Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (7): 903-914.DOI: 10.17521/cjpe.2023.0103 cstr: 32100.14.cjpe.2023.0103
• Research Articles • Previous Articles Next Articles
ZHANG Fu-Chong1,2,4, YU Ming-Han1,3,4,*(), ZHANG Jian-Ling1,3,4, WANG Ping1,2,4, DING Guo-Dong1,3,4, HE Ying-Ying1,3,4, SUN Hui-Yuan1,3,4
Received:
2023-04-14
Accepted:
2023-10-09
Online:
2024-07-20
Published:
2023-10-10
Contact:
* YU Ming-Han(Supported by:
ZHANG Fu-Chong, YU Ming-Han, ZHANG Jian-Ling, WANG Ping, DING Guo-Dong, HE Ying-Ying, SUN Hui-Yuan. Synergistic response mechanisms in xylem and phloem of Artemisia ordosica to changes in precipitation[J]. Chin J Plant Ecol, 2024, 48(7): 903-914.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0103
月份 Month | 平均月降水量 Average monthly precipitation (mm) | 降水间隔 Precipitation interval | 平均单次降水量 Average precipitation per event (mm) | 降水频次 Precipitation frequency | ||
---|---|---|---|---|---|---|
W- | W | W+ | ||||
5月 May | 33.09 | T | 3.86 | 5.52 | 7.17 | 6 |
T++ | 11.58 | 16.55 | 21.51 | 2 | ||
6月 June | 41.08 | T | 4.79 | 6.85 | 8.90 | 6 |
T++ | 14.38 | 20.54 | 26.70 | 2 | ||
7月 July | 72.39 | T | 8.45 | 12.07 | 15.68 | 6 |
T++ | 25.34 | 36.20 | 47.05 | 2 | ||
8月 August | 63.51 | T | 7.41 | 10.59 | 13.76 | 6 |
T++ | 22.23 | 31.76 | 41.28 | 2 | ||
9月 September | 52.71 | T | 6.15 | 8.79 | 11.42 | 6 |
T++ | 18.45 | 26.36 | 34.26 | 2 |
Table 1 Experimental setting of the precipitation amounts and precipitation intervals in experimental plots in Yanchi, Ningxia
月份 Month | 平均月降水量 Average monthly precipitation (mm) | 降水间隔 Precipitation interval | 平均单次降水量 Average precipitation per event (mm) | 降水频次 Precipitation frequency | ||
---|---|---|---|---|---|---|
W- | W | W+ | ||||
5月 May | 33.09 | T | 3.86 | 5.52 | 7.17 | 6 |
T++ | 11.58 | 16.55 | 21.51 | 2 | ||
6月 June | 41.08 | T | 4.79 | 6.85 | 8.90 | 6 |
T++ | 14.38 | 20.54 | 26.70 | 2 | ||
7月 July | 72.39 | T | 8.45 | 12.07 | 15.68 | 6 |
T++ | 25.34 | 36.20 | 47.05 | 2 | ||
8月 August | 63.51 | T | 7.41 | 10.59 | 13.76 | 6 |
T++ | 22.23 | 31.76 | 41.28 | 2 | ||
9月 September | 52.71 | T | 6.15 | 8.79 | 11.42 | 6 |
T++ | 18.45 | 26.36 | 34.26 | 2 |
Fig. 1 Schematic diagram of the experimental plots and plants in Yanchi, Ningxia. A, Overview of the plot. B, Artemisia ordosica plants in the rain shelter. C, Schematic diagram illustrating the axial sampling of Artemisia ordosica stems. DA, length of sampling point from stem tip.
降水处理Precipitation treatment | 土壤层次 Soil layer (cm) | |||||
---|---|---|---|---|---|---|
0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | |
W-T | 1.61 ± 0.69a | 1.91 ± 0.34a | 2.07 ± 0.35a | 2.68 ± 0.11a | 2.87 ± 0.18b | 2.69 ± 0.27b |
WT | 2.22 ± 1.04a | 2.55 ± 0.66a | 2.87 ± 0.74a | 3.17 ± 0.10a | 3.39 ± 0.28b | 3.18 ± 0.57b |
W+T | 2.12 ± 0.83a | 2.51 ± 0.56a | 2.52 ± 0.40a | 3.07 ± 0.51a | 3.87 ± 0.38ab | 3.60 ± 0.44b |
W-T++ | 1.36 ± 0.20a | 1.84 ± 0.46a | 2.15 ± 0.29a | 2.85 ± 0.10a | 3.60 ± 0.65b | 4.40 ± 0.68ab |
WT++ | 1.46 ± 0.17a | 2.33 ± 0.55a | 2.58 ± 0.54a | 3.89 ± 0.33a | 4.83 ± 0.36ab | 4.44 ± 0.76ab |
W+T++ | 1.52 ± 0.26a | 2.88 ± 0.96a | 3.92 ± 1.62a | 4.88 ± 1.92a | 6.33 ± 1.41a | 5.81 ± 0.53a |
双因素方差分析结果(F值) Results of Two-Way ANOVA (F-values) | ||||||
W | 0.394 | 1.824 | 1.917 | 2.213 | 7.434** | 4.612* |
T | 2.160 | 0.006 | 0.783 | 3.566 | 15.373*** | 27.910*** |
W × T | 0.173 | 0.250 | 1.243 | 1.017 | 1.607 | 0.709 |
Table 2 Effect of precipitation treatments on soil water content (%) in different soil layers of the Artemisia ordosica communities in Yanchi, Ningxia (mean ± SE)
降水处理Precipitation treatment | 土壤层次 Soil layer (cm) | |||||
---|---|---|---|---|---|---|
0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | |
W-T | 1.61 ± 0.69a | 1.91 ± 0.34a | 2.07 ± 0.35a | 2.68 ± 0.11a | 2.87 ± 0.18b | 2.69 ± 0.27b |
WT | 2.22 ± 1.04a | 2.55 ± 0.66a | 2.87 ± 0.74a | 3.17 ± 0.10a | 3.39 ± 0.28b | 3.18 ± 0.57b |
W+T | 2.12 ± 0.83a | 2.51 ± 0.56a | 2.52 ± 0.40a | 3.07 ± 0.51a | 3.87 ± 0.38ab | 3.60 ± 0.44b |
W-T++ | 1.36 ± 0.20a | 1.84 ± 0.46a | 2.15 ± 0.29a | 2.85 ± 0.10a | 3.60 ± 0.65b | 4.40 ± 0.68ab |
WT++ | 1.46 ± 0.17a | 2.33 ± 0.55a | 2.58 ± 0.54a | 3.89 ± 0.33a | 4.83 ± 0.36ab | 4.44 ± 0.76ab |
W+T++ | 1.52 ± 0.26a | 2.88 ± 0.96a | 3.92 ± 1.62a | 4.88 ± 1.92a | 6.33 ± 1.41a | 5.81 ± 0.53a |
双因素方差分析结果(F值) Results of Two-Way ANOVA (F-values) | ||||||
W | 0.394 | 1.824 | 1.917 | 2.213 | 7.434** | 4.612* |
T | 2.160 | 0.006 | 0.783 | 3.566 | 15.373*** | 27.910*** |
W × T | 0.173 | 0.250 | 1.243 | 1.017 | 1.607 | 0.709 |
Fig. 2 Variations in the anatomical characteristics of stems of Artemisia ordosica under precipitation treatments with respect to the axial changes in stem tip length (DA). A, Axial changes in conduit diameter (Dc). B, Axial changes in hydraulically weighted diameter of xylem conduits (Dh). C, Axial changes in conduit wall thickness (Tc). D, Axial changes in lumen area of phloem sieve cells (PA). T, precipitation interval 5 days; T++, precipitation interval 15 days; W-, precipitation reduce by 30%; W, natural precipitation; W+, precipitation increase by 30%. CS, common slope.
模型 Model | 处理 Treatment | 斜率(下限-上限) Slope (lower limit-upper limit) | 截距(下限-上限) Intercept (lower limit-upper limit) |
---|---|---|---|
lg DA VS lg Dc | W-T | 0.178 (0.135-0.234)a | 1.059 (1.004-1.115)B |
WT | 0.154 (0.120-0.197)a | 1.105 (1.058-1.152)B | |
W+T | 0.154 (0.122-0.193)a | 1.147 (1.106-1.188)A | |
W-T++ | 0.167 (0.119-0.236)a | 1.083 (1.025-1.141)B | |
WT++ | 0.199 (0.137-0.288)a | 1.077 (0.999-1.156)B | |
W+T++ | 0.182 (0.140-0.236)a | 1.073 (1.016-1.129)B | |
lg DA VS lg Dh | W-T | 0.162 (0.117-0.226)a | 1.156 (1.094-1.217)B |
WT | 0.154 (0.110-0.218)a | 1.165 (1.099-1.230)B | |
W+T | 0.179 (0.146-0.219)a | 1.179 (1.137-1.222)B | |
W-T++ | 0.202 (0.135-0.302)a | 1.134 (1.105-1.217)B | |
WT++ | 0.213 (0.129-0.351)a | 1.137 (1.021-0.254)B | |
W+T++ | 0.183 (0.140-0.238)a | 1.137 (1.080-1.195)B | |
lg DA VS lg Tc | W-T | 0.253 (0.173-0.371)a | -0.092 (-0.104-0.020)A |
WT | 0.215 (0.143-0.323)a | -0.112 (-0.222- -0.003)A | |
W+T | 0.249 (0.173-0.360)a | -0.221 (-0.330- -0.113)B | |
W-T++ | 0.237 (0.167-0.336)a | -0.066 (-0.151-0.020)A | |
WT++ | 0.202 (0.135-0.303)a | -0.097 (-0.185- -0.008)A | |
W+T++ | 0.235 (0.163-0.338)a | -0.156 (-0.259- -0.054)A | |
lg DA VS lg PA | W-T | 0.277 (0.177-0.435)a | 1.043 (0.888-1.198)A |
WT | 0.243 (0.180-0.328)a | 0.948 (0.856-1.041)B | |
W+T | 0.231 (0.181-0.294)a | 0.967 (0.898-1.036)B | |
W-T++ | 0.236 (0.188-0.295)a | 1.064 (1.006-1.123)A | |
WT++ | 0.236 (0.177-0.315)a | 0.995 (0.917-1.073)AB | |
W+T++ | 0.243 (0.190-0.311)a | 0.943 (0.871-1.014)B |
Table 3 Power function model outputs for each xylem and phloem anatomical feature and distance from stem tip length for different precipitation treatments of Artemisia ordosica
模型 Model | 处理 Treatment | 斜率(下限-上限) Slope (lower limit-upper limit) | 截距(下限-上限) Intercept (lower limit-upper limit) |
---|---|---|---|
lg DA VS lg Dc | W-T | 0.178 (0.135-0.234)a | 1.059 (1.004-1.115)B |
WT | 0.154 (0.120-0.197)a | 1.105 (1.058-1.152)B | |
W+T | 0.154 (0.122-0.193)a | 1.147 (1.106-1.188)A | |
W-T++ | 0.167 (0.119-0.236)a | 1.083 (1.025-1.141)B | |
WT++ | 0.199 (0.137-0.288)a | 1.077 (0.999-1.156)B | |
W+T++ | 0.182 (0.140-0.236)a | 1.073 (1.016-1.129)B | |
lg DA VS lg Dh | W-T | 0.162 (0.117-0.226)a | 1.156 (1.094-1.217)B |
WT | 0.154 (0.110-0.218)a | 1.165 (1.099-1.230)B | |
W+T | 0.179 (0.146-0.219)a | 1.179 (1.137-1.222)B | |
W-T++ | 0.202 (0.135-0.302)a | 1.134 (1.105-1.217)B | |
WT++ | 0.213 (0.129-0.351)a | 1.137 (1.021-0.254)B | |
W+T++ | 0.183 (0.140-0.238)a | 1.137 (1.080-1.195)B | |
lg DA VS lg Tc | W-T | 0.253 (0.173-0.371)a | -0.092 (-0.104-0.020)A |
WT | 0.215 (0.143-0.323)a | -0.112 (-0.222- -0.003)A | |
W+T | 0.249 (0.173-0.360)a | -0.221 (-0.330- -0.113)B | |
W-T++ | 0.237 (0.167-0.336)a | -0.066 (-0.151-0.020)A | |
WT++ | 0.202 (0.135-0.303)a | -0.097 (-0.185- -0.008)A | |
W+T++ | 0.235 (0.163-0.338)a | -0.156 (-0.259- -0.054)A | |
lg DA VS lg PA | W-T | 0.277 (0.177-0.435)a | 1.043 (0.888-1.198)A |
WT | 0.243 (0.180-0.328)a | 0.948 (0.856-1.041)B | |
W+T | 0.231 (0.181-0.294)a | 0.967 (0.898-1.036)B | |
W-T++ | 0.236 (0.188-0.295)a | 1.064 (1.006-1.123)A | |
WT++ | 0.236 (0.177-0.315)a | 0.995 (0.917-1.073)AB | |
W+T++ | 0.243 (0.190-0.311)a | 0.943 (0.871-1.014)B |
Fig. 3 Differences in individual anatomical traits at the same axial position of the Artemisia ordosica stem under precipitation treatments. T, precipitation interval 5 days; T++, precipitation interval 15 days; W-, precipitation reduce by 30%; W, natural precipitation; W+, precipitation increase by 30%. Dc, conduit diameter; Dh, hydraulically weighted diameter of xylem conduits; Tc, conduit wall thickness; PA, lumen area of phloem sieve cells. Different uppercase letters indicate significant differences (p < 0.05) between different amount of precipitation at the same precipitation interval; different lowercase letters indicate significant differences (p < 0.05) among different precipitation intervals at the same amount of precipitation, least significant difference (LSD) post hoc test at α = 0.05 level.
降水处理 Precipitation treatment | 解剖特征 Anatomical characteristics | |||
---|---|---|---|---|
Dc | Dh | Tc | PA | |
W | 24.932*** | 2.968 | 29.155*** | 70.233*** |
T | 5.079* | 2.527 | 0.203 | 1.816 |
W × T | 0.347 | 0.645 | 0.104 | 0.775 |
Table 4 Results of two-way ANOVA (F-values) for anatomical characteristics of Artemisia ordosica stems in the same axial position
降水处理 Precipitation treatment | 解剖特征 Anatomical characteristics | |||
---|---|---|---|---|
Dc | Dh | Tc | PA | |
W | 24.932*** | 2.968 | 29.155*** | 70.233*** |
T | 5.079* | 2.527 | 0.203 | 1.816 |
W × T | 0.347 | 0.645 | 0.104 | 0.775 |
Fig. 4 Correlation between conduit diameter (Dc), hydraulically weighted diameter of xylem conduits (Dh), conduit wall thickness (Tc) and lumen area of phloem sieve cells (PA) in the same axial position of the stem of Artemisia ordosica. ***, p < 0.001.
降水处理 Precipitation treatment | 解剖特征 Anatomical characteristics | ||
---|---|---|---|
Dc | Dh | Tc | |
W-T | -1.89 ± 0.68a | -0.71 ± 0.39a | 8.85 ± 2.62a |
WT | -0.68 ± 0.88a | -0.19 ± 0.45a | 7.74 ± 4.14a |
W+T | -0.76 ± 0.74a | -0.50 ± 0.45a | 5.99 ± 4.05a |
W-T++ | -0.62 ± 0.79a | -0.47 ± 0.43a | 9.92 ± 3.93a |
WT++ | -0.85 ± 0.72a | -0.46 ± 0.42a | 13.90 ± 6.17a |
W+T++ | -0.69 ± 0.75a | -0.47 ± 0.49a | 4.34 ± 3.61a |
Table 5 Differences in the slope of the linear fit model between xylem anatomical features and sieve tube area of the bast at the same axial position of Artemisia ordosica stems under different precipitation treatments (mean ± SE)
降水处理 Precipitation treatment | 解剖特征 Anatomical characteristics | ||
---|---|---|---|
Dc | Dh | Tc | |
W-T | -1.89 ± 0.68a | -0.71 ± 0.39a | 8.85 ± 2.62a |
WT | -0.68 ± 0.88a | -0.19 ± 0.45a | 7.74 ± 4.14a |
W+T | -0.76 ± 0.74a | -0.50 ± 0.45a | 5.99 ± 4.05a |
W-T++ | -0.62 ± 0.79a | -0.47 ± 0.43a | 9.92 ± 3.93a |
WT++ | -0.85 ± 0.72a | -0.46 ± 0.42a | 13.90 ± 6.17a |
W+T++ | -0.69 ± 0.75a | -0.47 ± 0.49a | 4.34 ± 3.61a |
Fig. 5 Correlation between water content of different soil layers and individual anatomical features of Artemisia ordosica. Dc, conduit diameter; Dh, hydraulically weighted diameter of xylem conduits; Tc, conduit wall thickness; PA, lumen area of phloem sieve cells.
[1] | Anfodillo T, Olson ME (2021). Tree mortality: testing the link between drought, embolism vulnerability, and xylem conduit diameter remains a priority. Frontiers in Forests and Global Change, 4, 704670. DOI: 10.3389/ffgc.2021.704670. |
[2] | Anfodillo T, Petit G, Crivellaro A (2013). Axial conduit widening in woody species: a still neglected anatomical pattern. IAWA Journal, 34, 352-364. |
[3] |
Beikircher B, Mayr S (2009). Intraspecific differences in drought tolerance and acclimation in hydraulics of Ligustrum vulgare and Viburnum lantana. Tree Physiology, 29, 765-775.
DOI PMID |
[4] |
Blackman CJ, Gleason SM, Cook AM, Chang Y, Laws CA, Westoby M (2018). The links between leaf hydraulic vulnerability to drought and key aspects of leaf venation and xylem anatomy among 26 Australian woody angiosperms from contrasting climates. Annals of Botany, 122, 59-67.
DOI PMID |
[5] |
Bouda M, Huggett BA, Prats KA, Wason JW, Wilson JP, Brodersen CR (2022). Hydraulic failure as a primary driver of xylem network evolution in early vascular plants. Science, 378, 642-646.
DOI PMID |
[6] | Cai J, Tyree MT (2010). The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx. Plant, Cell & Environment, 33, 1059-1069. |
[7] | Chang W, Stein ML, Wang J, Kotamarthi VR, Moyer EJ (2016). Changes in spatiotemporal precipitation patterns in changing climate conditions. Journal of Climate, 29, 8355-8376. |
[8] | Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, et al. (2012). Global convergence in the vulnerability of forests to drought. Nature, 491, 752-755. |
[9] | Choat B, Lahr EC, Melcher PJ, Zwieniecki MA, Michele Holbrook N (2005). The spatial pattern of air seeding thresholds in mature sugar maple trees. Plant, Cell & Environment, 28, 1082-1089. |
[10] |
Fonti P, von Arx G, García-González I, Eilmann B, Sass- Klaassen U, Gärtner H, Eckstein D (2010). Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytologist, 185, 42-53.
DOI PMID |
[11] | Gersony JT, Holbrook NM (2022). Phloem turgor is maintained during severe drought in Ricinus communis. Plant, Cell & Environment, 45, 2898-2905. |
[12] |
Hacke UG, Jacobsen AL, Brandon Pratt R, Maurel C, Lachenbruch B, Zwiazek J (2012). New research on plant-water relations examines the molecular, structural, and physiological mechanisms of plant responses to their environment. New Phytologist, 196, 345-348.
DOI PMID |
[13] | Hacke UG, Sperry JS, Pittermann J (2000). Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic and Applied Ecology, 1, 31-41. |
[14] |
Hacke UG, Sperry JS, Wheeler JK, Castro L (2006). Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology, 26, 689-701.
PMID |
[15] | Hacke UG, Spicer R, Schreiber SG, Plavcová L (2017). An ecophysiological and developmental perspective on variation in vessel diameter. Plant, Cell & Environment, 40, 831-845. |
[16] |
He P, Gleason SM, Wright IJ, Weng E, Liu H, Zhu S, Lu M, Luo Q, Li R, Wu G, Yan E, Song Y, Mi X, Hao G, Reich PB, et al. (2020). Growing-season temperature and precipitation are independent drivers of global variation in xylem hydraulic conductivity. Global Change Biology, 26, 1833-1841.
DOI PMID |
[17] |
Hölttä T, Mencuccini M, Nikinmaa E (2009). Linking phloem function to structure: analysis with a coupled xylem-phloem transport model. Journal of Theoretical Biology, 259, 325-337.
DOI PMID |
[18] | IPCC (2014). Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[19] | Jyske T, Hölttä T (2015). Comparison of phloem and xylem hydraulic architecture in Picea abies stems. New Phytologist, 205, 102-115. |
[20] |
Kiorapostolou N, Camarero JJ, Carrer M, Sterck F, Brigita B, Sangüesa-Barreda G, Petit G (2020). Scots pine trees react to drought by increasing xylem and phloem conductivities. Tree Physiology, 40, 774-781.
DOI PMID |
[21] | Kiorapostolou N, Galiano-Pérez L, von Arx G, Gessler A, Petit G (2018). Structural and anatomical responses of Pinus sylvestris and Tilia platyphyllos seedlings exposed to water shortage. Trees, 32, 1211-1218. |
[22] |
Kiorapostolou N, Petit G (2019). Similarities and differences in the balances between leaf, xylem and phloem structures in Fraxinus ornus along an environmental gradient. Tree Physiology, 39, 234-242.
DOI PMID |
[23] |
Klein T, Hartmann H (2018). Climate change drives tree mortality. Science, 362, 758. DOI: 10.1126/science.aav6508.
PMID |
[24] | Lazzarin M, Crivellaro A, Williams CB, Dawson TE, Mozzi G, Anfodillo T (2016). Tracheid and pit anatomy vary in tandem in a tall Sequoiadendron giganteum tree. IAWA Journal, 37, 172-185. |
[25] |
Lechthaler S, Turnbull TL, Gelmini Y, Pirotti F, Anfodillo T, Adams MA, Petit G (2019). A standardization method to disentangle environmental information from axial trends of xylem anatomical traits. Tree Physiology, 39, 495-502.
DOI PMID |
[26] | Lens F, Gleason SM, Bortolami G, Brodersen C, Delzon S, Jansen S (2022). Functional xylem characteristics associated with drought-induced embolism in angiosperms. New Phytologist, 236, 2019-2036. |
[27] |
Lintunen A, Paljakka T, Jyske T, Peltoniemi M, Sterck F, von Arx G, Cochard H, Copini P, Caldeira MC, Delzon S, Gebauer R, Grönlund L, Kiorapostolou N, Lechthaler S, Lobo-do-Vale R, et al. (2016). Osmolality and non- structural carbohydrate composition in the secondary phloem of trees across a latitudinal gradient in Europe. Frontiers in Plant Science, 7, 726. DOI: 10.3389/fpls.2016.00726.
PMID |
[28] |
Martínez-Sancho E, Dorado-Liñán I, Hacke UG, Seidel H, Menzel A (2017). Contrasting hydraulic architectures of scots pine and sessile oak at their southernmost distribution limits. Frontiers in Plant Science, 8, 598. DOI: 10.3389/fpls.2017.00598.
PMID |
[29] |
Mayr S, Hacke U, Schmid P, Schwienbacher F, Gruber A (2006). Frost drought in conifers at the alpine timberline: xylem dysfunction and adaptations. Ecology, 87, 3175-3185.
PMID |
[30] |
McCulloh KA, Johnson DM, Petitmermet J, McNellis B, Meinzer FC, Lachenbruch B (2015). A comparison of hydraulic architecture in three similarly sized woody species differing in their maximum potential height. Tree Physiology, 35, 723-731.
DOI PMID |
[31] |
Mencuccini M, Hölttä T, Petit G, Magnani F (2007). Sanio’s laws revisited. Size-dependent changes in the xylem architecture of trees. Ecology Letters, 10, 1084-1093.
PMID |
[32] |
Nardini A, Pedà G, Rocca N (2012). Trade-offs between leaf hydraulic capacity and drought vulnerability: morpho- anatomical bases, carbon costs and ecological consequences. New Phytologist, 196, 788-798.
DOI PMID |
[33] |
Nardini A, Savi T, Losso A, Petit G, Pacilè S, Tromba G, Mayr S, Trifilò P, Lo Gullo MA, Salleo S (2017). X-ray microtomography observations of xylem embolism in stems of Laurus nobilis are consistent with hydraulic measurements of percentage loss of conductance. New Phytologist, 213, 1068-1075.
DOI PMID |
[34] | Ning ZY, Zhao XY, Li YL, Wang LL, Lian JE, Yang HL, Li YQ (2021). Plant community C:N:P stoichiometry is mediated by soil nutrients and plant functional groups during grassland desertification. Ecological Engineering, 162, 106179. DOI: 10.1016/j.ecoleng.2021.106179. |
[35] | Nola P, Bracco F, Assini S, Arx G, Castagneri D (2020). Xylem anatomy of Robinia pseudoacacia L. and Quercus robur L. is differently affected by climate in a temperate alluvial forest. Annals of Forest Science, 77, 1-16. |
[36] | Nolf M, Creek D, Duursma R, Holtum J, Mayr S, Choat B (2015). Stem and leaf hydraulic properties are finely coordinated in three tropical rain forest tree species. Plant, Cell & Environment, 38, 2652-2661. |
[37] |
Olson ME, Soriano D, Rosell JA, Anfodillo T, Donoghue MJ, Edwards EJ, León-Gómez C, Dawson T, Martínez JJ, Castorena M, Echeverría A, Espinosa CI, Fajardo A, Gazol A, Isnard S, et al. (2018). Plant height and hydraulic vulnerability to drought and cold. Proceedings of the National Academy of Sciences of the United States of America, 115, 7551-7556.
DOI PMID |
[38] |
Petit G, Anfodillo T (2009). Plant physiology in theory and practice: an analysis of the WBE model for vascular plants. Journal of Theoretical Biology, 259, 1-4.
DOI PMID |
[39] | Petit G, Crivellaro A (2014). Comparative axial widening of phloem and xylem conduits in small woody plants. Trees, 28, 915-921. |
[40] |
Petit G, Pfautsch S, Anfodillo T, Adams MA (2010). The challenge of tree height in Eucalyptus regnans: When xylem tapering overcomes hydraulic resistance. New Phytologist, 187, 1146-1153.
DOI PMID |
[41] |
Petit G, Savi T, Consolini M, Anfodillo T, Nardini A (2016). Interplay of growth rate and xylem plasticity for optimal coordination of carbon and hydraulic economies in Fraxinus ornus trees. Tree Physiology, 36, 1310-1319.
PMID |
[42] |
Petit G, Zambonini D, Hesse BD, Häberle KH (2022). No xylem phenotypic plasticity in mature Picea abies and Fagus sylvatica trees after 5 years of throughfall precipitation exclusion. Global Change Biology, 28, 4668-4683.
DOI PMID |
[43] | Pfautsch S, Harbusch M, Wesolowski A, Smith R, MacFarlane C, Tjoelker MG, Reich PB, Adams MA (2016). Climate determines vascular traits in the ecologically diverse genus Eucalyptus. Ecology Letters, 19, 240-248. |
[44] | Prendin A, Petit G, Fonti P, Rixen C, Dawes MA, von Arx G (2018). Axial xylem architecture of Larix decidua exposed to CO2 enrichment and soil warming at the tree line. Functional Ecology, 32, 273-287. |
[45] | Putnam AE, Broecker WS (2017). Human-induced changes in the distribution of rainfall. Science Advances, 3, e1600871. DOI: 10.1126/sciadv.1600871. |
[46] |
Savage JA, Beecher SD, Clerx L, Gersony JT, Knoblauch J, Losada JM, Jensen KH, Knoblauch M, Holbrook NM (2017). Maintenance of carbohydrate transport in tall trees. Nature Plants, 3, 965-972.
DOI PMID |
[47] |
Sevanto S (2014). Phloem transport and drought. Journal of Experimental Botany, 65, 1751-1759.
DOI PMID |
[48] |
Sevanto S (2018). Drought impacts on phloem transport. Current Opinion in Plant Biology, 43, 76-81.
DOI PMID |
[49] | Sevanto S, Ryan M, Dickman LT, Derome D, Patera A, Defraeye T, Pangle RE, Hudson PJ, Pockman WT (2018). Is desiccation tolerance and avoidance reflected in xylem and phloem anatomy of two coexisting arid-zone coniferous trees? Plant, Cell & Environment, 41, 1551-1564. |
[50] |
Soriano D, Echeverría A, Anfodillo T, Rosell JA, Olson ME (2020). Hydraulic traits vary as the result of tip-to-base conduit widening in vascular plants. Journal of Experimental Botany, 71, 4232-4242.
DOI PMID |
[51] | Sperry JS, Stiller V, Hacke UG (2003). Xylem hydraulics and the soil-plant-atmosphere continuum: opportunities and unresolved issues. Agronomy Journal, 95, 1362-1370. |
[52] |
Venturas MD, Sperry JS, Hacke UG (2017). Plant xylem hydraulics: what we understand, current research, and future challenges. Journal of Integrative Plant Biology, 59, 356-389.
DOI |
[53] | Yu MH, He YY, Zhang FC, Ding GD, Wang CY (2023). Effects of intra-year precipitation variability on shrub community productivity depend on the annual total rainfall. Plant and Soil, 487, 499-510. |
[54] | Zhu SD, Liu H, Xu QY, Cao K, Ye Q (2016). Are leaves more vulnerable to cavitation than branches. Functional Ecology, 30, 1740-1744. |
[55] | Zimmermann MH (1978). Hydraulic architecture of some diffuse-porous trees. Canadian Journal of Botany, 56, 2286-2295. |
[1] | Si-Yi CHEN Yan TANG Teng HE Yong-Kang JIANG Guangyuan Du. Xylem embolism characteristics and hydraulic safety risks of nine tree species in the Qinling Mountains [J]. Chin J Plant Ecol, 2024, 48(9): 0-0. |
[2] | QIAN Ni-Peng, GAO Hao-Xin, SONG Chao-Jie, DONG Chun-Chao, LIU Qi-Jing. Seasonal dynamics of radial growth of Betula platyphylla and its response to environmental factors in Changbai Mountains [J]. Chin J Plant Ecol, 2024, 48(8): 1001-1010. |
[3] | MA Lin, CHAO Lin, HE Yu-Sha, LI Zhong-Guo, WANG Ai-Hua, LIU Sheng-Yuan, HU Bao-Qing, LIU Yan-Yan. Relationship of embolism resistance with xylem anatomical structure and related traits of 12 tree species in tropical karst seasonal rainforests [J]. Chin J Plant Ecol, 2024, 48(7): 888-902. |
[4] | CHANG Chen-Hui, ZHU Biao, ZHU Jiang-Ling, JI Cheng-Jun, YANG Wan-Qin. Review on the study of forest coarse woody debris decomposition [J]. Chin J Plant Ecol, 2024, 48(5): 541-560. |
[5] | BAI Yu-Xin, YUAN Dan-Yang, WANG Xing-Chang, LIU Yu-Long, WANG Xiao-Chun. Comparison of characteristics of tree trunk xylem vessels among three species of Betula in northeast China and their relationships with climate [J]. Chin J Plant Ecol, 2023, 47(8): 1144-1158. |
[6] | ZHANG Min, SANG Ying, SONG Jin-Feng. Root pressure of hydroponic Dracaena sanderiana and its determinants [J]. Chin J Plant Ecol, 2023, 47(7): 1010-1019. |
[7] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[8] | LU Chen-Xi, XU Man, SHI Xue-Jin, ZHAO Cheng, TAO Ze, LI Min, SI Bing-Cheng. Effects of different water isotope input methods based on Bayesian model MixSIAR on water uptake characteristic analysis results in apple orchards [J]. Chin J Plant Ecol, 2023, 47(2): 238-248. |
[9] | LIU Yan-Jie, LIU Yu-Long, WANG Chuan-Kuan, WANG Xing-Chang. Comparison of leaf cost-benefit relationship for five pinnate compound-leaf tree species in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1540-1550. |
[10] | ZHANG Zhi-Shan, HAN Gao-Ling, HUO Jian-Qiang, HUANG Ri-Hui, XUE Shu-Wen. Response of xylem hydraulic conductivity and leaf photosynthetic capacity of sand-binding shrubs Caragana korshinskii and C. liouana to soil water [J]. Chin J Plant Ecol, 2023, 47(10): 1422-1431. |
[11] | ZHU Ming-Yang, LIN Lin, SHE Yu-Long, XIAO Cheng-Cai, ZHAO Tong-Xing, HU Chun-Xiang, ZHAO Chang-You, WANG Wen-Li. Radial growth and its low-temperature threshold of Abies georgei var. smithii at different altitudes in Jiaozi Mountain, Yunnan, China [J]. Chin J Plant Ecol, 2022, 46(9): 1038-1049. |
[12] | WANG Guang-Ya, CHEN Bing-Hua, HUANG Yu-Chen, JIN Guang-Ze, LIU Zhi-Li. Effects of growing position on leaflet trait variations and its correlations in Fraxinus mandshurica [J]. Chin J Plant Ecol, 2022, 46(6): 712-721. |
[13] | HAN Xu-Li, ZHAO Ming-Shui, WANG Zhong-Yuan, YE Lin-Feng, LU Shi-Tong, CHEN Sen, LI Yan, XIE Jiang-Bo. Adaptation of xylem structure and function of three gymnosperms to different habitats [J]. Chin J Plant Ecol, 2022, 46(4): 440-450. |
[14] | XIONG Ying-Jie, YU Guo, WEI Kai-Lu, PENG Juan, GENG Hong-Ru, YANG Dong-Mei, PENG Guo-Quan. Relationships between lamina size, vein density and vein cell wall dry mass per unit vein length of broad-leaved woody species in Tiantong Mountain, southeastern China [J]. Chin J Plant Ecol, 2022, 46(2): 136-147. |
[15] | HAN Cong, LIU Peng, MU Yan-Mei, YUAN Yuan, HAO Shao-Rong, TIAN Yun, ZHA Tian-Shan, JIA Xin. Response of ecosystem carbon balance to asymmetric daytime vs nighttime warming in Artemisia ordosica shrublands [J]. Chin J Plant Ecol, 2022, 46(12): 1473-1485. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn