Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (7): 915-929.DOI: 10.17521/cjpe.2023.0100 cstr: 32100.14.cjpe.2023.0100
• Research Articles • Previous Articles Next Articles
WANG Xiao-Lin, ZHOU Wei, ZHAO Mei, DING Yu-Tong, YANG Dong-Mei, ZHANG Yin-Shuang, YIN Meng-Qi, ZHUANG Yue, PENG Guo-Quan*()(
)
Received:
2023-04-11
Accepted:
2023-12-21
Online:
2024-07-20
Published:
2024-01-22
Contact:
* PENG Guo-Quan(Supported by:
WANG Xiao-Lin, ZHOU Wei, ZHAO Mei, DING Yu-Tong, YANG Dong-Mei, ZHANG Yin-Shuang, YIN Meng-Qi, ZHUANG Yue, PENG Guo-Quan. Axial variations in vessel structure of bamboos Phyllostachys violascens ‘Prevernalis’ and Bambusa textilis[J]. Chin J Plant Ecol, 2024, 48(7): 915-929.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0100
物种 Species | 指标(y轴-x轴) Index (y-axis - x-axis) | N | R2 | 斜率 Slope | 95%置信区间 95% CI |
---|---|---|---|---|---|
雷竹 P. violascens ‘Prevernalis’ | 水力加权导管直径-距茎尖距离 Dh - distance from the stem tip | 83 | 0.893 | 0.305 | (0.284, 0.328) |
水力加权导管直径-茎干外径 Dh - stem outside diameter | 83 | 0.845 | 0.422 | (0.387, 0.460) | |
平均导管面积-距茎尖距离 Mean vessel area - distance from the stem tip | 83 | 0.895 | 0.574 | (0.535, 0.617) | |
平均导管面积-茎干外径 Mean vessel area - stem outside diameter | 83 | 0.848 | 0.794 | (0.729, 0.865) | |
茎干外径-距茎尖距离 Stem outside diameter - distance from the stem tip | 83 | 0.967 | 0.724 | (0.695, 0.753) | |
茎木质部横截面积-距茎尖距离 Xylem cross-sectional area - distance from the stem tip | 83 | 0.974 | 1.257 | (1.213, 1.302) | |
青皮竹 B. textilis | 水力加权导管直径-距茎尖距离 Dh - distance from the stem tip | 78 | 0.908 | 0.299 | (0.279, 0.320) |
水力加权导管直径-茎干外径 Dh - stem outside diameter | 78 | 0.895 | 0.393 | (0.365, 0.424) | |
平均导管面积-距茎尖距离 Mean vessel area - distance from the stem tip | 78 | 0.923 | 0.573 | (0.538, 0.611) | |
平均导管面积-茎干外径 Mean vessel area - stem outside diameter | 78 | 0.907 | 0.755 | (0.704, 0.809) | |
茎干外径-距茎尖距离 Stem outside diameter - distance from the stem tip | 78 | 0.956 | 0.759 | (0.724, 0.797) | |
茎木质部横截面积-距茎尖距离 Xylem cross-sectional area - distance from the stem tip | 78 | 0.963 | 1.343 | (1.286, 1.403) |
Table 1 Standardized major axis regression slopes and 95% confidence intervals (CI) of the slopes of log-log linear relationships between vessel size and morphological traits for Phyllostachys violascens ‘Prevernalis’ and Bambusa textilis
物种 Species | 指标(y轴-x轴) Index (y-axis - x-axis) | N | R2 | 斜率 Slope | 95%置信区间 95% CI |
---|---|---|---|---|---|
雷竹 P. violascens ‘Prevernalis’ | 水力加权导管直径-距茎尖距离 Dh - distance from the stem tip | 83 | 0.893 | 0.305 | (0.284, 0.328) |
水力加权导管直径-茎干外径 Dh - stem outside diameter | 83 | 0.845 | 0.422 | (0.387, 0.460) | |
平均导管面积-距茎尖距离 Mean vessel area - distance from the stem tip | 83 | 0.895 | 0.574 | (0.535, 0.617) | |
平均导管面积-茎干外径 Mean vessel area - stem outside diameter | 83 | 0.848 | 0.794 | (0.729, 0.865) | |
茎干外径-距茎尖距离 Stem outside diameter - distance from the stem tip | 83 | 0.967 | 0.724 | (0.695, 0.753) | |
茎木质部横截面积-距茎尖距离 Xylem cross-sectional area - distance from the stem tip | 83 | 0.974 | 1.257 | (1.213, 1.302) | |
青皮竹 B. textilis | 水力加权导管直径-距茎尖距离 Dh - distance from the stem tip | 78 | 0.908 | 0.299 | (0.279, 0.320) |
水力加权导管直径-茎干外径 Dh - stem outside diameter | 78 | 0.895 | 0.393 | (0.365, 0.424) | |
平均导管面积-距茎尖距离 Mean vessel area - distance from the stem tip | 78 | 0.923 | 0.573 | (0.538, 0.611) | |
平均导管面积-茎干外径 Mean vessel area - stem outside diameter | 78 | 0.907 | 0.755 | (0.704, 0.809) | |
茎干外径-距茎尖距离 Stem outside diameter - distance from the stem tip | 78 | 0.956 | 0.759 | (0.724, 0.797) | |
茎木质部横截面积-距茎尖距离 Xylem cross-sectional area - distance from the stem tip | 78 | 0.963 | 1.343 | (1.286, 1.403) |
Fig. 1 Variations in hydraulically weighted mean vessel diameter (Dh) and mean vessel area with the distance from the stem tip (log-log scale) along the stem in four individuals of Phyllostachys violascens ‘Prevernalis’ (A, C) and Bambusa textilis (B, D). Linear scale shown in the inset.
Fig. 2 Variations in vessel density and vessel area to density ratio with the distance from the stem tip (log-log scale) along the stem in four individuals of Phyllostachys violascens ‘Prevernalis’ (A, C) and Bambusa textilis (B, D). Linear scale shown in the inset.
物种 Species | 指标(y轴-x轴) Index (y-axis - x-axis) | N | R2 | 斜率 Slope | 95%置信区间 95% CI | |
---|---|---|---|---|---|---|
雷竹 P. violascens ‘Prevernalis’ | 导管数量-距茎尖距离 Vessel number - distance from the stem tip | 83 | 0.946 | 0.805 | (0.764, 0.847) | |
导管数量-茎干外径 Vessel number - stem outside diameter | 83 | 0.989 | 1.112 | (1.087, 1.138) | ||
导管密度-距茎尖距离 Vessel density - distance from the stem tip | 83 | 0.949 | -0.471 | (-0.495, -0.448) | ||
导管密度-茎干外径 Vessel density - stem outside diameter | 83 | 0.935 | -0.650 | (-0.688, -0.615) | ||
导管面积/导管密度-距茎尖距离 Vessel area to density ratio - distance from the stem tip | 83 | 0.942 | 1.032 | (0.979, 1.089) | ||
导管面积/导管密度-茎干外径 Vessel area to density ratio - stem outside diameter | 83 | 0.908 | 1.427 | (1.334, 1.526) | ||
青皮竹 B. textilis | 导管数量-距茎尖距离 Vessel number - distance from the stem tip | 78 | 0.939 | 0.692 | (0.654, 0.732) | |
导管数量-茎干外径 Vessel number - stem outside diameter | 78 | 0.981 | 0.911 | (0.883, 0.940) | ||
导管密度-距茎尖距离 Vessel density - distance from the stem tip | 78 | 0.937 | -0.669 | (-0.709, -0.632) | ||
导管密度-茎干外径 Vessel density - stem outside diameter | 78 | 0.956 | -0.881 | (-0.924, -0.840) | ||
导管面积/导管密度-距茎尖距离 Vessel area to density ratio - distance from the stem tip | 78 | 0.947 | 1.232 | (1.168, 1.298) | ||
导管面积/导管密度-茎干外径 Vessel area to density ratio - stem outside diameter | 78 | 0.950 | 1.622 | (1.541, 1.707) |
Table 2 Standardized major axis regression slopes and 95% confidence intervals (CI) of the slopes of log-log linear relationships between vessel number, vessel density, vessel area to density ratio and morphological traits for Phyllostachys violascens ‘Prevernalis’ and Bambusa textilis
物种 Species | 指标(y轴-x轴) Index (y-axis - x-axis) | N | R2 | 斜率 Slope | 95%置信区间 95% CI | |
---|---|---|---|---|---|---|
雷竹 P. violascens ‘Prevernalis’ | 导管数量-距茎尖距离 Vessel number - distance from the stem tip | 83 | 0.946 | 0.805 | (0.764, 0.847) | |
导管数量-茎干外径 Vessel number - stem outside diameter | 83 | 0.989 | 1.112 | (1.087, 1.138) | ||
导管密度-距茎尖距离 Vessel density - distance from the stem tip | 83 | 0.949 | -0.471 | (-0.495, -0.448) | ||
导管密度-茎干外径 Vessel density - stem outside diameter | 83 | 0.935 | -0.650 | (-0.688, -0.615) | ||
导管面积/导管密度-距茎尖距离 Vessel area to density ratio - distance from the stem tip | 83 | 0.942 | 1.032 | (0.979, 1.089) | ||
导管面积/导管密度-茎干外径 Vessel area to density ratio - stem outside diameter | 83 | 0.908 | 1.427 | (1.334, 1.526) | ||
青皮竹 B. textilis | 导管数量-距茎尖距离 Vessel number - distance from the stem tip | 78 | 0.939 | 0.692 | (0.654, 0.732) | |
导管数量-茎干外径 Vessel number - stem outside diameter | 78 | 0.981 | 0.911 | (0.883, 0.940) | ||
导管密度-距茎尖距离 Vessel density - distance from the stem tip | 78 | 0.937 | -0.669 | (-0.709, -0.632) | ||
导管密度-茎干外径 Vessel density - stem outside diameter | 78 | 0.956 | -0.881 | (-0.924, -0.840) | ||
导管面积/导管密度-距茎尖距离 Vessel area to density ratio - distance from the stem tip | 78 | 0.947 | 1.232 | (1.168, 1.298) | ||
导管面积/导管密度-茎干外径 Vessel area to density ratio - stem outside diameter | 78 | 0.950 | 1.622 | (1.541, 1.707) |
Fig. 3 Variation of vessel density with hydraulically weighted mean vessel diameter (Dh) and mean vessel area (log-log scale) along the stem in four individuals of Phyllostachys violascens ‘Prevernalis’ (A, C) and Bambusa textilis (B, D). Linear scale shown in the inset.
物种 Species | 指标(y轴-x轴) Index (y-axis - x-axis) | N | R2 | 斜率 Slope | 95%置信区间 95% CI |
---|---|---|---|---|---|
雷竹 P. violascens ‘Prevernalis’ | 导管密度-水力加权导管直径 Vessel density - Dh | 83 | 0.900 | -1.541 | (-1.653, -1.437) |
导管密度-平均导管面积 Vessel density - mean vessel area | 83 | 0.906 | -0.819 | (-0.877, -0.765) | |
青皮竹 B. textilis | 导管密度-水力加权导管直径 Vessel density - Dh | 78 | 0.909 | -2.241 | (-2.400, -2.091) |
导管密度-平均导管面积 Vessel density - mean vessel area | 78 | 0.932 | -1.168 | (-1.240, -1.100) |
Table 3 Standardized major axis regression slopes and 95% confidence intervals (CI) of the slopes of log-log linear relationships between vessel density and vessel size for Phyllostachys violascens ‘Prevernalis’ and Bambusa textilis
物种 Species | 指标(y轴-x轴) Index (y-axis - x-axis) | N | R2 | 斜率 Slope | 95%置信区间 95% CI |
---|---|---|---|---|---|
雷竹 P. violascens ‘Prevernalis’ | 导管密度-水力加权导管直径 Vessel density - Dh | 83 | 0.900 | -1.541 | (-1.653, -1.437) |
导管密度-平均导管面积 Vessel density - mean vessel area | 83 | 0.906 | -0.819 | (-0.877, -0.765) | |
青皮竹 B. textilis | 导管密度-水力加权导管直径 Vessel density - Dh | 78 | 0.909 | -2.241 | (-2.400, -2.091) |
导管密度-平均导管面积 Vessel density - mean vessel area | 78 | 0.932 | -1.168 | (-1.240, -1.100) |
[1] | Aloni R (1987). Differentiation of vascular tissues. Annual Review of Plant Physiology, 38, 179-204. |
[2] | Aloni R, Zimmermann MH (1983). The control of vessel size and density along the plant axis: a new hypothesis. Differentiation, 24, 203-208. |
[3] |
Anfodillo T, Carraro V, Carrer M, Fior C, Rossi S (2006). Convergent tapering of xylem conduits in different woody species. New Phytologist, 169, 279-290.
PMID |
[4] |
Anfodillo T, Deslauriers A, Menardi R, Tedoldi L, Petit G, Rossi S (2012). Widening of xylem conduits in a conifer tree depends on the longer time of cell expansion downwards along the stem. Journal of Experimental Botany, 63, 837-845.
DOI PMID |
[5] | Aparecido LMT, dos Santos J, Higuchi N, Kunert N (2015). Ecological applications of differences in the hydraulic efficiency of palms and broad-leaved trees. Trees, 29, 1431-1445. |
[6] | Baas P, Ewers FW, Davis SD, Wheeler EA (2004). Evolution of xylem physiology//Hemsley AR, Poole I. The Evolution of Plant Physiology. Academic Press, London. |
[7] |
Becker P, Gribben RJ (2001). Estimation of conduit taper for the hydraulic resistance model of West et al. Tree Physiology, 21, 697-700.
PMID |
[8] |
Becker P, Gribben RJ, Lim CM (2000). Tapered conduits can buffer hydraulic conductance from path-length effects. Tree Physiology, 20, 965-967.
PMID |
[9] |
Bettiati D, Petit G, Anfodillo T (2012). Testing the equi- resistance principle of the xylem transport system in a small ash tree: empirical support from anatomical analyses. Tree Physiology, 32, 171-177.
DOI PMID |
[10] | Bond BJ, Ryan MG (2000). Comment on ‘Hydraulic limitation of tree height: a critique’ by Becker, Meinzer and Wullschleger. Functional Ecology, 14, 137-140. |
[11] |
Brodribb TJ, Bowman DJMS, Nichols S, Delzon S, Burlett R (2010). Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytologist, 188, 533-542.
DOI PMID |
[12] | Brodribb TJ, Holbrook NM, Gutiérrez MV (2002). Hydraulic and photosynthetic co-ordination in seasonally dry tropical forest trees. Plant, Cell & Environment, 25, 1435-1444. |
[13] | Carlquist S, Hoekman DA (1985). Ecological wood anatomy of the woody southern Californian flora. IAWA Journal, 6, 319-347. |
[14] |
Christensen-Dalsgaard KK, Fournier M, Ennos AR, Barfod AS (2007). Changes in vessel anatomy in response to mechanical loading in six species of tropical trees. New Phytologist, 176, 610-622.
DOI PMID |
[15] | Comstock JP, Sperry JS (2000). Tansley review No. 119 theoretical considerations of optimal conduit length for water transport in vascular plants. New Phytologist, 148, 195-218. |
[16] |
Coomes DA, Jenkins KL, Cole LES (2007). Scaling of tree vascular transport systems along gradients of nutrient supply and altitude. Biology Letters, 3, 86-89.
PMID |
[17] |
Domec JC, Gartner BL (2002). Age- and position-related changes in hydraulic versus mechanical dysfunction of xylem: inferring the design criteria for Douglas-fir wood structure. Tree Physiology, 22, 91-104.
PMID |
[18] | Dong H, He XF, Wang L (2020). Water-transport tissue characteristics of xylem in different parts of jujube tree. Journal of Shanxi Agricultural Sciences, 48(2), 181-185. |
[东昊, 贺晓芳, 王林 (2020). 枣树不同部位的木质部水分输导组织特征. 山西农业科学, 48(2), 181-185.] | |
[19] |
Echeverría A, Anfodillo T, Soriano D, Rosell JA, Olson ME (2019). Constant theoretical conductance via changes in vessel diameter and number with height growth in Moringa oleifera. Journal of Experimental Botany, 70, 5765-5772.
DOI PMID |
[20] |
Enquist BJ (2002). Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiology, 22, 1045-1064.
PMID |
[21] | Enquist BJ, West GB, Brown JH (2000). Quarter-power allometric scaling in vascular plants: functional basis and ecological consequences//Brown JH, West GB. Scaling in Biology. Oxford University Press, Oxford. |
[22] | Ewers FW, Ewers JM, Jacobsen AL, López-Portillo J (2007). Vessel redundancy: modeling safety in numbers. IAWA Journal, 28, 373-388. |
[23] |
Fajardo A, Martínez-Pérez C, Cervantes-Alcayde MA, Olson ME (2020). Stem length, not climate, controls vessel diameter in two trees species across a sharp precipitation gradient. New Phytologist, 225, 2347-2355.
DOI PMID |
[24] | Fan ZX, Cao KF, Becker P (2009). Axial and radial variations in xylem anatomy of angiosperm and conifer trees in Yunnan, China. IAWA Journal, 30, 1-13. |
[25] | Fan ZX, Cao KF, Zou SQ (2005). Axial and radial changes in xylem anatomical characteristics in six evergreen broadleaved tree species in ailao mountain, Yunnan. Acta Phytoecologica Sinica, 29, 968-975. |
[范泽鑫, 曹坤芳, 邹寿青 (2005). 云南哀牢山6种常绿阔叶树木质部解剖特征的轴向和径向变化. 植物生态学报, 29, 968-975.]
DOI |
|
[26] | Hacke UG, Sperry JS (2001). Functional and ecological xylem anatomy. Perspectives in Plant Ecology, Evolution and Systematics, 4, 97-115. |
[27] |
Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126, 457-461.
DOI PMID |
[28] |
Hacke UG, Sperry JS, Wheeler JK, Castro L (2006). Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology, 26, 689-701.
PMID |
[29] | Harvey PH, Pagel MD (1991). The Comparative Method in Evolutionary Biology (Vol. 239). Oxford University Press, Oxford. |
[30] | Holbrook NM, Zwieniecki MA (2005). Integration of long distance transport in plants: perspectives and prospects for future research//Holbrook NM, Zwieniecki MA. Vascular Transport in Plants. Elsevier Academic Press, Burlington. 537-545. |
[31] | Hubbard RM, Ryan MG, Stiller V, Sperry JS (2001). Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant, Cell & Environment, 24, 113-121. |
[32] |
Jacobsen AL, Ewers FW, Pratt RB, Paddock WA 3rd, Davis SD (2005). Do xylem fibers affect vessel cavitation resistance? Plant Physiology, 139, 546-556.
DOI PMID |
[33] | Jacobsen AL, Pratt RB, Venturas MD, Hacke UG (2019). Large volume vessels are vulnerable to water-stress-induced embolism in stems of poplar. IAWA Journal, 40, 4-22. DOI: 10.1163/22941932-40190233. |
[34] |
Jansen S, Gortan E, Lens F, Lo Gullo MA, Salleo S, Scholz A, Stein A, Trifilò P, Nardini A (2011). Do quantitative vessel and pit characters account for ion-mediated changes in the hydraulic conductance of angiosperm xylem? New Phytologist, 189, 218-228.
DOI PMID |
[35] | Ji YL, Guo Y, Chen JH, Liu P, Fang F, Ye D (2016). Resources and overall evaluation of medicinal plants in Zhejiang Normal University. Journal of Zhejiang Normal University (Natural Sciences), 39, 443-448. |
[冀艳利, 郭印, 陈建华, 刘鹏, 方芳, 叶铎 (2016). 浙江师范大学校园药用植物资源及综合评价. 浙江师范大学学报(自然科学版), 39, 443-448.] | |
[36] | Lazzarin M, Crivellaro A, Williams C, Dawson T, Mozzi G, Anfodillo T (2016). Tracheid and pit anatomy vary in tandem in a tall Sequoiadendron giganteum tree. IAWA Journal, 37, 172-185. |
[37] | Li X, Li S, Deng LP, Li R, Yin YF, Zheng JM (2020). Axial variation of characteristics of water conducting tissue in xylem of Catalpa bungei. Journal of Beijing Forestry University, 42(1), 27-34. |
[李昕, 李姗, 邓丽萍, 李仁, 殷亚方, 郑景明 (2020). 楸树木质部水分输导组织构造特征的轴向变化. 北京林业大学学报, 42(1), 27-34.] | |
[38] | Liang Z, Wei KL, Yang DM, Peng GQ (2020). Effect of soak stems overnight with deionized water on measuring maximum hydraulic conductivity in xylem of stem segments of Robinia pseudoacacia L. and age-relate difference. Bulletin of Botanical Research, 40, 706-717. |
[梁昭, 魏凯璐, 杨冬梅, 彭国全 (2020). 水分浸泡过夜对刺槐枝条最大水分导度测定的影响及年龄差异. 植物研究, 40, 706-717.]
DOI |
|
[39] | Liese W (1998). The Anatomy of Bamboo Culms. Technical Report 18. International Network for Bamboo and Rattan, Beijing. |
[40] | Liese W, Weiner G (1996). Ageing of bamboo culms. A review. Wood Science and Technology, 30, 77-89. |
[41] |
Lintunen A, Kalliokoski T, Niinemets Ü (2010). The effect of tree architecture on conduit diameter and frequency from small distal roots to branch tips in Betula pendula, Picea abies and Pinus sylvestris. Tree Physiology, 30, 1433-1447.
DOI PMID |
[42] | Liu H, Gleason SM, Hao GY, Hua L, He PC, Goldstein G, Ye Q (2019). Hydraulic traits are coordinated with maximum plant height at the global scale. Science Advances, 5, eaav1332. DOI: 10.1126/sciadv.aav1332. |
[43] |
Martínez-Cabrera HI, Jones CS, Espino S, Schenk HJ (2009). Wood anatomy and wood density in shrubs: responses to varying aridity along transcontinental transects. American Journal of Botany, 96, 1388-1398.
DOI PMID |
[44] |
McCulloh K, Sperry JS, Lachenbruch B, Meinzer FC, Reich PB, Voelker S (2010). Moving water well: comparing hydraulic efficiency in twigs and trunks of coniferous, ring-porous, and diffuse-porous saplings from temperate and tropical forests. New Phytologist, 186, 439-450.
DOI PMID |
[45] | Mencuccini M, Hölttä T, Petit G, Magnani F (2007a). Sanio’s laws revisited. Size-dependent changes in the xylem architecture of trees. Ecology Letters, 10, 1084-1093. |
[46] | Mencuccini M, Martínez-Vilalta J, Hamid HA, Korakaki E, Vanderklein D (2007b). Evidence for age- and size-mediated controls of tree growth from grafting studies. Tree Physiology, 27, 463-473. |
[47] | Midgley JJ (2003). Is bigger better in plants? The hydraulic costs of increasing size in trees. Trends in Ecology & Evolution, 18, 5-6. |
[48] | Niklas KJ (1994). Predicting the height of fossil plant remains: an allometric approach to an old problem. American Journal of Botany, 81, 1235-1242. |
[49] | Olson ME, Anfodillo T, Gleason SM, McCulloh KA (2021). Tip-to-base xylem conduit widening as an adaptation: causes, consequences, and empirical priorities. New Phytologist, 229, 1877-1893. |
[50] |
Olson ME, Anfodillo T, Rosell JA, Petit G, Crivellaro A, Isnard S, León-Gómez C, Alvarado-Cárdenas LO, Castorena M (2014). Universal hydraulics of the flowering plants: vessel diameter scales with stem length across angiosperm lineages, habits and climates. Ecology Letters, 17, 988-997.
DOI PMID |
[51] |
Olson ME, Rosell JA (2013). Vessel diameter-stem diameter scaling across woody angiosperms and the ecological causes of xylem vessel diameter variation. New Phytologist, 197, 1204-1213.
DOI PMID |
[52] |
Petit G, Anfodillo T (2009). Plant physiology in theory and practice: an analysis of the WBE model for vascular plants. Journal of Theoretical Biology, 259, 1-4.
DOI PMID |
[53] |
Petit G, Anfodillo T, Carraro V, Grani F, Carrer M (2011). Hydraulic constraints limit height growth in trees at high altitude. New Phytologist, 189, 241-252.
DOI PMID |
[54] | Petit G, Anfodillo T, De Zan C (2009). Degree of tapering of xylem conduits in stems and roots of small Pinus cembra and Larix decidua trees. Botany, 87, 501-508. |
[55] |
Petit G, Anfodillo T, Mencuccini M (2008). Tapering of xylem conduits and hydraulic limitations in sycamore (Acer pseudoplatanus) trees. New Phytologist, 177, 653-664.
DOI PMID |
[56] |
Petit G, DeClerck FAJ, Carrer M, Anfodillo T (2014). Axial vessel widening in arborescent monocots. Tree Physiology, 34, 137-145.
DOI PMID |
[57] |
Petit G, Pfautsch S, Anfodillo T, Adams MA (2010). The challenge of tree height in Eucalyptus regnans: When xylem tapering overcomes hydraulic resistance. New Phytologist, 187, 1146-1153.
DOI PMID |
[58] | Pitman EJG (1939). A note on normal correlation. Biometrika, 31, 9-12. |
[59] | Pittermann J, Sperry JS, Wheeler JK, Hacke UG, Sikkema EH (2006). Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem. Plant, Cell & Environment, 29, 1618-1628. |
[60] |
Poorter L, McDonald I, Alarcón A, Fichtler E, Licona JC, Peña-Claros M, Sterck F, Villegas Z, Sass-Klaassen U (2010). The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist, 185, 481-492.
DOI PMID |
[61] | Pothier D, Margolis HA, Waring RH (1989). Patterns of change of saturated sapwood permeability and sapwood conductance with stand development. Canadian Journal of Forest Research, 19, 432-439. |
[62] |
Preston KA, Cornwell WK, Denoyer JL (2006). Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytologist, 170, 807-818.
PMID |
[63] |
Renninger HJ, McCulloh KA, Phillips N (2013). A comparison of the hydraulic efficiency of a palm species (Iriartea deltoidea) with other wood types. Tree Physiology, 33, 152-160.
DOI PMID |
[64] | Rich PM (1987). Developmental anatomy of the stem of welfia georgii, iriartea gigantea, and other arborescent palms: implications for mechanical support. American Journal of Botany, 74, 792-802. |
[65] | Rosell JA, Olson ME, Anfodillo T (2017). Scaling of xylem vessel diameter with plant size: causes, predictions, and outstanding questions. Current Forestry Reports, 3, 46-59. |
[66] |
Rosner S, Světlík J, Andreassen K, Børja I, Dalsgaard L, Evans R, Luss S, Tveito OE, Solberg S (2016). Novel hydraulic vulnerability proxies for a boreal conifer species reveal that opportunists may have lower survival prospects under extreme climatic events. Frontiers in Plant Science, 7, 831. DOI: 10.3389/fpls.2016.00831.
PMID |
[67] | Ryan MG, Yoder BJ (1997). Hydraulic limits to tree height and tree growth. BioScience, 47, 235-242. |
[68] |
Savage VM, Bentley LP, Enquist BJ, Sperry JS, Smith DD, Reich PB, von Allmen EI (2010). Hydraulic trade-offs and space filling enable better predictions of vascular structure and function in plants. Proceedings of the National Academy of Sciences of the United States of America, 107, 22722-22727.
DOI PMID |
[69] |
Schenk HJ, Espino S, Goedhart CM, Nordenstahl M, Cabrera HIM, Jones CS (2008). Hydraulic integration and shrub growth form linked across continental aridity gradients. Proceedings of the National Academy of Sciences of the United States of America, 105, 11248-11253.
DOI PMID |
[70] |
Schuldt B, Leuschner C, Brock N, Horna V (2013). Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root-to-shoot flow path in tropical rainforest trees. Tree Physiology, 33, 161-174.
DOI PMID |
[71] |
Scoffoni C, Chatelet DS, Pasquet-kok J, Rawls M, Donoghue MJ, Edwards EJ, Sack L (2016). Hydraulic basis for the evolution of photosynthetic productivity. Nature Plants, 2, 16072. DOI: 10.1038/NPLANTS.2016.72.
PMID |
[72] | Shi JM, Mao SY, Wang LF, Ye XH, Wu JA, Wang GR, Chen FS, Yang QP (2021). Clonal integration driven by source- sink relationships is constrained by rhizome branching architecture in a running bamboo species (Phyllostachys glauca): a 15N assessment in the field. Forest Ecology and Management, 481, 118754. DOI: 10.1016/j.foreco.2020. 118754. |
[73] | Shinozaki T, Yoda K, Hozumi K, Kira T (1964a). A quantitative analysis of plantform: the pipe model theory. I. Basic analyses. Japanese Journal of Ecology, 14, 97-105. |
[74] | Shinozaki T, Yoda K, Hozumi K, Kira T (1964b). A quantitative analysis of plantform: the pipe model theory. II. Further evidence of the theory and itsimplications in forest ecology. Japanese Journal of Ecology, 14, 133-139. |
[75] |
Soriano D, Echeverría A, Anfodillo T, Rosell JA, Olson ME (2020). Hydraulic traits vary as the result of tip-to-base conduit widening in vascular plants. Journal of Experimental Botany, 71, 4232-4242.
DOI PMID |
[76] | Sperry JS (2000). Hydraulic constraints on plant gas exchange. Agricultural and Forest Meteorology, 104, 13-23. |
[77] | Sperry JS (2003). Evolution of water transport and xylem structure. International Journal of Plant Sciences, 164, S115-S127. |
[78] | Sperry JS, Meinzer FC, McCulloh KA (2008). Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant, Cell & Environment, 31, 632-645. |
[79] |
Taneda H, Tateno M (2004). The criteria for biomass partitioning of the current shoot: water transport versus mechanical support. American Journal of Botany, 91, 1949-1959.
DOI PMID |
[80] | Tyree MT (2007). Water relations and hydraulic architecture// Pugnaire F, Valladares F. Functional Plant Ecology. CRC Press, Boca Raton.175-212. |
[81] | Tyree MT, Davis SD, Cochard H (1994). Biophysical perspectives of xylem evolution: Is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA Journal, 15, 335-360. |
[82] | Tyree MT, Ewers FW (1991). Tansley review No. 34. the hydraulic architecture of trees and other woody plants. New Phytologist, 119, 345-360. |
[83] | Tyree MT, Ewers FW (1996). Hydraulic architecture of woody tropical plants//Mulkey SS, Chazdon RL, Smith AP. Tropical Forest Plant Ecophysiology. Springer, New York. 217-243. |
[84] | Tyree MT, Zimmermann MH (2002). The cohension-tension theory of sap ascent//Tyree M, Zimmermann MH. Xylem Structure and the Ascent of Sap. 2nd ed. Springer-Verlag, Berlin. |
[85] | Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry. Biological Reviews of the Cambridge Philosophical Society, 81, 259-291. |
[86] | Wei ZQ (2011). Characteristics and cultivation techniques of Phyllostachys praecox. Shanghai Vegetables, (6), 26-27. |
[魏子清 (2011). 雷竹特征特性及栽培技术. 上海蔬菜, (6), 26-27.] | |
[87] | Weitz JS, Ogle K, Horn HS (2006). Ontogenetically stable hydraulic design in woody plants. Functional Ecology, 20, 191-199. |
[88] | West GB, Brown JH, Enquist BJ (1999). A general model for the structure and allometry of plant vascular systems. Nature, 400, 664-667. |
[89] | Wheeler EA, Baas P, Rodgers S (2007). Variations in dieot wood anatomy: a global analysis based on the insidewood database. IAWA Journal, 28, 229-258. |
[90] | Wiemann MC, Wheeler EA, Manchester SR, Portier KM (1998). Dicotyledonous wood anatomical characters as predictors of climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 139, 83-100. |
[91] | Williams CB, Anfodillo T, Crivellaro A, Lazzarin M, Dawson TE, Koch GW (2019). Axial variation of xylem conduits in the Earth’s tallest trees. Trees, 33, 1299-1311. |
[92] | Yang DM, Zhang YS, Zhou D, Zhang YJ, Peng GQ, Tyree MT (2021). The hydraulic architecture of an arborescent monocot: ontogeny-related adjustments in vessel size and leaf area compensate for increased resistance. New Phytologist, 231, 273-284. |
[93] |
Yang SD, Tyree MT (1993). Hydraulic resistance in Acer saccharum shoots and its influence on leaf water potential and transpiration. Tree Physiology, 12, 231-242.
PMID |
[94] | Yang SM, Jiang ZH, Ren HQ (2007). Advances in the study of Bambusa textiles. Journal of Bamboo Research, 26(1), 15-19. |
[杨淑敏, 江泽慧, 任海青 (2007). 青皮竹研究进展及展望. 竹子研究汇刊, 26(1), 15-19.] | |
[95] | Yoder BJ, Ryan MG, Waring RH, Schoettle AW, Kaufmann MR (1994). Evidence of reduced photosynthetic rates in old trees. Forest Science, 40, 513-527. |
[96] | Zaehle S (2005). Effect of height on tree hydraulic conductance incompletely compensated by xylem tapering. Functional Ecology, 19, 359-364. |
[97] |
Zanne AE, Westoby M, Falster DS, Ackerly DD, Loarie SR, Arnold SEJ, Coomes DA (2010). Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. American Journal of Botany, 97, 207-215.
DOI PMID |
[98] | Zimmermann MH (1982). Functional xylem anatomy of angiosperm trees//Baas P. New Perspectives in Wood Anatomy. Springer, Dordrecht. 59-70. |
[1] | Zhen-Yu WANG. Effects of leaf traits on herbivory across 27 woody plants in the subtropics forest: testing the growth-defense trade-off hypothesis [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | Su-Hui LIAO Jia ShuangQin 谭 羽 Da-Xing Gu. The hydraulic regulation strategies of karst forest species exhibit variation across different successional stages in the mid-subtropical zone [J]. Chin J Plant Ecol, 2024, 48(9): 0-0. |
[3] | SUN Jia-Hui, SHI Hai-Lan, CHEN Ke-Yu, JI Bao-Ming, ZHANG Jing. Research advances on trade-off relationships of plant fine root functional traits [J]. Chin J Plant Ecol, 2023, 47(8): 1055-1070. |
[4] | LI Yao-Qi, WANG Zhi-Heng. Functional biogeography of plants: research progresses and challenges [J]. Chin J Plant Ecol, 2023, 47(2): 145-169. |
[5] | HE Lu-Lu, ZHANG Xuan, ZHANG Yu-Wen, WANG Xiao-Xia, LIU Ya-Dong, LIU Yan, FAN Zi-Ying, HE Yuan-Yang, XI Ben-Ye, DUAN Jie. Crown characteristics and its relationship with tree growth on different slope aspects for Larix olgensis var. changbaiensis plantation in eastern Liaoning mountainous area, China [J]. Chin J Plant Ecol, 2023, 47(11): 1523-1539. |
[6] | ZHAI Jiang-Wei, LIN Xin-Hui, WU Rui-Zhe, XU Yi-Xin, JIN Hao-Hao, JIN Guang-Ze, LIU Zhi-Li. Trade-offs between petiole and lamina of different functional plants in Xiao Hinggan Mountains, China [J]. Chin J Plant Ecol, 2022, 46(6): 700-711. |
[7] | CHENG Si-Qi, JIANG Feng, JIN Guang-Ze. Leaf economics spectrum of broadleaved seedlings and its relationship with defense traits in a temperate forest [J]. Chin J Plant Ecol, 2022, 46(6): 678-686. |
[8] | HAN Xu-Li, ZHAO Ming-Shui, WANG Zhong-Yuan, YE Lin-Feng, LU Shi-Tong, CHEN Sen, LI Yan, XIE Jiang-Bo. Adaptation of xylem structure and function of three gymnosperms to different habitats [J]. Chin J Plant Ecol, 2022, 46(4): 440-450. |
[9] | QIN Hui-Jun, JIAO Liang, ZHOU Yi, XUE Ru-Hong, QI Chang-Liang, DU Da-Shi. Effects of altitudes on non-structural carbohydrate allocation in different dominate trees in Qilian Mountains, China [J]. Chin J Plant Ecol, 2022, 46(2): 208-219. |
[10] | DAI Yuan-Meng, LI Man-Le, XU Ming-Ze, TIAN Yun, ZHAO Hong-Xian, GAO Sheng-Jie, HAO Shao-Rong, LIU Peng, JIA Xin, ZHA Tian-Shan. Leaf traits of Artemisia ordosica at different dune fixation stages in Mau Us Sandy Land [J]. Chin J Plant Ecol, 2022, 46(11): 1376-1387. |
[11] | FANG Jing, YE Lin-Feng, CHEN Sen, LU Shi-Tong, PAN Tian-Tian, XIE Jiang-Bo, LI Yan, WANG Zhong-Yuan. Differences in anatomical structure and hydraulic function of xylem in branches of angiosperms in field and garden habitats [J]. Chin J Plant Ecol, 2021, 45(6): 650-658. |
[12] | NI Ming-Yuan, ARITSARA Amy Ny Aina, WANG Yong-Qiang, HUANG Dong-Liu, XIANG Wei, WAN Chun-Yan, ZHU Shi-Dan. Analysis of xylem anatomy and function of representative tree species in a mixed evergreen and deciduous broad-leaved forest of mid-subtropical karst region [J]. Chin J Plant Ecol, 2021, 45(4): 394-403. |
[13] | WANG Zhao-Ying, CHEN Xiao-Ping, CHENG Ying, WANG Man-Tang, ZHONG Quan-Lin, LI Man, CHENG Dong-Liang. Leaf and fine root economics spectrum across 49 woody plant species in Wuyi Mountains [J]. Chin J Plant Ecol, 2021, 45(3): 242-252. |
[14] | TAN Yi-Bo, TIAN Hong-Deng, ZENG Chun-Yang, SHEN Hao, SHEN Wen-Hui, YE Jian-Ping, GAN Guo-Juan. Canopy mechanical abrasion between adjacent plants influences twig and leaf traits of Tsuga chinensis assemblage in the Mao’er Mountain [J]. Chin J Plant Ecol, 2021, 45(12): 1281-1291. |
[15] | LI Tang-Ji, WANG Mao-Lin, CAO Ying, XU Gang, YANG Qi-Qi, REN Si-Yuan, HU Shang-Lian. Diurnal transpiration of bamboo culm and sheath and their potential effects on water transport during the bamboo shoot stage [J]. Chin J Plant Ecol, 2021, 45(12): 1365-1379. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn