Chin J Plant Ecol ›› 2025, Vol. 49 ›› Issue (1): 199-210.DOI: 10.17521/cjpe.2024.0168 cstr: 32100.14.cjpe.2024.0168
• Research Articles • Previous Articles Next Articles
YAO Bao-Hui1,4, WANG Rong1,3,4, TAN Zhao-Xian1,3,4, ZHANG Yan1,2,4, WANG Yi-Hong1,2,4, WANG Su-Qin1,2,4, ZHOU Hua-Kun1,4, QU Jia-Peng1,4,*()(
)
Received:
2024-05-21
Accepted:
2024-12-10
Online:
2025-01-20
Published:
2025-03-08
Contact:
QU Jia-Peng
Supported by:
YAO Bao-Hui, WANG Rong, TAN Zhao-Xian, ZHANG Yan, WANG Yi-Hong, WANG Su-Qin, ZHOU Hua-Kun, QU Jia-Peng. Effects of Eimeria spp. control of plateau pika on the plant community characteristics of alpine grassland[J]. Chin J Plant Ecol, 2025, 49(1): 199-210.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0168
Fig. 1 Changes in the number of effective burrow openings in alpine grasslands on the Qingzang Plateau under different treatments (mean ± SE). CK, control grassland; ES, grassland treated with Eimeria spp. **, p < 0.01; ***, p < 0.001; ns, p > 0.05.
指标 Index | 2022 | 2023 | ||||
---|---|---|---|---|---|---|
CK | ES | p | CK | ES | p | |
总盖度 Total coverage (%) | 71.03 ± 2.09 | 73.07 ± 2.03 | 0.488 | 74.97 ± 1.89 | 85.90 ± 2.26 | <0.001 |
立枯盖度 Vertical withering coverage (%) | 0.71 ± 0.06 | 0.65 ± 0.08 | 0.558 | 0.63 ± 0.10 | 0.60 ± 0.13 | 0.842 |
碎屑盖度 Fragment coverage (%) | 2.27 ± 0.21 | 2.50 ± 0.40 | 0.608 | 1.97 ± 0.23 | 1.90 ± 0.24 | 0.840 |
平均高度 Average height (cm) | 2.40 ± 0.13 | 2.72 ± 0.18 | 0.162 | 3.28 ± 0.21 | 2.96 ± 0.21 | 0.286 |
丰富度指数 Species richness index | 16.57 ± 0.50 | 15.43 ± 0.62 | 0.080 | 11.93 ± 0.31 | 11.60 ± 0.57 | 0.613 |
Shannon-Wiener指数 Shannon-Wiener index | 2.26 ± 0.04 | 2.10 ± 0.07 | 0.051 | 1.89 ± 0.04 | 2.08 ± 0.07 | 0.015 |
Simpson指数 Simpson index | 0.85 ± 0.01 | 0.82 ± 0.01 | 0.135 | 0.78 ± 0.01 | 0.83 ± 0.01 | 0.007 |
Pielou均匀度指数 Pielou evenness index | 0.81 ± 0.01 | 0.79 ± 0.02 | 0.360 | 0.77 ± 0.01 | 0.86 ± 0.02 | <0.001 |
β多样性指数 β diversity index | 0.65 ± 0.01 | 0.67 ± 0.03 | 0.674 | 0.68 ± 0.02 | 0.74 ± 0.02 | 0.049 |
Table 1 Changes in different years and treatments of the active burrow entrance and plant characteristic index (mean ± SE)
指标 Index | 2022 | 2023 | ||||
---|---|---|---|---|---|---|
CK | ES | p | CK | ES | p | |
总盖度 Total coverage (%) | 71.03 ± 2.09 | 73.07 ± 2.03 | 0.488 | 74.97 ± 1.89 | 85.90 ± 2.26 | <0.001 |
立枯盖度 Vertical withering coverage (%) | 0.71 ± 0.06 | 0.65 ± 0.08 | 0.558 | 0.63 ± 0.10 | 0.60 ± 0.13 | 0.842 |
碎屑盖度 Fragment coverage (%) | 2.27 ± 0.21 | 2.50 ± 0.40 | 0.608 | 1.97 ± 0.23 | 1.90 ± 0.24 | 0.840 |
平均高度 Average height (cm) | 2.40 ± 0.13 | 2.72 ± 0.18 | 0.162 | 3.28 ± 0.21 | 2.96 ± 0.21 | 0.286 |
丰富度指数 Species richness index | 16.57 ± 0.50 | 15.43 ± 0.62 | 0.080 | 11.93 ± 0.31 | 11.60 ± 0.57 | 0.613 |
Shannon-Wiener指数 Shannon-Wiener index | 2.26 ± 0.04 | 2.10 ± 0.07 | 0.051 | 1.89 ± 0.04 | 2.08 ± 0.07 | 0.015 |
Simpson指数 Simpson index | 0.85 ± 0.01 | 0.82 ± 0.01 | 0.135 | 0.78 ± 0.01 | 0.83 ± 0.01 | 0.007 |
Pielou均匀度指数 Pielou evenness index | 0.81 ± 0.01 | 0.79 ± 0.02 | 0.360 | 0.77 ± 0.01 | 0.86 ± 0.02 | <0.001 |
β多样性指数 β diversity index | 0.65 ± 0.01 | 0.67 ± 0.03 | 0.674 | 0.68 ± 0.02 | 0.74 ± 0.02 | 0.049 |
Fig. 2 Contribution of years (Year), Eimeria spp. treatment (ES), and their interaction (Inter) to the changes in plant diversity. A, Species richness index. B, Shannon-Wiener index. C, Simpson index. D, Pielou evenness index. E, β diversity index.
Fig. 3 Plant community co-occurrence network under different treatments. CK2022, Control grassland in 2022; CK2023, control grassland in 2023; ES2022, grassland treated with Eimeria in 2022; ES2023, Grassland treated with Eimeria in 2023. Aco. szechenyianum, Aconitum szechenyianum; Aja. tenuifolia, Ajania tenuifolia; Aju. lupulina, Ajuga lupulina; Ana. lactea, Anaphalis lactea; And. umbellata, Androsace umbellata; Ane. obtusiloba, Anemone obtusiloba; Ant. nitens, Anthoxanthum nitens; Arg. anserina, Argentina anserina; Art. dubia, Artemisia dubia; Art. sieversiana, Artemisia sieversiana; Astr. membranaceus, Astragalus membranaceus; Aste. yunnanensis, Aster yunnanensis; Bup. longiradiatum, Bupleurum longiradiatum; Car. alatauensis, Carex alatauensis; Car. atrofusca, Carex atrofusca subsp. minor; Car. kokanica, Carex kokanica; Cir. souliei, Cirsium souliei; Con. ajacis, Consolida ajacis; Cor. bungeana, Corydalis bungeana; Del. densiflorum, Delphinium densiflorum; Dra. nemorosa, Draba nemorosa; Els. densa, Elsholtzia densa; Ely. nutans, Elymus nutans; Eph. sinica, Ephedra sinica; Eup. fischeriana, Euphorbia fischeriana; Fes. ovina, Festuca ovina; Gal. verum, Galium verum; Gen. algida, Gentiana algida; Gen. farreri, Gentiana farreri; Gen. squarrosa, Gentiana squarrosa; Gen. straminea, Gentiana straminea; Gue. diversifolia, Gueldenstaedtia diversifolia; Gym. gymnandrum, Gymnaconitum gymnandrum; Her. hemsleyanum, Heracleum hemsleyanum; Inc. sinensis, Incarvillea sinensis; Iri. tectorum, Iris tectorum; Kno. sibirica, Knorringia sibirica; Koe. macrantha, Koeleria macrantha; Lag. gaertn, Lagotis gaertn; Lan. tibetica, Lancea tibetica; Leo. leontopodioides, Leontopodium leontopodioides; Leo. nanum, Leontopodium nanum; Lig. virgaurea, Ligularia virgaurea; Lon. semenovii, Lonicera semenovii; Lys. maritima, Lysimachia maritima; Mic. sikkimensis, Microula sikkimensis; Mor. chinensis, Morina chinensis; Mor. kokonorica, Morina kokonorica; Oxy. ochrocephala, Oxytropis ochrocephala; Oxy. qinghaiensi, Oxytropis qinghaiensi; Par. trinervis, Parnassia trinervis; Ped. kansuensis, Pedicularis kansuensis; Per. desmocephala, Pertya desmocephala; Phl. rotata, Phlomoides rotata; Ple. camtschaticu, Pleurospermum camtschaticu; Ple. hookeri, Pleurospermum hookeri; Pot. multifida, Potentilla multifida; Pot. nivea, Potentilla nivea; Prz. tangutica, Przewalskia tangutica; Ran. japonicus, Ranunculus japonicus; Sau. pulchra, Saussurea pulchra; Sau. stella, Saussurea stella; Sci. distigmaticus, Scirpus distigmaticus; Ste. chamaejasme, Stellera chamaejasme; Sti. aliena, Stipa aliena; Sti. capillata, Stipa capillata; Swe. bimaculata, Swertia bimaculata; Tar. mongolicum, Taraxacum mongolicum; Tha. alpinum, Thalictrum alpinum; Tha. aquilegiifolium, Thalictrum aquilegiifolium; Ver. polita, Veronica polita.
节点 Node | 边 Edge | 平均连通度 Average connectivity | 平均聚类系数 Average clustering coefficient | |
---|---|---|---|---|
CK2022 | 38 | 243 | 12.789 | 0.790 |
CK2023 | 31 | 257 | 16.581 | 0.835 |
ES2022 | 34 | 237 | 13.941 | 0.642 |
ES2023 | 39 | 438 | 25.528 | 0.828 |
Table 2 Parameters related to the plant community co-occurrence network under different treatments
节点 Node | 边 Edge | 平均连通度 Average connectivity | 平均聚类系数 Average clustering coefficient | |
---|---|---|---|---|
CK2022 | 38 | 243 | 12.789 | 0.790 |
CK2023 | 31 | 257 | 16.581 | 0.835 |
ES2022 | 34 | 237 | 13.941 | 0.642 |
ES2023 | 39 | 438 | 25.528 | 0.828 |
Fig. 4 SPEC-OCCU plots show the key plant species in different treatments. The x-axis represents occupancy, i.e., how well the plant species are distributed across all 30 quadrats of different treatments; and the y-axis represents specificity, i.e., whether they are also found in other treatments. CK2022, control grassland in 2022; CK2023, control grassland in 2023; ES2022, grassland treated with Eimeria in 2022; ES2023, grassland treated with Eimeria in 2023.
[1] | Bian JH, Cao YF, Du Y, Yang L, Jing ZC (2011). Effects of parasitic Eimerians (Eimeria cryptobarretti and E. klondikensis) on mortality of plateau pika (Ochotona curzoniae). Acta Theriologica Sinica, 31, 299-305. |
[边疆晖, 曹伊凡, 杜寅, 杨乐, 景增春 (2011). 艾美耳混合球虫对高原鼠兔致死毒力的初步研究. 兽类学报, 31, 299-305.] | |
[2] | Cao YF, Du Y, Yang L, Bian JH (2011). Two new record species of Eimeria (Apoicomplexa, Eimeriidae) from plateau pika in China. Sichuan Journal of Zoology, 30, 402-403. |
[曹伊凡, 杜寅, 杨乐, 边疆晖 (2011). 高原鼠兔寄生艾美耳球虫(顶复器门, 艾美耳科)二中国新纪录种. 四川动物, 30, 402-403.] | |
[3] | Case MF, Halpern CB, Levin SA (2013). Contributions of gopher mound and casting disturbances to plant community structure in a Cascade Range meadow complex. Botany, 91, 555-561. |
[4] | Deng Y, Jiang YH, Yang YF, He ZL, Luo F, Zhou JZ (2012). Molecular ecological network analyses. BMC Bioinformatics, 13, 113. DOI: 10.1186/1471-2105-13-113. |
[5] | Dong S, Sherman R (2015). Enhancing the resilience of coupled human and natural systems of alpine rangelands on the Qinghai-Tibetan Plateau. The Rangeland Journal, 37, i-iii. DOI: 10.1071/RJ14117. |
[6] | Dong S, Zhang J, Li Y, Liu S, Dong Q, Zhou H, Yeomans J, Li Y, Li S, Gao X (2020). Effect of grassland degradation on aggregate-associated soil organic carbon of alpine grassland ecosystems in the Qinghai-Tibetan Plateau. European Journal of Soil Science, 71, 69-79. |
[7] | Du Y, Cao YF, Jing ZC, He H, Bian JH (2012). Efficacies of coccidian parasites (Protozoa) in control of plateau pika (Ochotona curzoniae) and their effects on embryo development. Acta Theriologica Sinica, 32, 221-227. |
[杜寅, 曹伊凡, 景增春, 何慧, 边疆晖 (2012). 艾美尔球虫防治高原鼠兔实验及对其胚胎发育的影响. 兽类学报, 32, 221-227.] | |
[8] | Dufrêne M, Legendre P (1997). Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs, 67, 345-366. |
[9] | Fan W (2007). Observation on the effects of combined application of compound Ivermectin and Tianziqiuchongfen in expelling coccidian of altitude pika. Laboratory Animal Science, 24(1), 50-51. |
[范薇 (2007). 复方伊维菌素和球虫粉联合应用于高原鼠兔球虫的驱治效果观察. 实验动物科学, 24(1), 50-51.] | |
[10] | Fang F, Hu YK, Zhang W, Gong YM, Liu YY, Yang XJ (2012). Numerical analysis of inter-specific relationships in Alpine steppe community in Bayanbulak. Acta Ecologica Sinica, 32, 1898-1907. |
[房飞, 胡玉昆, 张伟, 公延明, 柳妍妍, 杨秀娟 (2012). 高寒草原植物群落种间关系的数量分析. 生态学报, 32, 1898-1907.] | |
[11] | Galiano D, Kubiak BB, Overbeck GE, de Freitas TRO (2014). Effects of rodents on plant cover, soil hardness, and soil nutrient content: a case study on tuco-tucos (Ctenomys minutus). Acta Theriologica, 59, 583-587. |
[12] |
Gweon HS, Bowes MJ, Moorhouse HL, Oliver AE, Bailey MJ, Acreman MC, Read DS (2021). Contrasting community assembly processes structure lotic bacteria metacommunities along the river continuum. Environmental Microbiology, 23, 484-498.
DOI PMID |
[13] |
Hnida JA, Duszynski DW (1999). Cross-transmission studies with Eimeria arizonensis, E. arizonensis-like oocysts and Eimeria langebarteli: host specificity at the genus and species level within the Muridae. Journal of Parasitology, 85, 873-877.
PMID |
[14] | Hua LM, Chai SQ (2022). Rodent pest control on grasslands in China: current state, problems and prospects. Journal of Plant Protection, 49(1), 415-423. |
[花立民, 柴守权 (2022). 中国草原鼠害防治现状、问题及对策. 植物保护学报, 49(1), 415-423.] | |
[15] | Jia TT, Mao L, Guo ZG (2014). Effect of available burrow densities of plateau pika (Ochotona curzoniae) on plant niche of alpine meadow communities in the Qinghai-Tibet Plateau. Acta Ecologica Sinica, 34, 869-877. |
[贾婷婷, 毛亮, 郭正刚 (2014). 高原鼠兔有效洞穴密度对青藏高原高寒草甸群落植物生态位的影响. 生态学报, 34, 869-877.] | |
[16] | Jiang KW, Zhang QQ, Wang YF, Li H, Ding Y, Yang YQ, Tuerxunnayi R (2024). Characteristics of plant functional groups and the relationships with soil environmental factors in middle part of northern slope of Tianshan Mountains under different grazing intensities. Chinese Journal of Plant Ecology, 48, 701-718. |
[江康威, 张青青, 王亚菲, 李宏, 丁雨, 杨永强, 吐尔逊娜依·热依木 (2024). 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系. 植物生态学报, 48, 701-718.]
DOI |
|
[17] | Jin SH, Liu T, Pang XP, Yu C, Guo ZG (2017). Effects of plateau pika (Ochotona curzoniae) disturbances on plant species diversity and aboveground plant biomass in a Kobresia pygmaea meadow in the Qinghai Lake Region. Acta Prataculturae Sinica, 26(5), 29-39. |
[金少红, 刘彤, 庞晓攀, 于成, 郭正刚 (2017). 高原鼠兔干扰对青海湖流域高山嵩草草甸植物多样性及地上生物量的影响. 草业学报, 26(5), 29-39.]
DOI |
|
[18] |
Lai JS, Zou Y, Zhang S, Zhang XG, Mao LF (2022). Glmm.hp: an R package for computing individual effect of predictors in generalized linear mixed models. Journal of Plant Ecology, 15, 1302-1307.
DOI |
[19] | Latapy M (2008). Main-memory triangle computations for very large (sparse (power-law)) graphs. Theoretical Computer Science, 407, 458-473. |
[20] | Li J, Sun WT, Pang XP, Xu XT, Yang H, Guo ZG (2024). Effect of plateau pika disturbance on the beta diversity of plant species and functional traits in alpine meadows. Acta Ecologica Sinica, 44, 2993-3003. |
[李捷, 孙文涛, 庞晓攀, 徐雪婷, 杨欢, 郭正刚 (2024). 高原鼠兔干扰对高寒草甸植物物种和功能性状beta多样性的影响. 生态学报, 44, 2993-3003.] | |
[21] | Li M, Wang S, Zhong L, Heděnec P, Tan Z, Wang R, Chen X, Zhang Y, Tang B, Zhou H, Qu J (2024). Eimeria infections of plateau pika altered the patterns of temporal alterations in gut bacterial communities. Frontiers in Microbiology, 14, 1301480. DOI: 10.3389/fmicb.2023.1301480. |
[22] | Li SQ, Li SP, Hu GY, Lei MT, Han SY, Liu CL, Wang LY (2022). Experimental study on the damage mechanism of type D botulinum toxin rodenticide to the plain-backed snowfinch. Chinese Journal of Wildlife, 43, 964-969. |
[李生庆, 李淑萍, 胡国元, 雷萌桐, 韩生义, 刘成录, 王林业 (2022). D型肉毒毒素灭鼠剂对棕背雪雀危害机理的试验研究. 野生动物学报, 43, 964-969.] | |
[23] | Li W, Liu YZ, Wang JL, Shi SL, Cao WX (2018). Six years of grazing exclusion is the optimum duration in the alpine meadow-steppe of the north-eastern Qinghai-Tibetan Plateau. Scientific Reports, 8, 17269. DOI: 10.1038/s41598-018-35273-y. |
[24] | Liang JR, Zhou L, Wei SW, Wang ZW, Sun RY (1984). Mathematical model of the population recovery of pikas and zokors after rodent control in alpine meadows. Acta Ecologica Sinica, 4, 88-98. |
[梁杰荣, 周立, 魏善武, 王祖望, 孙儒泳 (1984). 高寒草甸灭鼠后鼠兔和鼢鼠数量恢复的数学模型. 生态学报, 4, 88-98.] | |
[25] |
Lindtner P, Svitok M, Ujházy K, Kubovčík V (2020). Disturbances by the European ground squirrel enhance diversity and spatial heterogeneity of plant communities in temperate grassland. Biodiversity and Conservation, 29, 853-867.
DOI |
[26] | Liu W, Yan HY, Wang X, Wang CT (2014). Effects of plateau pikas on restoring succession of degraded grassland and plant community structure. Acta Theriologica Sinica, 34, 54-61. |
[刘伟, 严红宇, 王溪, 王长庭 (2014). 高原鼠兔对退化草地植物群落结构及恢复演替的影响. 兽类学报, 34, 54-61.] | |
[27] | Liu W, Zhang Y, Wang X, Zhao JZ, Xu QM, Zhou L (2008). Food selection by plateau pikas in different habitats during plant growing season. Acta Theriologica Sinica, 28, 358-366. |
[刘伟, 张毓, 王溪, 赵建中, 许庆民, 周立 (2008). 植物生长季节不同栖息地高原鼠兔的食物选择. 兽类学报, 28, 358-366.] | |
[28] | Liu Y, Fan W, Shi Z, Yang X, Harris W (2017). Relationships between plateau pika (Ochotona curzoniae) densities and biomass and biodiversity indices of alpine meadow steppe on the Qinghai-Tibet Plateau China. Ecological Engineering, 102, 509-518. |
[29] | Liu YZ, Zhao XQ, Liu WT, Feng B, Lv WD, Zhang ZX, Yang XX, Dong QM (2024). Plant biomass partitioning in alpine meadows under different herbivores as influenced by soil bulk density and available nutrients. Catena, 240, 108017. DOI: 10.1016/j.catena.2024.108017. |
[30] | Liu YZ, Sun CC, Liu WT, Yang XX, Feng B, Shi G, Zhang X, Li CD, Yang ZZ, Gao J, Zhang XF, Yu Y, Zhang CP, Dong QM (2022). Response of keystone species changes in alpine grassland plant communities to different herbivore assemblage grazing. Acta Ecologica Sinica, 42, 7529-7540. |
[刘玉祯, 孙彩彩, 刘文亭, 杨晓霞, 冯斌, 时光, 张雪, 李彩弟, 杨增增, 高婕, 张小芳, 俞旸, 张春平, 董全民 (2022). 高寒草地植物群落关键种对不同放牧家畜组合放牧的响应. 生态学报, 42, 7529-7540.] | |
[31] | Lu Q, Cheng C, Xiao LY, Li J, Li XY, Zhao X, Lu Z, Zhao JD, Yao M (2023). Food webs reveal coexistence mechanisms and community organization in carnivores. Current Biology, 33, 647-659. |
[32] | Mao KS, Wang Y, Liu JQ (2021). Evolutionary origin of species diversity on the Qinghai-Tibet Plateau. Journal of Systematics and Evolution, 59, 1142-1158. |
[33] | Mod HK, Rissanen T, Niittynen P, Soininen J, Luoto M (2023). The relationships of plant species occupancy to niches and traits vary with spatial scale. Journal of Biogeography, 50, 1013-1025. |
[34] | Niu JL (2022). Evaluation of the effect of “rodent control + artificial replanting” on the restoration of severely degraded grassland in different years. Gansu Animal Husbandry and Veterinary Medicine, 52(8), 68-71. |
[牛建龙 (2022). “灭鼠+人工补播”措施对重度退化草原修复不同年限的效果评价. 甘肃畜牧兽医, 52(8), 68-71.] | |
[35] | Pang XP, Guo ZG (2017). Plateau pika disturbances alter plant productivity and soil nutrients in alpine meadows of the Qinghai-Tibetan Plateau, China. The Rangeland Journal, 39, 133-144. |
[36] | Pang XP, Guo ZG (2018). Effects of plateau pika disturbance levels on the plant diversity and biomass of an alpine meadow. Grassland Science, 64, 159-166. |
[37] | Pang XP, Wang Q, Jia TT, Li QQ, Guo ZG (2015). Effect of burrow entrance densities of plateau pika (Ochotona curzoniae) on interspecific association in Kobresia pygmaea meadow. Acta Prataculturae Sinica, 24(5), 224-230. |
[庞晓攀, 王倩, 贾婷婷, 李倩倩, 郭正刚 (2015). 高原鼠兔有效洞口数密度对高山嵩草草甸植物种间联结性的影响. 草业学报, 24(5), 224-230.]
DOI |
|
[38] | Pei L, Wu Z, Qian YQ, Li XX, Zhang JX, Sun J, Wang YX (2024). Plant community stability, indicator species and their driving factors at a gradient of grazing intensity in an alpine meadow. Ecological Indicators, 162, 112012. DOI: 10.1016/j.ecolind.2024.11202. |
[39] | Qu JP, Liu M, Yang M, Zhang YM, Ji WH (2012). Reproduction of plateau pika (Ochotona curzoniae) on the Qinghai-Tibetan Plateau. European Journal of Wildlife Research, 58, 269-277. |
[40] | Schirpke U, Kohler M, Leitinger G, Fontana V, Tasser E, Tappeiner U (2017). Future impacts of changing land-use and climate on ecosystem services of mountain grassland and their resilience. Ecosystem Services, 26, 79-94. |
[41] | Shen ZX, Chen ZZ, Wang YH, Zhang JL, Zhou HK (2003). Clonal growth of stoloniferous herb Potentilla anserina on degraded and non-degraded alpine meadow soil. Chinese Journal of Applied Ecology, 14, 1332-1336. |
[沈振西, 陈佐忠, 王彦辉, 张镜锂, 周华坤 (2003). 高寒退化与未退化草甸土壤下匍匐茎鹅绒委陵菜的克隆生长特征的比较. 应用生态学报, 14, 1332-1336.] | |
[42] | Song WJ, Zhang HL, Luozangangmao, Kazhecairang, Aidexiecuo, Zhou X, Xiang ZQ, Yu W, Li WJ (2023). Effects of multi-year rodent eradication on population density of plateau pika and plant community structure. Acta Agrestia Sinica, 31, 2853-2859. |
[宋文杰, 张海兰, 洛藏昂毛, 卡着才让, 艾得协措, 周喜, 向志强, 喻望, 李文金 (2023). 多年鼠类防控对高原鼠兔种群数量及植物群落结构的影响. 草地学报, 31, 2853-2859.]
DOI |
|
[43] | Sousa W (1984). The role of disturbance in natural communities. Annual Review of Ecology and Systematics, 15, 353-391. |
[44] | Speakman JR, Chi Q, Ołdakowski Ł, Fu H, Fletcher QE, Hambly C, Togo J, Liu X, Piertney SB, Wang X, Zhang L, Redman P, Wang L, Tang G, Li Y, et al. (2021). Surviving winter on the Qinghai-Tibetan Plateau: pikas suppress energy demands and exploit yak feces to survive winter. Proceedings of the National Academy of Sciences of the United States of America, 118, e2100707118. DOI: 10.1073/pnas.2100707118. |
[45] |
Sun J, Fu BJ, Zhao WW, Liu SL, Liu GH, Zhou HK, Shao XQ, Chen YC, Zhang Y, Deng YF (2021). Optimizing grazing exclusion practices to achieve goal 15 of the sustainable development goals in the Tibetan Plateau. Science Bulletin, 66, 1493-1496.
DOI PMID |
[46] | Sun JJ, Jiao T, Li YJ, Wang F, Wang PB, Yu XJ (2019). A study on the optimal allocation of the alpine pasture grassland-livestock—A case of a herder in Maqin County, Qinghai Province. Acta Agrestia Sinica, 27, 728-735. |
[孙金金, 焦婷, 李亚娟, 王芳, 汪鹏斌, 鱼小军 (2019). 高寒区草地-家畜优化配置研究——以青海省玛沁县1牧户为例. 草地学报, 27, 728-735.]
DOI |
|
[47] | Wardle DA, Bonner KI, Barker GM (2000). Stability of ecosystem properties in response to above-ground functional group richness and composition. Oikos, 89, 11-23. |
[48] | Watts D, Strogatz S (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440-442. |
[49] | Wei W, Yao X, Zhang Y, Zhen Q, Qin M, Tang Z, Oosthuizen MK, Zhang W (2023). Vegetation restoration measures: increasing plant height suppresses population densities of plateau pikas. Land Degradation & Development, 34, 2201-2213. |
[50] | Wei WR, He JD, Zheng QY (2020). Plateau pikas (Ochotona curzoniae) at low densities have no destructive effect on winter pasture in alpine meadows. The Rangeland Journal, 42, 55-61. |
[51] | Wesche K, Nadrowski K, Retzer V (2007). Habitat engineering under dry conditions: The impact of pikas (Ochotona pallasi) on vegetation and site conditions in southern Mongolian steppes. Journal of Vegetation Science, 18, 665-674. |
[52] | Xu HP, Yu C, Shu CC, Jin SH, Pang XP, Guo ZG (2019). The effect of plateau pika disturbance on plant community diversity and stability in an alpine meadow. Acta Prataculturae Sinica, 28, 90-99. |
[徐海鹏, 于成, 舒朝成, 金少红, 庞晓攀, 郭正刚 (2019). 高原鼠兔干扰对高寒草甸植物群落多样性和稳定性的影响. 草业学报, 28, 90-99.]
DOI |
|
[53] | Xu SH, Shang ZH, Ma YS, Long RJ (2008). Analysis of interspecific association in degraded meadow communities in the headwater area of Yellow River on Tibetan Plateau. Acta Botanica Boreali-Occidentalia Sinica, 28, 1222-1227. |
[徐松鹤, 尚占环, 马玉寿, 龙瑞军 (2008). 黄河源区退化高寒草地植物种间联结性分析. 西北植物学报, 28, 1222-1227.] | |
[54] | Yang YB, Du Y, Cao YF, Du SY, Bian JH (2015). Effects of coccidian parasites (api complexa: eimeriiade) on reproduction in plateau pika. Acta Theriologica Sinica, 35, 312-320. |
[杨彦宾, 杜寅, 曹伊凡, 堵守阳, 边疆晖 (2015). 艾美耳球虫对高原鼠兔繁殖的影响. 兽类学报, 35, 312-320.] | |
[55] | Ye GH, Chu B, Tang ZS, Alongi F, Bao D, Hua R, Hua LM, Niu YJ (2022). Disturbance of plateau zokor (Eospalax baileyi) mounds increase plant and soil macroinvertebrate richness by offering a diversified microenvironment. Ecological Engineering, 183, 106754. DOI: 10.1016/j.ecoleng.2022.106754. |
[56] | Yu C, Zhang J, Pang XP, Wang Q, Zhou YP, Guo ZG (2017). Soil disturbance and disturbance intensity: response of soil nutrient concentrations of alpine meadow to plateau pika bioturbation in the Qinghai-Tibetan Plateau, China. Geoderma, 307, 98-106. |
[57] | Zhang WN, Wang Q, Zhang J, Pang XP, Xu HP, Wang J, Guo ZG (2020). Clipping by plateau pikas and impacts to plant community. Rangeland Ecology & Management, 73, 368-374. |
[58] |
Zhang XY, Feng M, Liu QG, Yang GJ, Hu ZM (2024). Distribution patterns and driving factors of grassland plant diversity along a precipitation gradient on the Qinghai-Tibet Plateau. Chinese Journal of Ecology, 43, 1674-1680.
DOI |
[张小燕, 冯明, 刘倩光, 杨国姣, 胡中民 (2024). 青藏高原草地植物多样性沿降水梯度的分布格局及影响因素. 生态学杂志, 43, 1674-1680.] | |
[59] | Zhao F, Zhang TZ, Su JP, Ci HX, Li SQ, Li ZN, Lin GH (2016). Variation in vkorc1 gene of five rodent species endemic to the Qinghai-Tibet Plateau. Pratacultural Science, 33, 1206-1212. |
[赵芳, 张同作, 苏建平, 慈海鑫, 李生庆, 李志宁, 林恭华 (2016). 青藏高原5种害鼠vkorc1基因的测序分析. 草业科学, 33, 1206-1212.] | |
[60] | Zhong L, Zhu HJ, Yu YB, Qu JP (2021). Effects of coccidian parasites on the personality and physiological traits of plateau pika. Pratacultural Science, 38, 1605-1614. |
[钟亮, 朱红娟, 余义博, 曲家鹏 (2021). 艾美尔球虫对高原鼠兔个性与生理特征的影响. 草业科学, 38, 1605-1614.] | |
[61] | Zhou HK, Yang XY, Zhou CY, Shao XQ, Shi ZC, Li HL, Su HY, Qin RM, Chang T, Hu X, Yuan F, Li S, Zhang ZH, Ma L (2023). Alpine grassland degradation and its restoration in the Qinghai-Tibet Plateau. Grasses, 2, 31-46. |
[1] | Long CHEN Ke GUO Xiao-Hua GOU Xiu-Hai ZHAO Hongruo Ma. Community components and characteristics of Juniperus przewalskii forests [J]. Chin J Plant Ecol, 2025, 49(植被): 0-0. |
[2] | wang juan zhang dengshan xiao yuanming Pei Quanbang wang bo bo FAN 周 国英. Relationships between characteristics of root exudates and environmental factors in the al-pine steppe after long-term grazing exclusion [J]. Chin J Plant Ecol, 2025, 49(预发表): 1-0. |
[3] | ZHANG Hui, ZHAO Yun-Peng, LIU Xiao-Chen, GUO Zeng-Peng, HU Guo-Rui, FENG Yan-Hao, MA Miao-Jun. Dynamics of soil seed bank and its role in plant community regeneration during alpine meadow degradation [J]. Chin J Plant Ecol, 2025, 49(1): 74-82. |
[4] | DONG Shao-Qiong, HOU Dong-Jie, QU Xiao-Yun, GUO Ke. A plot-based dataset of plant communities on the Qaidam Basin, China [J]. Chin J Plant Ecol, 2024, 48(4): 534-540. |
[5] | LIU Cong-Cong, HE Nian-Peng, LI Ying, ZHANG Jia-Hui, YAN Pu, WANG Ruo-Meng, WANG Rui-Li. Current and future trends of plant functional traits in macro-ecology [J]. Chin J Plant Ecol, 2024, 48(1): 21-40. |
[6] | XIAO Lan, DONG Biao, ZHANG Lin-Ting, DENG Chuan-Yuan, LI Xia, JIANG De-Gang, LIN Yong-Ming. Characteristics of main plant communities on uninhabited islands in Bohai Sea, China [J]. Chin J Plant Ecol, 2024, 48(1): 127-134. |
[7] | LI Bing, ZHU Wan-Wan, HAN Cui, YU Hai-Long, HUANG Ju-Ying. Soil respiration and its influencing factors in a desert steppe in northwestern China under changing precipitation regimes [J]. Chin J Plant Ecol, 2023, 47(9): 1310-1321. |
[8] | BAI Yue, LIU Chen, HUANG Yue, DONG Ya-Nan, WANG Lu. Response of spatial heterogeneity of plant community height to different herbivore assemblages in Horqin sandy grassland [J]. Chin J Plant Ecol, 2022, 46(4): 394-404. |
[9] | Qin ZHU, Pan NING, Lin HOU, Jia-Tian HAO, Yun-Yun HU. Characteristics of Juniperus community types in the Three-River-Source Region [J]. Chin J Plant Ecol, 2022, 46(1): 114-122. |
[10] | ZHANG Huan, ZHANG Yun-Ling, ZHANG Yan-Cai, YAN Ping. Main plant communities and characteristics of Desert Grassland Nature Reserve in Qitai, Xinjiang, China [J]. Chin J Plant Ecol, 2021, 45(8): 918-924. |
[11] | LI Jie, CHEN Ying-Ying, QIAO Fu-Yun, ZHI Di-Gang, GUO Zheng-Gang. Effects of disturbance by plateau pika on the β diversity of an alpine meadow [J]. Chin J Plant Ecol, 2021, 45(5): 476-486. |
[12] | ZHU Wan-Wan, WANG Pan, XU Yi-Xin, LI Chun-Huan, YU Hai-Long, HUANG Ju-Ying. Soil enzyme activities and their influencing factors in a desert steppe of northwestern China under changing precipitation regimes and nitrogen addition [J]. Chin J Plant Ecol, 2021, 45(3): 309-320. |
[13] | HE Lu-Yan, HOU Man-Fu, TANG Wei, LIU Yu-Ting, ZHAO Jun. Vegetation types and their characteristics in karst forests of Junzi Mountain in East Yunnan, China [J]. Chin J Plant Ecol, 2021, 45(12): 1380-1390. |
[14] | YU Yan-Mei, HUANG Lin-Juan, XUE Yue-Gui. Characteristics of different plant communities in the Dashiwei Tiankeng group, Guangxi, China [J]. Chin J Plant Ecol, 2021, 45(1): 96-103. |
[15] | FANG Jing-Yun, GUO Ke, WANG Guo-Hong, TANG Zhi-Yao, XIE Zong-Qiang, SHEN Ze-Hao, WANG Ren-Qing, QIANG Sheng, LIANG Cun-Zhu, DA Liang-Jun, YU Dan. Vegetation classification system and classification of vegetation types used for the compilation of vegetation of China [J]. Chin J Plant Ecol, 2020, 44(2): 96-110. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn