.109 ± 0.013b | III | 6 |
总计 Total | 0.149 ± 0.025b | II | 17 | 0.269 ± 0.042a | I | 19 | 0.114 ± 0.014b | III | 13 |
物种 Species | 叶厚度 Leaf thickness (mm) | 叶干物质量 Leaf dry matter content (g) | 叶面积 Leaf area (cm2) | 比叶质量 Leaf mass per area (g·cm-2) |
---|---|---|---|---|
黄荆 Vitex negundo | 0.085 ± 0.004b | 0.573 ± 0.089a | 23.533 ± 2.964c | 268.895 ± 42.217a |
扁担杆 Grewia biloba | 0.147 ± 0.009a | 0.511 ± 0.089a | 43.770 ± 4.668b | 128.332 ± 23.951b |
蒙桑 Morus mongolica | 0.159 ± 0.007a | 0.604 ± 0.140a | 76.033 ± 5.307a | 80.979 ± 18.977b |
Table 3 Morphological characteristics of leaves of the three shrubs in West Mountain of Beijing (mean ± SE)
物种 Species | 叶厚度 Leaf thickness (mm) | 叶干物质量 Leaf dry matter content (g) | 叶面积 Leaf area (cm2) | 比叶质量 Leaf mass per area (g·cm-2) |
---|---|---|---|---|
黄荆 Vitex negundo | 0.085 ± 0.004b | 0.573 ± 0.089a | 23.533 ± 2.964c | 268.895 ± 42.217a |
扁担杆 Grewia biloba | 0.147 ± 0.009a | 0.511 ± 0.089a | 43.770 ± 4.668b | 128.332 ± 23.951b |
蒙桑 Morus mongolica | 0.159 ± 0.007a | 0.604 ± 0.140a | 76.033 ± 5.307a | 80.979 ± 18.977b |
Fig. 1 Differences in leaf vein structure of three shrubs in West Mountain of Beijing. Different lowercase letters indicate significant differences among three shrubs (p < 0.05).
Fig. 2 Differences in photosynthetic physiological parameters of leaves of three shrubs in West Mountain of Beijing (mean ± SE). Different lowercase letters indicate significant differences among three shrubs (p < 0.05).
Fig. 3 Characteristics of xylem vessels in roots, stems, and branches of three shrubs in West Mountain of Beijing (mean ± SE). Different uppercase letters indicate significant differences among different species, and different lowercase letters indicate significant differences among different water delivery sites (p < 0.05).
Fig. 4 Cross-sectional microstructure of root-stem-branch xylem of three shrubs in West Mountain of Beijing. From left to right (A-C) are xylem cross-sectional microscopic images of annual branches of Vitex negundo, Grewia biloba, Morus mongolica. Red sections were dyed by safranin, while blue-green sections were dyed by fast green.
Fig. 5 Xylem vessel diameter distributions in roots, stems, and branches of three shrubs in West Mountain of Beijing (mean ± SE). A-C, Size distribution of the xylem vessel diameters in the roots, stems, and branches of Vitex negundo. D-F, Size distribution of the xylem vessel diameters in the roots, stems, and branches of Grewia biloba. G-I, Size distribution of the xylem vessel diameters in the roots, stems, and branches of Morus mongolica. I, distribution of vessel diameter frequency; II, contribution of a certain size class of conduits to hydraulic conductivity (Kh).
Fig. 6 Correlation between xylem hydraulic traits of three shrubs in West Mountain of Beijing. Dm, mean vessel diameter; Dh, hydraulic diameter; Dv, vessel density; Aves/Axy, vessel area/xylem area; Ks, specific hydraulic conductivity; VI, hydraulic vulnerability Index. Ks and VI were averaged from the three organs in each species.
Fig. 7 Correlation network between functional traits of three understory shrubs in West Mountain of Beijing. Only significant correlations (p < 0.05) were shown, the red border represents the trait with the highest degree centrality values, excluding the xylem anatomical structural traits mentioned in 2.4. ψmid, mid-day leaf water potential; Gs, stomatal conductance; Ks, xylem specific hydraulic conductivity (root-stem- shoot mean); Pn, net photosynthetic rate; Tr, transpiration rate; WUEi, leaf instantaneous water use efficiency; VD, secondary vein diameter; VI, hydraulic vulnerability index (root-stem- shoot mean); VLA, secondary leaf vein density; VV, leaf vein volume.
Fig. 8 Linear regression analysis between different functional traits of three understory shrubs in West Mountain of Beijing (mean ± SE). Shading represents a 95% confidence interval. VV, VI, Ks see Fig. 7.
Fig. 9 Principal component (PC) analysis of hydraulic structure and functional traits of three shrubs in West Mountains of Beijing. Aves/Axyl, vessel area/xylem area; Dh, hydraulic diameter; Dm, mean vessel diameter; Dv, vessel density; Gs, stomatal conductance; Ks, xylem specific hydraulic conductivity (root, stem, shoot mean); LA, leaf area; LDMC, leaf dry matter content; LMA, leaf mass per area; LT, leaf thickness; Pn, net photosynthetic rate; Tr, transpiration rate; VD, secondary vein diameter; VI, hydraulic vulnerability index (root, stem, shoot mean); VLA, secondary leaf vein density; VV, leaf vein volume; WUEi, leaf instantaneous water use efficiency; ψmid, mid-day leaf water potential.
[1] | Adams HD, Zeppel MJB, Anderegg WRL, Hartmann H, Landhäusser SM, Tissue DT, Huxman TE, Hudson PJ, Franz TE, Allen CD, Anderegg LDL, Barron-Gafford GA, Beerling DJ, Breshears DD, Brodribb TJ, et al. (2017). A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology & Evolution, 1, 1285-1291. |
[2] | Ai SS, Li YY, Chen JC, Chen WY (2015). Root anatomical structure and hydraulic traits of three typical shrubs on the sandy lands of northern Shaanxi Province, China. Chinese Journal of Applied Ecology, 26, 3277-3284. |
[艾绍水, 李秧秧, 陈佳村, 陈伟月 (2015). 陕北沙地3种典型灌木根木质部解剖结构及水力特性. 应用生态学报, 26, 3277-3284.] | |
[3] |
Blonder B, Violle C, Bentley LP, Enquist BJ (2011). Venation networks and the origin of the leaf economics spectrum. Ecology Letters, 14, 91-100.
DOI PMID |
[4] | Bond W, Midgley JJ (2003). The evolutionary ecology of sprouting in woody plants. International Journal of Plant Sciences, 164, S103-S114. |
[5] |
Buckley TN, Roberts DW (2006). How should leaf area, sapwood area and stomatal conductance vary with tree height to maximize growth? Tree Physiology, 26, 145-157.
PMID |
[6] | Cao JY, Liu JF, Yuan Q, Xu DY, Fan HD, Chen HY, Tan B, Liu LB, Ye D, Ni J (2020). Traits of shrubs in forests and bushes reveal different life strategies. Chinese Journal of Plant Ecology, 44, 715-729. |
[曹嘉瑜, 刘建峰, 袁泉, 徐德宇, 樊海东, 陈海燕, 谭斌, 刘立斌, 叶铎, 倪健 (2020). 森林与灌丛的灌木性状揭示不同的生活策略. 植物生态学报, 44, 715-729.] | |
[7] | Cao X, Li Y, Zheng XJ, Xie JB, Wang ZY (2022). An inherent coordination between the leaf size and the hydraulic architecture of angiosperm trees. Forests, 13, 1287. DOI: 10.3390/f13081287. |
[8] | Carlquist S (1977). Ecological factors in wood evolution: a floristic approach. American Journal of Botany, 64, 887-896. |
[9] | Chen JW, Zhang Q, Li XS, Cao KF (2009). Independence of stem and leaf hydraulic traits in six Euphorbiaceae tree species with contrasting leaf phenology. Planta, 230, 459-468. |
[10] | Chen YJ, Choat B, Sterck F, Maenpuen P, Katabuchi M, Zhang SB, Tomlinson KW, Oliveira RS, Zhang YJ, Shen JX, Cao KF, Jansen S (2021). Hydraulic prediction of drought-induced plant dieback and top-kill depends on leaf habit and growth form. Ecology Letters, 24, 2350-2363. |
[11] | Chen ZQ (2016). Illustrated Guidebook of Changqing Forest Germplasm Resources. Shandong Science and Technology Press, Jinan. |
[陈兆强 (2016). 长清林木种质资源图鉴. 山东科学技术出版社, 济南.] | |
[12] | Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE (2018). Triggers of tree mortality under drought. Nature, 558, 531-539. |
[13] | Cornelissen JHC, Cerabolini B, Castro-Díez P, Villar-Salvador P, Montserrat-Martí G, Puyravaud JP, Maestro M, Werger MJA, Aerts R (2003). Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings? Journal of Vegetation Science, 14, 311-322. |
[14] | Deng WP (2015). Water Use Mechanism of Typical Tree Species in Beijing Mountainous Areas. PhD dissertation, Beijing Forestry University, Beijing. |
[邓文平 (2015). 北京山区典型树种水分利用机制研究. 博士学位论文, 北京林业大学, 北京.] | |
[15] | Fan ZX, Cao KF, Zou SQ (2005). Axial and radial changes in xylem anatomical characteristics in six evergreen broadleaved tree species in Ailao Mountain, Yunnan. Acta Phytoecologica Sinica, 29, 968-975. |
[范泽鑫, 曹坤芳, 邹寿青 (2005). 云南哀牢山6种常绿阔叶树木质部解剖特征的轴向和径向变化. 植物生态学报, 29, 968-975.]
DOI |
|
[16] | Givnish TJ (1978). Ecological aspects of plant morphology: leaf form in relation to environment. Acta Biotheoretica, 27, 83-142. |
[17] | Gleason SM, Butler DW, Ziemińska K, Waryszak P, Westoby M (2012). Stem xylem conductivity is key to plant water balance across Australian angiosperm species. Functional Ecology, 26, 343-352. |
[18] |
Gong R, Gao Q (2015). Research progress in the effects of leaf hydraulic characteristics on plant physiological functions. Chinese Journal of Plant Ecology, 39, 300-308.
DOI |
[龚容, 高琼 (2015). 叶片结构的水力学特性对植物生理功能影响的研究进展. 植物生态学报, 39, 300-308.]
DOI |
|
[19] | Gong R, Xu X, Tian XY, Jiang HL, Li X, Guan MX (2018). Hydraulic architecture characteristics and drought adaption strategies for three Caragana genus species. Acta Ecologica Sinica, 38, 4984-4993. |
[龚容, 徐霞, 田晓宇, 江红蕾, 李霞, 关梦茜 (2018). 三种锦鸡儿属植物水力结构特征及其干旱适应策略. 生态学报, 38, 4984-4993.] | |
[20] |
Gupta A, Rico-Medina A, Caño-Delgado AI (2020). The physiology of plant responses to drought. Science, 368, 266-269.
DOI PMID |
[21] | Hacke UG, Jacobsen AL, Pratt RB (2009). Xylem function of arid-land shrubs from California, USA: an ecological and evolutionary analysis. Plant, Cell & Environment, 32, 1324-1333. |
[22] | He NP, Li Y, Liu CC, Xu L, Li MX, Zhang JH, He JS, Tang ZY, Han XG, Ye Q, Xiao CW, Yu Q, Liu SR, Sun W, Niu SL, et al. (2020a). Plant trait networks: Improved resolution of the dimensionality of adaptation. Trends in Ecology & Evolution, 35, 908-918. |
[23] | He PC, Gleason SM, Wright IJ, Weng ES, Liu H, Zhu SD, Lu MZ, Luo Q, Li RH, Wu GL, Yan ER, Song YJ, Mi XC, Hao GY, Reich PB, et al. (2020b). Growing-season temperature and precipitation are independent drivers of global variation in xylem hydraulic conductivity. Global Change Biology, 26, 1833-1841. |
[24] | Jacobsen AL, Agenbag L, Esler KJ, Pratt RB, Ewers FW, Davis SD (2007). Xylem density, biomechanics and anatomical traits correlate with water stress in 17 evergreen shrub species of the Mediterranean-type climate region of South Africa. Journal of Ecology, 95, 171-183. |
[25] | Jin Y (2017). Coupling Relationships of Hydraulic and Economic Traits of Leaf-stem-root for 10 Tree Species in the Temperate Forest of Northeastern China. PhD dissertation, Northeast Forestry University, Harbin. |
[金鹰 (2017). 东北温带森林10种树种叶-茎-根水力和经济性状耦联关系研究. 博士学位论文, 东北林业大学, 哈尔滨.] | |
[26] |
Jin Y, Wang CK (2015). Trade-offs between plant leaf hydraulic and economic traits. Chinese Journal of Plant Ecology, 39, 1021-1032.
DOI |
[金鹰, 王传宽 (2015). 植物叶片水力与经济性状权衡关系的研究进展. 植物生态学报, 39, 1021-1032.]
DOI |
|
[27] |
Jin Y, Wang CK (2016). Leaf hydraulic traits and their trade-offs for nine Chinese temperate tree species with different wood properties. Chinese Journal of Plant Ecology, 40, 702-710.
DOI |
[金鹰, 王传宽 (2016). 九种不同材性的温带树种叶水力性状及其权衡关系. 植物生态学报, 40, 702-710.]
DOI |
|
[28] | Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P (2000). The role of aquaporins in cellular and whole plant water balance. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1465, 324-342. |
[29] |
Laanisto L, Niinemets Ü (2015). Polytolerance to abiotic stresses: How universal is the shade-drought tolerance trade-off in woody species? Global Ecology and Biogeography, 24, 571-580.
DOI PMID |
[30] | Larter M, Pfautsch S, Domec JC, Trueba S, Nagalingum N, Delzon S (2017). Aridity drove the evolution of extreme embolism resistance and the radiation of conifer genus Callitris. New Phytologist, 215, 97-112. |
[31] | Lens F, Gleason SM, Bortolami G, Brodersen C, Delzon S, Jansen S (2022). Functional xylem characteristics associated with drought-induced embolism in angiosperms. New Phytologist, 236, 2019-2036. |
[32] | Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S (2011). Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytologist, 190, 709-723. |
[33] | Li FL, Bao WK (2005). Responses of the morphological and anatomical structure of the plant leaf to environmental change. Chinese Bulletin of Botany, 22(Suppl.), 118-127. |
[李芳兰, 包维楷 (2005). 植物叶片形态解剖结构对环境变化的响应与适应. 植物学通报, 22(增刊), 118-127.] | |
[34] |
Li JY, Zhai HB (2000). Hydraulic architecture and drought resistance of woody plants. Chinese Journal of Applied Ecology, 11, 301-305.
PMID |
[李吉跃, 翟洪波 (2000). 木本植物水力结构与抗旱性. 应用生态学报, 11, 301-305.] | |
[35] |
Li R, Dang W, Cai J, Zhang SX, Jiang ZM (2016). Relationships between xylem structure and embolism vulnerability in six species of drought tolerance trees. Chinese Journal of Plant Ecology, 40, 255-263.
DOI |
[李荣, 党维, 蔡靖, 张硕新, 姜在民 (2016). 6个耐旱树种木质部结构与栓塞脆弱性的关系. 植物生态学报, 40, 255-263.]
DOI |
|
[36] | Li Y, Liu CC, Sack L, Xu L, Li MX, Zhang JH, He NP (2022). Leaf trait network architecture shifts with species-richness and climate across forests at continental scale. Ecology Letters, 25, 1442-1457. |
[37] | Li YQ, Wang ZH (2021). Leaf morphological traits: ecological function, geographic distribution and drivers. Chinese Journal of Plant Ecology, 45, 1154-1172. |
[李耀琪, 王志恒 (2021). 植物叶片形态的生态功能、地理分布与成因. 植物生态学报, 45, 1154-1172.]
DOI |
|
[38] | Li YY, Shi H, Shao MA (2010). Leaf water use efficiency and its relationship with hydraulic characteristics in eight dominant trees and shrubs in loess hilly area during vegetation succession. Scientia Silvae Sinicae, 46(2), 67-73. |
[李秧秧, 石辉, 邵明安 (2010). 黄土丘陵区乔灌木叶水分利用效率及与水力学特性关系. 林业科学, 46(2), 67-73.] | |
[39] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339. |
[刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[40] | Liu YD, Wang XX, He LL, Liu ZY, Zeng XL, Sha HF, He BH, Jin YS, Li J, Chen JM, Guo GF, Duan J (2023). Effects of spatial structure on understory vegetation and soil properties in Pinus tabuliformis plantation of different succession types in Beijing. Acta Ecologica Sinica, 43, 1959-1970. |
[刘亚栋, 王晓霞, 和璐璐, 柳正元, 曾小莉, 沙海峰, 何宝华, 金莹杉, 李杰, 陈建梅, 郭桂凤, 段劼 (2023). 北京地区油松人工林不同演替类型空间结构对林下植被及土壤的影响. 生态学报, 43, 1959-1970.] | |
[41] | Liu YY, Wang AY, An YN, Lian PY, Wu DD, Zhu JJ, Meinzer FC, Hao GY (2018). Hydraulics play an important role in causing low growth rate and dieback of aging Pinus sylvestris var. mongolica trees in plantations of Northeast China. Plant, Cell & Environment, 41, 1500-1511. |
[42] |
Loepfe L, Martinez-Vilalta J, Piñol J, Mencuccini M (2007). The relevance of xylem network structure for plant hydraulic efficiency and safety. Journal of Theoretical Biology, 247, 788-803.
PMID |
[43] | Luo WX, Liu GQ, Li JY (2007). Breeding Techniques for Major Tree Species in Northwest China. China Forestry Publishing House, Beijing. |
[罗伟祥, 刘广全, 李嘉珏 (2007). 西北主要树种培育技术. 中国林业出版社, 北京.] | |
[44] |
Lusk CH, Grierson ERP, Laughlin DC (2019). Large leaves in warm, moist environments confer an advantage in seedling light interception efficiency. New Phytologist, 223, 1319-1327.
DOI PMID |
[45] | Ma WT, Tcherkez G, Wang XM, Schäufele R, Schnyder H, Yang YS, Gong XY (2021). Accounting for mesophyll conductance substantially improves 13C-based estimates of intrinsic water-use efficiency. New Phytologist, 229, 1326-1338. |
[46] |
Maurel C, Nacry P (2020). Root architecture and hydraulics converge for acclimation to changing water availability. Nature Plants, 6, 744-749.
DOI PMID |
[47] |
McKown AD, Cochard H, Sack L (2010). Decoding leaf hydraulics with a spatially explicit model: principles of venation architecture and implications for its evolution. The American Naturalist, 175, 447-460.
DOI PMID |
[48] | Nardini A, Luglio J (2014). Leaf hydraulic capacity and drought vulnerability: possible trade-offs and correlations with climate across three major biomes. Functional Ecology, 28, 810-818. |
[49] | Niu CY, Shou WK, Yang XT, Qian JQ, Yang JT (2023). Branch-leaf functional traits and adaptation strategies of three shrubs on the southern foot of Taihang Mountains, North China. Journal of Arid Land Resources and Environment, 37(12), 123-130. |
[牛存洋, 寿文凯, 杨喜田, 钱建强, 杨建涛 (2023). 太行山南麓3种典型灌木枝-叶功能性状及其适应策略. 干旱区资源与环境, 37(12), 123-130.] | |
[50] | Pan TT, Li Y, Wang ZY, Lu ST, Ye LF, Chen S, Xie JB (2020). Relationship between the hydraulic function and the anatomical structure of branch and root xylem in three Taxodiaceae species in humid area. Scientia Silvae Sinicae, 56(12), 49-59. |
[潘天天, 李彦, 王忠媛, 陆世通, 叶琳峰, 陈森, 谢江波 (2020). 湿润区3种杉科植物枝和根木质部的水力功能与解剖结构的关系. 林业科学, 56(12), 49-59.] | |
[51] | Pan YP, Chen YP (2014). Recent advances in leaf hydraulic traits. Chinese Journal of Ecology, 33, 2834-2841. |
[潘莹萍, 陈亚鹏 (2014). 叶片水力性状研究进展. 生态学杂志, 33, 2834-2841.] | |
[52] | Pandey S (2021). Climatic influence on tree wood anatomy: a review. Journal of Wood Science, 67, 24. DOI: 10.1186/s10086-021-01956-w. |
[53] |
Pittermann J, Sperry J (2003). Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers. Tree Physiology, 23, 907-914.
PMID |
[54] | Pratt RB, Jacobsen AL, Percolla MI, de Guzman ME, Traugh CA, Tobin MF (2021). Trade-offs among transport, support, and storage in xylem from shrubs in a semiarid chaparral environment tested with structural equation modeling. Proceedings of the National Academy of Sciences of the United States of America, 118, e2104336118. DOI: 10.1073/pnas.2104336118. |
[55] | Reich PB (2014). The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. Journal of Ecology, 102, 275-301. |
[56] | Ren JP, Li JP, Wang WF, Dai YX, Wang L (2021). Responses of leaf hydraulic traits to water conditions in eight tree species and the driving factors. Chinese Journal of Plant Ecology, 45, 942-951. |
[任金培, 李俊鹏, 王卫锋, 代永欣, 王林 (2021). 八个树种叶水力性状对水分条件的响应及其驱动因素. 植物生态学报, 45, 942-951.]
DOI |
|
[57] |
Sack L, Scoffoni C (2013). Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 198, 983-1000.
DOI PMID |
[58] | Sack L, Scoffoni C, Mckown AD, Frole K, Rawls M, Havran JC, Tran H, Tran T (2012). Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nature Communications, 3, 837. DOI: 10.1038/ncomms1835. |
[59] |
Sala OE, Lauenroth WK, Parton WJ, Trlica MJ (1981). Water status of soil and vegetation in a shortgrass steppe. Oecologia, 48, 327-331.
DOI PMID |
[60] | Santiago LS, Wright SJ (2007). Leaf functional traits of tropical forest plants in relation to growth form. Functional Ecology, 21, 19-27. |
[61] |
Scholz A, Klepsch M, Karimi Z, Jansen S (2013). How to quantify conduits in wood? Frontiers in Plant Science, 4, 56. DOI: 10.3389/fpls.2013.00056.
PMID |
[62] | Sendall KM, Lusk CH, Reich PB (2016). Trade-offs in juvenile growth potential vs. shade tolerance among subtropical rain forest trees on soils of contrasting fertility. Functional Ecology, 30, 845-855. |
[63] |
Smith DD, Sperry JS, Adler FR (2017). Convergence in leaf size versus twig leaf area scaling: Do plants optimize leaf area partitioning? Annals of Botany, 119, 447-456.
DOI PMID |
[64] | Song HQ, Ni MY, Zhu SD (2020). Hydraulic and photosynthetic characteristics differ between co-generic tree and liana species: a case study of Millettia and Gnetum in tropical forest. Chinese Journal of Plant Ecology, 44, 192-204. |
[宋慧清, 倪鸣源, 朱师丹 (2020). 乔木与木质藤本的水力与光合性状的差异: 以热带森林崖豆藤属和买麻藤属为例. 植物生态学报, 44, 192-204.]
DOI |
|
[65] |
Sperry JS (2004). Coordinating stomatal and xylem functioning—An evolutionary perspective. New Phytologist, 162, 568-570.
DOI PMID |
[66] |
Sperry JS, Hacke UG, Pittermann J (2006). Size and function in conifer tracheids and angiosperm vessels. American Journal of Botany, 93, 1490-1500.
DOI PMID |
[67] | Sperry JS, Stiller V, Hacke UG (2003). Xylem hydraulics and the soil-plant-atmosphere continuum: opportunities and unresolved issues. Agronomy Journal, 95, 1362-1370. |
[68] | Sun SJ, Meng P, Zhang JS, Jia CR, Ren YF (2014). Ecosystems water use patterns of Quercus variabilis and Grewia biloba based on stable hydrogen and oxygen isotopes in the south aspect of Taihang Mountains. Acta Ecologica Sinica, 34, 6317-6325. |
[孙守家, 孟平, 张劲松, 贾长荣, 任迎丰 (2014). 太行山南麓山区栓皮栎-扁担杆生态系统水分利用策略. 生态学报, 34, 6317-6325.] | |
[69] | Tyree MT, Ewers FW (1991). The hydraulic architecture of trees and other woody plants. New Phytologist, 119, 345-360. |
[70] | Valladares F, Laanisto L, Niinemets Ü, Zavala MA (2016). Shedding light on shade: ecological perspectives of understorey plant life. Plant Ecology & Diversity, 9, 237-251. |
[71] | Wang QW, Liu CG, Robson TM, Hikosaka K, Kurokawa H (2021). Leaf density and chemical composition explain variation in leaf mass area with spectral composition among 11 widespread forbs in a common garden. Physiologia Plantarum, 173, 698-708. |
[72] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Philip PK, Groom PK, Gulias J, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[73] | Wu BD, Liu J, Jiang K, Zhou JW, Wang CY (2019). Differences in leaf functional traits between simple and compound leaves of Canavalia maritime. Polish Journal of Environmental Studies, 28, 1425-1432. |
[74] | Xing DK, Mao RL, Li ZY, Wu YY, Qin XJ, Fu WG (2022). Leaf intracellular water transport rate based on physiological impedance: a possible role of leaf internal retained water in photosynthesis and growth of tomatoes. Frontiers in Plant Science, 13, 845628. DOI: 10.3389/fpls.2022.845628. |
[75] | Xiong DL (2016). Coordination of Leaf Morpho-anatomical Traits, Phoyosynthesis and Leaf Hudraulic Conductance in Oryza. PhD dissertation, Huazhong Agricultural University, Wuhan. |
[熊栋梁 (2016). 水稻叶片结构对水力导度与光合作用的影响及其机理. 博士学位论文, 华中农业大学, 武汉.] | |
[76] | Yan CL, Ni MY, Cao KF, Zhu SD (2020). Leaf hydraulic safety margin and safety-efficiency trade-off acrossangiosperm woody species. Biology Letters, 16, 20200456. DOI: 10.1098/rsbl.2020.0456. |
[77] |
Yang D, Zhang YJ, Song J, Niu CY, Hao GY (2019). Compound leaves are associated with high hydraulic conductance and photosynthetic capacity: evidence from trees in Northeast China. Tree Physiology, 39, 729-739.
DOI PMID |
[78] | Yao GQ, Nie ZF, Turner NC, Li FM, Gao TP, Fang XW, Scoffoni C (2021). Combined high leaf hydraulic safety and efficiency provides drought tolerance in Caragana species adapted to low mean annual precipitation. New Phytologist, 229, 230-244. |
[79] | Zhang J, Zhao CZ, Li XP, Ren Y, Lei L (2018). The relationship between the net photosynthetic rate and leaf area and thickness of Phragmites australis in the grass lake wetlands of Jiayuguan. Acta Ecologica Sinica, 38, 6084-6091. |
[张晶, 赵成章, 李雪萍, 任悦, 雷蕾 (2018). 嘉峪关草湖湿地芦苇净光合速率与叶面积和叶厚度的关系. 生态学报, 38, 6084-6091.] | |
[80] | Zhang M, Gao HR, Mo WY, Chen S, Zhu R, Wang XC, Wang ZB, Li DY, Wang RL (2022). Variation in leaf vein traits along environmental gradient in Loess Plateau grasslands. Acta Ecologica Sinica, 42, 8082-8093. |
[张明, 高慧蓉, 莫惟轶, 陈爽, 朱荣, 王小春, 王志波, 李丹洋, 王瑞丽 (2022). 黄土高原草地植物叶脉性状沿环境梯度的变化规律. 生态学报, 42, 8082-8093.] | |
[81] | Zhao YY, Cheng JM, Wan HE, Hu XM (2009). Water holding characteristics of the forest floor in Liupan Mountain. Scientia Silvae Sinicae, 45(4), 145-150. |
[赵艳云, 程积民, 万惠娥, 胡相明 (2009). 六盘山不同森林群落地被物的持水特性. 林业科学, 45(4), 145-150.] | |
[82] | Zhu WR (2022). The Water and Nutrient Adaptive Strategies of Dominant Species in the Hilly Area of the Taihang Mountain. PhD dissertation, Institute of Geographic Sciences and Natural Resources research, Beijing. |
[朱婉芮 (2022). 太行山低山丘陵区优势植物的水分和养分适应策略. 博士学位论文, 中国科学院地理科学与资源研究所, 北京.] | |
[83] | Zimmermann MH (1983). Xylem Structure and the Ascent of Sap. Springer Verlag, Berlin. |
[1] | CHEN Cheng-Zhi, GAO Yu-Sen, Luo Li-Jia, Wang Dong. Twig and leaf litter production and decomposition in an alpline Sibiraea angustata shrubland of western Sichuan [J]. Chin J Plant Ecol, 2025, 49(预发表): 0-. |
[2] | ZHANG Jian-Hua, ZHOU Xiao-yang, DUAN Shan-shan, BAI Jia-ni, XU Long-Chao. Carbon density and distribution characteristics of two typical shrublands in Dongling Mountain, Beijing [J]. Chin J Plant Ecol, 2025, 49(预发表): 1-. |
[3] | LI Xin-Mao, JIN Guang-Ze, LIU Zhi-Li. Seasonal dynamics and organ differences in the growth and defense strategies of the “twig system” of Corylus mandshurica [J]. Chin J Plant Ecol, 2025, 50(化学计量与功能性状): 0-. |
[4] | Hao YaXin, JIN Guang-Ze, LIU Zhi-Li. Effects of different growing season stages and twig ages on twig traits in evergreen conifers [J]. Chin J Plant Ecol, 2025, 50(化学计量与功能性状): 0-. |
[5] | CHEN Gang-Gang, ZHU Si Jie, GUO Liang Na, FU Fang Wei, LIU Yu Zhuo, LI Jiang Rong. Aboveground and belowground nutrient allocation strategies for trees and shrubs at alpine treeline in the Sygera Mountains of the southeastern Tibetan plateau [J]. Chin J Plant Ecol, 2025, 49(地上地下生态过程关联): 0-. |
[6] | LI Gang-Dun, QIAN Ni-Peng, WANG Lin-Xu, DONG Chun-Chao, LIU Qi-Jing. Seasonal dynamics of radial growth of Pinus koraiensis and Ulmus davidiana var. japonica are related to environmental factors in Changbai Mountain, China [J]. Chin J Plant Ecol, 2025, 49(7): 1110-1118. |
[7] | CAO Yi, ZHANG Song-Lin, WANG Xu-Feng, YANG An-Chang, REN Min-Hui, YANG Hao, HAN Chao. Plant community datasets of the northern and southern mountains of Lanzhou, China [J]. Chin J Plant Ecol, 2025, 49(6): 975-989. |
[8] | XIONG Gao-Ming, SHEN Guo-Zhen, XU Wen-Ting, XIE Zong-Qiang, LI Yue-Lin, XU Yao-Zhan, CHEN Fang-Qing, LI Jia-Xiang. Major vegetation types and community characteristics of tropical evergreen broadleaf shrubland in low mountain and hilly areas of China [J]. Chin J Plant Ecol, 2025, 49(6): 865-874. |
[9] | WANG Shi-Song, QU Xiao-Yun, DONG Shao-Qiong, LI Jia-Hong, YANG Qi, HOU Man-Fu, ZHAO Li-Qing, GUO Ke, LIU Chang-Cheng, XU Xiao. Typical desert vegetation types and community characteristics in Zanda, Xizang, China [J]. Chin J Plant Ecol, 2025, 49(5): 801-812. |
[10] | CHEN Ying, WANG Ying-Xue, DENG Qing-Ya, LI Pei-Yang, XIAO Zi-Xin, XU Yan-Rong, DENG Chuan-Yuan. Numerical classification and ordination of shrub communities on Haitan Island, Fujian, China [J]. Chin J Plant Ecol, 2025, 49(4): 653-666. |
[11] | LI Si-Yu, YANG Feng-Ting, WANG Hui-Min, DAI Xiao-Qin, MENG Sheng-Wang. Seasonal dynamics of xylem formation in Cunninghamia lanceolata and Schima superba and its response to environmental factors [J]. Chin J Plant Ecol, 2025, 49(2): 295-307. |
[12] | CHEN Si-Yi, TANG Yan, HE Teng, JIANG Yong-Kang, DU Guang-Yuan. Xylem embolism characteristics and hydraulic safety risks of nine tree species in Qinling Mountains [J]. Chin J Plant Ecol, 2024, 48(9): 1213-1222. |
[13] | WU Feng-Yan, WU Yong-Sheng, CHEN Xiao-Han, FENG Ji, LU Li-Yuan, CHASINA , WANG Chao-Yu, MENG Yuan-Fa, YIN Qiang. Spatial-temporal variation of water use efficiency in three species of sand-fixing shrubs on the Ordos Plateau [J]. Chin J Plant Ecol, 2024, 48(9): 1180-1191. |
[14] | QIAN Ni-Peng, GAO Hao-Xin, SONG Chao-Jie, DONG Chun-Chao, LIU Qi-Jing. Seasonal dynamics of radial growth of Betula platyphylla and its response to environmental factors in Changbai Mountains [J]. Chin J Plant Ecol, 2024, 48(8): 1001-1010. |
[15] | ZHANG Meng-Di, XIANG Guan-Hai, WEN Yi-Yao, WANG Huan, Hugejile , BAI Yong-Fei, WANG Zhong-Wu, ZHENG Shu-Xia. Response of carbon exchange between shrub and grass patches to increased seasonal precipitation: a comparative analysis based on aboveground net primary productivity and leaf area index standardization [J]. Chin J Plant Ecol, 2024, 48(8): 1035-1049. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn