Chin J Plant Ecol ›› 2025, Vol. 49 ›› Issue (2): 295-307.DOI: 10.17521/cjpe.2024.0135 cstr: 32100.14.cjpe.2024.0135
• Research Articles • Previous Articles Next Articles
LI Si-Yu1,2, YANG Feng-Ting1, WANG Hui-Min1, DAI Xiao-Qin1, MENG Sheng-Wang1,*()
Received:
2024-04-29
Accepted:
2024-06-20
Online:
2025-02-20
Published:
2025-02-20
Contact:
MENG Sheng-Wang
Supported by:
LI Si-Yu, YANG Feng-Ting, WANG Hui-Min, DAI Xiao-Qin, MENG Sheng-Wang. Seasonal dynamics of xylem formation in Cunninghamia lanceolata and Schima superba and its response to environmental factors[J]. Chin J Plant Ecol, 2025, 49(2): 295-307.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0135
树种 Species | 生活型 Life form | 木材类型 Wood type | 树号 Tree No. | 胸径 Diameter at breast height (cm) |
---|---|---|---|---|
杉木 Cunninghamia lanceolata | 常绿针叶 Evergreen conifer | 无孔材 Non-porous wood | 1 | 22.3 |
2 | 20.5 | |||
3 | 24.0 | |||
4 | 21.6 | |||
木荷 Schima superba | 常绿阔叶 Evergreen broadleaf | 散孔材 Diffuse-porous wood | 1 | 18.7 |
2 | 24.7 | |||
3 | 20.7 |
Table 1 Key information about the sample trees of Cunninghamia lanceolata and Schima superba in Qianyanzhou research station
树种 Species | 生活型 Life form | 木材类型 Wood type | 树号 Tree No. | 胸径 Diameter at breast height (cm) |
---|---|---|---|---|
杉木 Cunninghamia lanceolata | 常绿针叶 Evergreen conifer | 无孔材 Non-porous wood | 1 | 22.3 |
2 | 20.5 | |||
3 | 24.0 | |||
4 | 21.6 | |||
木荷 Schima superba | 常绿阔叶 Evergreen broadleaf | 散孔材 Diffuse-porous wood | 1 | 18.7 |
2 | 24.7 | |||
3 | 20.7 |
Fig. 1 Anatomical diagram of xylem of Cunninghamia lanceolata (A) and Schima superba (B) under polarized light microscope. Cz, cambium zone; Ec, enlargement cells; M, mature cells; Ph, phloem; WT, wall thickening cells; Xy, xylem in last year.
Fig. 2 Climate characteristics of Qianyanzhou Station in 2022. PAR, photosynthetically active radiation; Pre, precipitation; RH, relative humidity; ST, soil temperature; SWC, soil water content; Tmax, maximum air temperature; Tmean, mean air temperature; Tmin, minimum air temperature; VPD, saturated vapor pressure difference.
Fig. 3 Key dates (A) and duration (B) of xylem formation in Cunninghamia lanceolata and Schima superba, expressed in day of year (DOY) (mean ± SD). ns, p > 0.05; **, p < 0.01.
Fig. 4 Variation of ring width at each stage of cell differentiation during xylem formation (mean ± SE) in Cunninghamia lanceolata and Schima superba, including cambium zone (A, E), enlarging cells zone (B, F), wall thickening zone (C, G) and mature cells zone (D, H). The bimodal pattern of the cell wall thickening in C. lanceolata is clearly visible in the small figure at the upper right corner of panel C.
树种 Species | 树号 Tree No. | A | β | k | 调整R2 Adjust R2 | rmean (μm·d-1) | rmax (μm·d-1) | tp |
---|---|---|---|---|---|---|---|---|
杉木 Cunninghamia lanceolata | 1 | 679.49 ± 58.62 | 2.12 ± 0.38 | 0.015 ± 0.003 | 0.92 | 2.29 | 3.75 | 141.33 |
2 | 1 130.06 ± 249.69 | 2.21 ± 0.45 | 0.010 ± 0.003 | 0.89 | 2.54 | 4.16 | 221.00 | |
3 | 871.06 ± 46.14 | 2.55 ± 0.61 | 0.023 ± 0.005 | 0.84 | 4.51 | 7.37 | 110.87 | |
4 | 443.55 ± 29.66 | 2.50 ± 0.56 | 0.018 ± 0.004 | 0.85 | 1.80 | 2.94 | 138.89 | |
平均 Mean | 754.50 ± 39.16 | 1.81 ± 0.19 | 0.013 ± 0.002 | 0.95 | 2.21b | 3.61b | 139.23a | |
木荷 Schima superba | 1 | 973.60 ± 48.70 | 8.24 ± 4.99 | 0.067 ± 0.040 | 0.78 | 14.68 | 24.00 | 122.99 |
2 | 2 213.90 ± 69.46 | 6.56 ± 1.71 | 0.047 ± 0.012 | 0.92 | 23.41 | 38.28 | 139.57 | |
3 | 2 183.16 ± 66.56 | 8.40 ± 2.97 | 0.065 ± 0.022 | 0.91 | 31.93 | 52.20 | 129.23 | |
平均 Mean | 1 745.44 ± 50.81 | 7.59 ± 2.32 | 0.058 ± 0.017 | 0.92 | 22.78a | 37.24a | 130.86a |
Table 2 Fitting results of the Gompertz function for xylem annual growth in Cunninghamia lanceolata and Schima superba
树种 Species | 树号 Tree No. | A | β | k | 调整R2 Adjust R2 | rmean (μm·d-1) | rmax (μm·d-1) | tp |
---|---|---|---|---|---|---|---|---|
杉木 Cunninghamia lanceolata | 1 | 679.49 ± 58.62 | 2.12 ± 0.38 | 0.015 ± 0.003 | 0.92 | 2.29 | 3.75 | 141.33 |
2 | 1 130.06 ± 249.69 | 2.21 ± 0.45 | 0.010 ± 0.003 | 0.89 | 2.54 | 4.16 | 221.00 | |
3 | 871.06 ± 46.14 | 2.55 ± 0.61 | 0.023 ± 0.005 | 0.84 | 4.51 | 7.37 | 110.87 | |
4 | 443.55 ± 29.66 | 2.50 ± 0.56 | 0.018 ± 0.004 | 0.85 | 1.80 | 2.94 | 138.89 | |
平均 Mean | 754.50 ± 39.16 | 1.81 ± 0.19 | 0.013 ± 0.002 | 0.95 | 2.21b | 3.61b | 139.23a | |
木荷 Schima superba | 1 | 973.60 ± 48.70 | 8.24 ± 4.99 | 0.067 ± 0.040 | 0.78 | 14.68 | 24.00 | 122.99 |
2 | 2 213.90 ± 69.46 | 6.56 ± 1.71 | 0.047 ± 0.012 | 0.92 | 23.41 | 38.28 | 139.57 | |
3 | 2 183.16 ± 66.56 | 8.40 ± 2.97 | 0.065 ± 0.022 | 0.91 | 31.93 | 52.20 | 129.23 | |
平均 Mean | 1 745.44 ± 50.81 | 7.59 ± 2.32 | 0.058 ± 0.017 | 0.92 | 22.78a | 37.24a | 130.86a |
Fig. 6 Pearson correlation coefficients between xylem growth rate and environmental factors of Cunninghamia lanceolata and Schima superba. *, p < 0.05; **, p < 0.01; ***, p < 0.001. PAR, photosynthetically active radiation; Pre, precipitation; RH, relative humidity; ST, soil temperature; SWC, soil water content; Tmax, maximum air temperature; Tmean, mean air temperature; Tmin, minimum air temperature; VPD, saturated vapor pressure difference.
Fig. 7 Principal component (PC) analysis of xylem growth rate (XGR) and environmental factors in Cunninghamia lanceolata (A) and Schima superba (B). PAR, photosynthetically active radiation; Pre, precipitation; RH, relative humidity; ST, soil temperature; SWC, soil water content; Tmax, maximum air temperature; Tmean, mean air temperature; Tmin, minimum air temperature; VPD, saturated vapor pressure difference.
[1] | Abreu IN, Johansson AI, Sokołowska K, Niittylä T, Sundberg B, Hvidsten TR, Street NR, Moritz T (2020). A metabolite roadmap of the wood-forming tissue in Populus tremula. New Phytologist, 228, 1559-1572. |
[2] | Babst F, Bouriaud O, Papale D, Gielen B, Janssens IA, Nikinmaa E, Ibrom A, Wu J, Bernhofer C, Köstner B, Grünwald T, Seufert G, Ciais P, Frank D (2014). Above- ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. New Phytologist, 201, 1289-1303. |
[3] | Balducci L, Cuny HE, Rathgeber CBK, Deslauriers A, Giovannelli A, Rossi S (2016). Compensatory mechanisms mitigate the effect of warming and drought on wood formation. Plant, Cell & Environment, 39, 1338-1352. |
[4] | Begum S, Kudo K, Rahman MH, Nakaba S, Yamagishi Y, Nabeshima E, Nugroho WD, Oribe Y, Kitin P, Jin HO, Funada R (2018). Climate change and the regulation of wood formation in trees by temperature. Trees, 32, 3-15. |
[5] |
Cabon A, Kannenberg SA, Arain A, Babst F, Baldocchi D, Belmecheri S, Delpierre N, Guerrieri R, Maxwell JT, McKenzie S, Meinzer FC, Moore DJP, Pappas C, Rocha AV, Szejner P, et al. (2022). Cross-biome synthesis of source versus sink limits to tree growth. Science, 376, 758-761.
DOI PMID |
[6] |
Camarero JJ, Olano JM, Parras A (2010). Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytologist, 185, 471-480.
DOI PMID |
[7] |
Chen YZ, Rademacher T, Fonti P, Eckes-Shephard AH, LeMoine JM, Fonti MV, Richardson AD, Friend AD (2022). Inter-annual and inter-species tree growth explained by phenology of xylogenesis. New Phytologist, 235, 939-952.
DOI PMID |
[8] | Cook-Patton SC, Leavitt SM, Gibbs D, Harris NL, Lister K, Anderson-Teixeira KJ, Briggs RD, Chazdon RL, Crowther TW, Ellis PW, Griscom HP, Herrmann V, Holl KD, Houghton RA, Larrosa C, et al. (2020). Mapping carbon accumulation potential from global natural forest regrowth. Nature, 585, 545-550. |
[9] | Cuny HE, Rathgeber CBK, Frank D, Fonti P, Mäkinen H, Prislan P, Rossi S, Del Castillo EM, Campelo F, Vavrčík H, Camarero JJ, Bryukhanova MV, Jyske T, Gričar J, Gryc V, et al. (2015). Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nature Plants, 1, 15160. DOI: 10.1038/nplants.2015.160. |
[10] |
Deslauriers A, Huang J, Balducci L, Beaulieu M, Rossi S (2016). The contribution of carbon and water in modulating wood formation in black spruce saplings. Plant Physiology, 170, 2072-2084.
DOI PMID |
[11] |
Dox I, Prislan P, Gričar J, Mariën B, Delpierre N, Flores O, Leys S, Rathgeber CBK, Fonti P, Campioli M (2021). Drought elicits contrasting responses on the autumn dynamics of wood formation in late successional deciduous tree species. Tree Physiology, 41, 1171-1185.
DOI PMID |
[12] | Farooq TH, Shakoor A, Wu X, Li Y, Rashid M, Zhang X, Gilani MM, Kumar U, Chen X, Yan W (2021). Perspectives of plantation forests in the sustainable forest development of China. iForest - Biogeosciences and Forestry, 14, 166-174. |
[13] |
Garcia-Forner N, Vieira J, Nabais C, Carvalho A, Martínez- Vilalta J, Campelo F (2019). Climatic and physiological regulation of the bimodal xylem formation pattern in Pinus pinaster saplings. Tree Physiology, 39, 2008-2018.
DOI PMID |
[14] | Guada G, Vázquez-Ruiz RA, García-González I (2019). Response patterns of xylem and leaf phenology to temperature at the southwestern distribution boundary of Quercus robur: a multi-spatial study. Agricultural and Forest Meteorology, 269-270, 46-56. |
[15] | Guo XL, Yu BY, Zhang SK, Li JY, Wang J, Huang JG (2019). Research progresses on xylem formation dynamics and its regulation mechanism. Journal of Tropical and Subtropical Botany, 27, 541-547. |
[郭霞丽, 余碧云, 张邵康, 黎敬业, 王婕, 黄建国 (2019). 树木木质部生长动态及其调节机制研究进展. 热带亚热带植物学报, 27, 541-547.] | |
[16] | Huang J, Guo X, Rossi S, Zhai L, Yu B, Zhang S, Zhang M (2018). Intra-annual wood formation of subtropical Chinese red pine shows better growth in dry season than wet season. Tree Physiology, 38, 1225-1236. |
[17] | Huang J, Ma Q, Rossi S, Biondi F, Deslauriers A, Fonti P, Liang E, Mäkinen H, Oberhuber W, Rathgeber CBK, Tognetti R, Treml V, Yang B, Zhang J, Antonucci S, et al. (2020). Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proceedings of the National Academy of Sciences of the United States of America, 117, 20645-20652. |
[18] | Huang J, Zhang Y, Wang M, Yu X, Deslauriers A, Fonti P, Liang E, Mäkinen H, Oberhuber W, Rathgeber CBK, Tognetti R, Treml V, Yang B, Zhai L, Zhang J, et al. (2023). A critical thermal transition driving spring phenology of Northern Hemisphere conifers. Global Change Biology, 29, 1606-1617. |
[19] | Jiang Y, Zhang X, Chhin S, Zhang J (2021). A bimodal pattern and age-related growth of intra-annual wood cell development of Chinese fir in subtropical China. Frontiers in Plant Science, 12, 757438. DOI: 10.3389/fpls.2021.757438. |
[20] |
Jin JX, Cai YL, Guo X, Wang LH, Wang Y, Liu YB (2023). Decoupled driving forces of variabilities of transpiration in Chinese subtropical vegetation based on remote sensing data. Acta Geographica Sinica, 78, 1779-1791.
DOI |
[金佳鑫, 蔡裕龙, 郭熙, 王龙浩, 王颖, 刘元波 (2023). 中国亚热带植被蒸腾驱动力解耦分析. 地理学报, 78, 1779-1791.]
DOI |
|
[21] |
Jin Y, Wang CK, Zhou ZH (2016). Mechanisms of xylem embolism repair in woody plants: research progress and questions. Chinese Journal of Plant Ecology, 40, 834-846.
DOI |
[金鹰, 王传宽, 周正虎 (2016). 木本植物木质部栓塞修复机制: 研究进展与问题. 植物生态学报, 40, 834-846.]
DOI |
|
[22] | Kaewmano A, Fu P, Fan Z, Pumijumnong N, Zuidema PA, Bräuning A (2022). Climatic influences on intra-annual stem radial variations and xylem formation of Toona ciliata at two Asian tropical forest sites with contrasting soil water availability. Agricultural and Forest Meteorology, 318, 108906. DOI: 10.1016/j.agrformet.2022.108906. |
[23] | Krepkowski J, Bräuning A, Gebrekirstos A, Strobl S (2011). Cambial growth dynamics and climatic control of different tree life forms in tropical mountain forest in Ethiopia. Trees, 25, 59-70. |
[24] | Li KJ, Bai QS, Yao J, Wang YL, Lian HM, Zhang Q, He BX, Cai YL (2021). Research progress on cultivation and utilization of Schima superba in China. Forestry and Environmental Science, 37(6), 188-195. |
[李可见, 白青松, 尧俊, 汪迎利, 连辉明, 张谦, 何波祥, 蔡燕灵 (2021). 我国木荷培育和利用研究进展. 林业与环境科学, 37(6), 188-195.] | |
[25] | Li WX, Yue FX, Wang CK, Liao JL, Zhang XL (2022). Climatic influences on intra-annual stem variation of Larix principis-rupprechtii in a semi-arid region. Frontiers in Forests and Global Change, 5, 948022. DOI: 10.3389/ ffgc.2022.948022. |
[26] | Li X, Liang E, Camarero JJ, Rossi S, Zhang J, Zhu H, Fu Y, Sun J, Wang T, Piao S, Peñuelas J (2023). Warming-induced phenological mismatch between trees and shrubs explains high-elevation forest expansion. National Science Review, 10, nwad182. DOI: 10.1093/nsr/nwad182. |
[27] | Liu B, Liu Q, Daryanto S, Guo S, Huang Z, Wang Z, Wang L, Ma X (2018). Responses of Chinese fir and Schima superba seedlings to light gradients: implications for the restoration of mixed broadleaf-conifer forests from Chinese fir monocultures. Forest Ecology and Management, 419-420, 51-57. |
[28] | Martínez-Sancho E, Gutiérrez E, Valeriano C, Ribas M, Popkova MI, Shishov VV, Dorado-Liñán I (2021). Intra- and inter-annual growth patterns of a mixed pine-oak forest under Mediterranean climate. Forests, 12, 1746. DOI: 10.3390/f12121746. |
[29] | Meng SW, Fu XL, Zhao B, Dai XQ, Li QK, Yang FT, Kou L, Wang HM (2021). Intra-annual radial growth and its climate response for Masson pine and Chinese fir in subtropical China. Trees, 35, 1817-1830. |
[30] | Meng SW, Yang FT, Dai XQ, Wang HM (2021). Radial growth dynamics of Chinese fir and its response to seasonal drought. Chinese Journal of Applied Ecology, 32, 3521-3530. |
[孟盛旺, 杨风亭, 戴晓琴, 王辉民 (2021). 杉木径向生长动态及其对季节性干旱的响应. 应用生态学报, 32, 3521-3530.]
DOI |
|
[31] |
Morino K, Minor RL, Barron-Gafford GA, Brown PM, Hughes MK (2021). Bimodal cambial activity and false-ring formation in conifers under a monsoon climate. Tree Physiology, 41, 1893-1905.
DOI PMID |
[32] | Oberhuber W, Sehrt M, Kitz F (2020). Hygroscopic properties of thin dead outer bark layers strongly influence stem diameter variations on short and long time scales in Scots pine (Pinus sylvestris L.). Agricultural and Forest Meteorology, 290, 108026. DOI: 10.1016/j.agrformet.2020.108026. |
[33] | Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, et al. (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988-993. |
[34] | Peters RL, Steppe K, Cuny HE, de Pauw DJW, Frank DC, Schaub M, Rathgeber CBK, Cabon A, Fonti P (2021). Turgor—A limiting factor for radial growth in mature conifers along an elevational gradient. New Phytologist, 229, 213-229. |
[35] | Pompa-García M, Camarero JJ, Colangelo M (2023). Different xylogenesis responses to atmospheric water demand contribute to species coexistence in a mixed pine-oak forest. Journal of Forestry Research, 34, 51-62. |
[36] |
Prislan P, Cufar K, de Luis M, Gricar J (2018). Precipitation is not limiting for xylem formation dynamics and vessel development in European beech from two temperate forest sites. Tree Physiology, 38, 186-197.
DOI PMID |
[37] | Qian N, Gao H, Xu Z, Song C, Dong C, Zeng W, Sun Z, Siqing B, Liu Q (2023). Cambial phenology and wood formation of Korean pine in response to climate change in Changbai Mountain, Northeast China. Dendrochronologia, 77, 126045. DOI: 10.1016/j.dendro.2022.126045. |
[38] | Qian NP, Xu ZZ, Gao HX, Song CJ, Dong CC, Hu B, Liu QJ (2024). Linkages between intra-annual radial growth and photosynthetic production of four main species in a temperate forest in Northeast China. Agricultural and Forest Meteorology, 345, 109866. DOI: 10.1016/j.agrformet.2023.109866. |
[39] |
Rathgeber CBK, Rossi S, Bontemps JD (2011). Cambial activity related to tree size in a mature silver-fir plantation. Annals of Botany, 108, 429-438.
DOI PMID |
[40] | Ren P, Rossi S, Gricar J, Liang EY, Cufar K (2015). Is precipitation a trigger for the onset of xylogenesis in Juniperus przewalskii on the north-eastern Tibetan Plateau? Annals of Botany, 115, 629-639. |
[41] |
Rossi S, Anfodillo T, Čufar K, Cuny HE, Deslauriers A, Fonti P, Frank D, Gričar J, Gruber A, Huang JG, Jyske T, Kašpar J, King G, Krause C, Liang EY, et al. (2016). Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Global Change Biology, 22, 3804-3813.
DOI PMID |
[42] | Rossi S, Anfodillo T, Menardi R (2006). Trephor: a new tool for sampling microcores from tree stems. IAWA Journal, 27, 89-97. |
[43] | Rossi S, Deslauriers A, Morin H (2003). Application of the Gompertz equation for the study of xylem cell development. Dendrochronologia, 21, 33-39. |
[44] |
Rossi S, Girard MJ, Morin H (2014). Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production. Global Change Biology, 20, 2261-2271.
DOI PMID |
[45] | Sanmiguel-Vallelado A, Camarero JJ, Morán-Tejeda E, Gazol A, Colangelo M, Alonso-González E, López-Moreno JI (2021). Snow dynamics influence tree growth by controlling soil temperature in mountain pine forests. Agricultural and Forest Meteorology, 296, 108205. DOI: 10.1016/j.agrformet.2020.108205. |
[46] |
Steppe K, Sterck F, Deslauriers A (2015). Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends in Plant Science, 20, 335-343.
DOI PMID |
[47] | Wang J, Yu BY, Huang JG (2020). Xylem formation and response to climate of Castanea henryi in Dinghushan Mountain. Journal of Tropical and Subtropical Botany, 28, 445-454. |
[王婕, 余碧云, 黄建国 (2020). 鼎湖山锥栗木质部形成及其对气候的响应. 热带亚热带植物学报, 28, 445-454.] | |
[48] |
Wang YT, Zhang JZ, Liu JJ, Wang LJ, Li YL (2024). Research progress on cambium activity and radial growth dynamics monitoring of coniferous species. Chinese Journal of Applied Ecology, 35, 1223-1232.
DOI |
[王悦桐, 张军周, 刘俊俊, 王丽娟, 李玉麟 (2024). 针叶树形成层活动及径向生长监测研究进展. 应用生态学报, 35, 1223-1232.]
DOI |
|
[49] | Weigel R, Bat-Enerel B, Dulamsuren C, Muffler L, Weithmann G, Leuschner C (2023). Summer drought exposure, stand structure, and soil properties jointly control the growth of European beech along a steep precipitation gradient in northern Germany. Global Change Biology, 29, 763-779. |
[50] | Yu J, Liu Q, Meng S, Zhou G, Shah S, Xu Z (2018). Summer temperature variability inferred from tree-ring records in the central Hengduan Mountains, southeastern Tibetan Plateau. Dendrochronologia, 51, 92-100. |
[51] | Yuan X, Wang L, Wu P, Ji P, Sheffield J, Zhang M (2019). Anthropogenic shift towards higher risk of flash drought over China. Nature Communications, 10, 4661. DOI: 10.1038/s41467-019-12692-7. |
[52] |
Zhai L, Bergeron Y, Huang J, Berninger F (2012). Variation in intra-annual wood formation, and foliage and shoot development of three major Canadian boreal tree species. American Journal of Botany, 99, 827-837.
DOI PMID |
[53] | Zhang J, Gou X, Alexander MR, Xia J, Wang F, Zhang F, Man Z, Pederson N (2021). Drought limits wood production of Juniperus przewalskii even as growing seasons lengthens in a cold and arid environment. Catena, 196, 104936. DOI: 10.1016/j.catena.2020.104936. |
[54] | Zhang YP, Luo PF, Xu JL, Hou JY, Zhai LX (2022). Intra-annual growth and its response to climatic factors of two Salix species under warm temperate environment. Forests, 13, 1441. DOI:10.3390/f13091441. |
[55] | Zhao HM, Wu JB, Wang AZ, Guan DX, Liu YG (2022). Microtopography mediates the climate-growth relationship and growth resilience to drought of Pinus tabulaeformis plantation in the hilly site. Frontiers in Plant Science, 13, 1060011. DOI: 10.3389/fpls.2022.1060011. |
[1] | SHAO Chang-Chang, DUAN Hong-Lang, ZHAO Xi-Zhou, DING Gui-Jie. Research progress on the prediction of drought death point and the mechanism of drought- induced tree mortality [J]. Chin J Plant Ecol, 2025, 49(2): 221-231. |
[2] | CHEN Si-Yi, TANG Yan, HE Teng, JIANG Yong-Kang, DU Guang-Yuan. Xylem embolism characteristics and hydraulic safety risks of nine tree species in Qinling Mountains [J]. Chin J Plant Ecol, 2024, 48(9): 1213-1222. |
[3] | QIAN Ni-Peng, GAO Hao-Xin, SONG Chao-Jie, DONG Chun-Chao, LIU Qi-Jing. Seasonal dynamics of radial growth of Betula platyphylla and its response to environmental factors in Changbai Mountains [J]. Chin J Plant Ecol, 2024, 48(8): 1001-1010. |
[4] | ZHANG Fu-Chong, YU Ming-Han, ZHANG Jian-Ling, WANG Ping, DING Guo-Dong, HE Ying-Ying, SUN Hui-Yuan. Synergistic response mechanisms in xylem and phloem of Artemisia ordosica to changes in precipitation [J]. Chin J Plant Ecol, 2024, 48(7): 903-914. |
[5] | MA Lin, CHAO Lin, HE Yu-Sha, LI Zhong-Guo, WANG Ai-Hua, LIU Sheng-Yuan, HU Bao-Qing, LIU Yan-Yan. Relationship of embolism resistance with xylem anatomical structure and related traits of 12 tree species in tropical karst seasonal rainforests [J]. Chin J Plant Ecol, 2024, 48(7): 888-902. |
[6] | CHANG Chen-Hui, ZHU Biao, ZHU Jiang-Ling, JI Cheng-Jun, YANG Wan-Qin. Review on the study of forest coarse woody debris decomposition [J]. Chin J Plant Ecol, 2024, 48(5): 541-560. |
[7] | ZHANG Yu-Jian, LIU Yan-Hong. Tree physiology and major influencing factors under forest fires [J]. Chin J Plant Ecol, 2024, 48(3): 269-286. |
[8] | BAI Yu-Xin, YUAN Dan-Yang, WANG Xing-Chang, LIU Yu-Long, WANG Xiao-Chun. Comparison of characteristics of tree trunk xylem vessels among three species of Betula in northeast China and their relationships with climate [J]. Chin J Plant Ecol, 2023, 47(8): 1144-1158. |
[9] | ZHANG Min, SANG Ying, SONG Jin-Feng. Root pressure of hydroponic Dracaena sanderiana and its determinants [J]. Chin J Plant Ecol, 2023, 47(7): 1010-1019. |
[10] | REN Pei-Xin, LI Peng, PENG Chang-Hui, ZHOU Xiao-Lu, YANG Ming-Xia. Temporal and spatial variation of vegetation photosynthetic phenology in Dongting Lake basin and its response to climate change [J]. Chin J Plant Ecol, 2023, 47(3): 319-330. |
[11] | LU Chen-Xi, XU Man, SHI Xue-Jin, ZHAO Cheng, TAO Ze, LI Min, SI Bing-Cheng. Effects of different water isotope input methods based on Bayesian model MixSIAR on water uptake characteristic analysis results in apple orchards [J]. Chin J Plant Ecol, 2023, 47(2): 238-248. |
[12] | XIA Jing-Yu, ZHANG Yang-Jian, ZHENG Zhou-Tao, ZHAO Guang, ZHAO Ran, ZHU Yi-Xuan, GAO Jie, SHEN Ruo-Nan, LI Wen-Yu, ZHENG Jia-He, ZHANG Yu-Xue, ZHU Jun-Tao, SUN Osbert Jianxin. Asynchronous response of plant phenology to warming in a Kobresia pygmaea meadow in Nagqu, Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(2): 183-194. |
[13] | CHEN Xin-Yi, WU Chen, HUANG Jin-Xue, XIONG De-Cheng. Effects of warming on fine root phenology of forests: a review [J]. Chin J Plant Ecol, 2023, 47(11): 1471-1482. |
[14] | ZHANG Zhi-Shan, HAN Gao-Ling, HUO Jian-Qiang, HUANG Ri-Hui, XUE Shu-Wen. Response of xylem hydraulic conductivity and leaf photosynthetic capacity of sand-binding shrubs Caragana korshinskii and C. liouana to soil water [J]. Chin J Plant Ecol, 2023, 47(10): 1422-1431. |
[15] | ZHU Ming-Yang, LIN Lin, SHE Yu-Long, XIAO Cheng-Cai, ZHAO Tong-Xing, HU Chun-Xiang, ZHAO Chang-You, WANG Wen-Li. Radial growth and its low-temperature threshold of Abies georgei var. smithii at different altitudes in Jiaozi Mountain, Yunnan, China [J]. Chin J Plant Ecol, 2022, 46(9): 1038-1049. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn