Chin J Plant Ecol ›› 2012, Vol. 36 ›› Issue (12): 1256-1267.DOI: 10.3724/SP.J.1258.2012.01256
Special Issue: 稳定同位素生态学
• Research Articles • Previous Articles Next Articles
SHANG Zhi-Yuan1,*(), WANG Jian1, CUI Ming-Xing2, CHEN Zhen-Ju3
Received:
2012-05-09
Accepted:
2012-09-04
Online:
2012-05-09
Published:
2012-11-28
Contact:
SHANG Zhi-Yuan
SHANG Zhi-Yuan, WANG Jian, CUI Ming-Xing, CHEN Zhen-Ju. Intra-annual variation in δ 13C from tree rings of Pinus sylvestris var. mongolica and its response to climatic factors[J]. Chin J Plant Ecol, 2012, 36(12): 1256-1267.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2012.01256
样本编号 Sample No. | 树龄 Tree age (a) | 分析年份 Analyzing period | 剥取方案 Stripping program |
---|---|---|---|
SZX01-08 | 231 | 1904-1908, 1924-1928, 1944-1948 | 分早材、过渡段和晚材3段 Subdivided into three segments: earlywood (EW), transitional wood (TW) and latewood (LW) for each ring |
BZ4-10-1.2 | 117 | I: 1897-1901, 902-1906, 1912-1916, 1955-1959, 1998-2002; II: 1930-1944 | I: 分早材和晚材 Subdivided into earlywood (EW) and latewood (LW) for each ring; II: 分早材、过渡段和晚材3段 Subdivided into three segments: earlywood (EW), transitional wood (TW) and latewood (LW) for each ring |
Table 1 Basic information of the tree ring δ13C samples
样本编号 Sample No. | 树龄 Tree age (a) | 分析年份 Analyzing period | 剥取方案 Stripping program |
---|---|---|---|
SZX01-08 | 231 | 1904-1908, 1924-1928, 1944-1948 | 分早材、过渡段和晚材3段 Subdivided into three segments: earlywood (EW), transitional wood (TW) and latewood (LW) for each ring |
BZ4-10-1.2 | 117 | I: 1897-1901, 902-1906, 1912-1916, 1955-1959, 1998-2002; II: 1930-1944 | I: 分早材和晚材 Subdivided into earlywood (EW) and latewood (LW) for each ring; II: 分早材、过渡段和晚材3段 Subdivided into three segments: earlywood (EW), transitional wood (TW) and latewood (LW) for each ring |
Fig. 1 Original value of ring width of earlywood (EW) and latewood (LW) in SZX01-08 and BZ4-10-1.2 samples. Dotted lines show 6-degree polynomial fitting.
样本编号 Sample No. | 时间 Time | 材质 Material | 最大值 Max | 最小值 Min | 平均值 Mean | 标准偏差 Standard deviation |
---|---|---|---|---|---|---|
SZX01-08 | 1904-1908 | 早材 Earlywood | -24.347 | -25.239 | -24.784 | 0.371 |
过渡段 Transitional wood | -23.841 | -25.294 | -24.696 | 0.529 | ||
晚材 Latewood | -25.037 | -25.516 | -25.343 | 0.198 | ||
1924-1928 | 早材 Earlywood | -24.394 | -25.495 | -24.957 | 0.464 | |
过渡段 Transitional wood | -23.446 | -24.954 | -24.549 | 0.628 | ||
晚材 Latewood | -24.460 | -25.970 | -25.291 | 0.596 | ||
1944-1948 | 早材 Earlywood | -24.574 | -25.780 | -25.097 | 0.459 | |
过渡段 Transitional wood | -24.667 | -25.370 | -25.063 | 0.302 | ||
晚材 Latewood | -24.486 | -26.219 | -25.816 | 0.491 | ||
BZ4-10-1.2 | 1897-1906 | 早材 Earlywood | -24.176 | -26.322 | -25.276 | 0.741 |
晚材 Latewood | -23.533 | -26.972 | -24.612 | 1.032 | ||
1912-1916 | 早材 Earlywood | -25.044 | -26.224 | -25.735 | 0.453 | |
晚材 Latewood | -23.851 | -25.856 | -25.185 | 0.796 | ||
1930-1944 | 早材 Earlywood | -24.483 | -25.682 | -25.097 | 0.340 | |
过渡段 Transitional wood | -24.095 | -25.275 | -24.630 | 0.387 | ||
晚材 Latewood | -24.460 | -25.675 | -25.093 | 0.415 | ||
1955-1959 | 早材 Earlywood | -24.968 | -25.784 | -25.431 | 0.355 | |
晚材 Latewood | -25.114 | -25.749 | -25.456 | 0.243 | ||
1998-2002 | 早材 Earlywood | -25.307 | -25.904 | -25.630 | 0.268 | |
晚材 Latewood | -25.138 | -26.078 | -25.574 | 0.359 |
Table 2 Statistical results of the intra-annual δ13C sequences in SZX01-08 and BZ4-10-1.2 samples (‰)
样本编号 Sample No. | 时间 Time | 材质 Material | 最大值 Max | 最小值 Min | 平均值 Mean | 标准偏差 Standard deviation |
---|---|---|---|---|---|---|
SZX01-08 | 1904-1908 | 早材 Earlywood | -24.347 | -25.239 | -24.784 | 0.371 |
过渡段 Transitional wood | -23.841 | -25.294 | -24.696 | 0.529 | ||
晚材 Latewood | -25.037 | -25.516 | -25.343 | 0.198 | ||
1924-1928 | 早材 Earlywood | -24.394 | -25.495 | -24.957 | 0.464 | |
过渡段 Transitional wood | -23.446 | -24.954 | -24.549 | 0.628 | ||
晚材 Latewood | -24.460 | -25.970 | -25.291 | 0.596 | ||
1944-1948 | 早材 Earlywood | -24.574 | -25.780 | -25.097 | 0.459 | |
过渡段 Transitional wood | -24.667 | -25.370 | -25.063 | 0.302 | ||
晚材 Latewood | -24.486 | -26.219 | -25.816 | 0.491 | ||
BZ4-10-1.2 | 1897-1906 | 早材 Earlywood | -24.176 | -26.322 | -25.276 | 0.741 |
晚材 Latewood | -23.533 | -26.972 | -24.612 | 1.032 | ||
1912-1916 | 早材 Earlywood | -25.044 | -26.224 | -25.735 | 0.453 | |
晚材 Latewood | -23.851 | -25.856 | -25.185 | 0.796 | ||
1930-1944 | 早材 Earlywood | -24.483 | -25.682 | -25.097 | 0.340 | |
过渡段 Transitional wood | -24.095 | -25.275 | -24.630 | 0.387 | ||
晚材 Latewood | -24.460 | -25.675 | -25.093 | 0.415 | ||
1955-1959 | 早材 Earlywood | -24.968 | -25.784 | -25.431 | 0.355 | |
晚材 Latewood | -25.114 | -25.749 | -25.456 | 0.243 | ||
1998-2002 | 早材 Earlywood | -25.307 | -25.904 | -25.630 | 0.268 | |
晚材 Latewood | -25.138 | -26.078 | -25.574 | 0.359 |
样本编号 Sample No. | 早材与过渡段 Earlywood vs. transitional wood | 过渡段与晚材 Transitional wood vs .latewood | 早材与晚材 Earlywood vs. latewood |
---|---|---|---|
SZX01-08 | 0.361 | 0.797** | 0.501 |
BZ4-10-1.2 | 0.178 | 0.324 | 0.613* |
Table 3 Correlation coefficients of the δ13C sequences between different intra-annual phases
样本编号 Sample No. | 早材与过渡段 Earlywood vs. transitional wood | 过渡段与晚材 Transitional wood vs .latewood | 早材与晚材 Earlywood vs. latewood |
---|---|---|---|
SZX01-08 | 0.361 | 0.797** | 0.501 |
BZ4-10-1.2 | 0.178 | 0.324 | 0.613* |
参数 Parameter | 相关系数 Correlation coefficient | 参数 Parameter | 相关系数 Correlation coefficient |
---|---|---|---|
δ13C (EW)-dRWS (EW) | -0.626* | RWS (EW)-RWS (pLW) | 0.794** |
δ13C (TW)-dRWS (TW) | -0.416 | RWS (EW)-δ13C (pLW) | -0.224 |
δ13C (LW)-dRWS (LW) | -0.245 | δ13C (EW)-dRWS (pLW) | -0.296 |
δ13C (EW)-δ13C (pLW) | 0.075 | δ13C (EW)-dRWS (pLW+EW) | -0.540* |
Table 4 Correlation coefficients between the δ13C sequences of different phases and ring width sequences for BZ4-10-1.2 sample
参数 Parameter | 相关系数 Correlation coefficient | 参数 Parameter | 相关系数 Correlation coefficient |
---|---|---|---|
δ13C (EW)-dRWS (EW) | -0.626* | RWS (EW)-RWS (pLW) | 0.794** |
δ13C (TW)-dRWS (TW) | -0.416 | RWS (EW)-δ13C (pLW) | -0.224 |
δ13C (LW)-dRWS (LW) | -0.245 | δ13C (EW)-dRWS (pLW) | -0.296 |
δ13C (EW)-δ13C (pLW) | 0.075 | δ13C (EW)-dRWS (pLW+EW) | -0.540* |
Fig. 3 Mean values of the intra-annual δ13C sequences (1930-1944) for earlywood (EW), transitional wood (TW) and latewood (LW) from BZ4-10-1.2 sample, and intra-annual T/RH for three ten-days of two meteorological stations (Mohe and Xinlin) during 1972-2007 (A), as well as mean sunshine hours from April to September of 1972-2007 at two meteorological stations (B). T, mean values of 15-year moving average of ten-day mean temperature; RH, mean values of 15-year moving average of ten-day relative humidity. Three ten-days are: from late April to middle June, from late June to middle July and from late July to middle September, respectively.
1 | Barbour MM, Walcroft AS, Farquhar GD ( 2002). Seasonal variation in δ 13C and δ 18O of cellulose from growth rings of Pinus radiata. Plant, Cell & Environment, 25, 1483-1499. |
2 | Brugnoli E, Hubick KT, von Caemmerer S, Wong SC, Farquhar GD ( 1988). Correlation between the carbon isotope discrimination in leaf starch and sugars of C3 plants and the ratio of intercellular and atmospheric partial pressures of carbon dioxide. Plant Physiology, 88, 1418-1424. |
3 | Damesin C, Lelarge C ( 2003). Carbon isotope composition of current-year shoots from Fagus sylvatica in relation to growth, respiration and use of reserves. Plant, Cell & Environment, 26, 207-219. |
4 | Eglin T, Maunoury-Danger F, Fresneau C, Lelarge C, Pollet B, Lapierre C, Francois C, Damesin C ( 2008). Biochemical composition is not the main factor influencing variability in carbon isotope composition of tree rings. Tree Physiology, 28, 1619-1628. |
5 | Eilmann B, Buchmann N, Siegwolf R, Saurer M, Cherubini P, Rigling A ( 2010). Fast response of Scots pine to improved water availability reflected in tree-ring width and δ 13C. Plant, Cell & Environment, 33, 1351-1360. |
6 | Francey RJ, Farquhar GD ( 1982). An explanation of 13C/ 12C variations in tree rings . Nature, 297(5861), 28-31. |
7 | Helle G, Schleser GH ( 2004). Beyond CO2-fixation by Rubisco—an interpretation of 13C/ 12C variations in tree rings from novel intra-seasonal studies on broad-leaf trees . Plant, Cell & Environment, 27, 367-380. |
8 | Hill SA, Waterhouse JS, Field EM, Switsur VR, Ap Rees T ( 1995). Rapid recycling of triose phosphates in oak stem tissue. Plant, Cell & Environment, 18, 931-936. |
9 | Hoch G, Richter A, Körner C ( 2003). Non-structural carbon compounds in temperate forest trees. Plant, Cell & Environment, 26, 1067-1081. |
10 | Jäggi M, Saurer M, Fuhrer J, Siegwolf R ( 2002) . The relationship between the stable carbon isotope composition of needle bulk material, starch, and tree rings in Picea abies. Oecologia, 131, 325-332. |
11 | Kagawa A, Sugimoto A, Maximov TC ( 2006). 13CO2 pulse- labelling of photoassimilates reveals carbon allocation within and between tree rings . Plant, Cell & Environment, 29, 1571-1584. |
12 | Kress A, Young GHF, Saurer M, Loader NJ, Siegwolf RTW, McCarroll D ( 2009). Stable isotope coherence in the earlywood and latewood of tree-line conifers. Chemical Geology, 268, 52-57. |
13 | Lacointe A, Kajji A, Daudet FA, Archer P, Frossard JS ( 1993). Mobilization of carbon reserves in young walnut trees. Acta Botanica Gallica, 140, 435-441. |
14 | Leavitt SW ( 1993). Seasonal 13C/ 12C changes in tree rings: species and site coherence, and a possible drought influence . Canadian Journal Forest Research, 23, 210-218. |
15 | Leavitt SW, Long A ( 1991). Seasonal stable-carbon isotope variability in tree rings: possible paleoenvironmental signals. Chemical Geology, 87, 59-70. |
16 | Leavitt SW, Wright WE, Long A ( 2002). Spatial expression of ENSO, drought, and summer monsoon in seasonal δ 13C of ponderosa pine tree rings in southern Arizona and New Mexico. Journal Geophysical Research, 107(D18), 4349. |
17 | Li ZH, Leavitt SW, Mora CI, Liu RM ( 2005). Influence of earlywood-latewood size and isotope differences on long-term tree-ring δ 13C trends. Chemical Geology, 216, 191-201. |
18 | Livingston NJ, Spittlehouse DL ( 1996). Carbon isotope fractionation in tree ring early and late wood in relation to intra-growing season water balance. Plant, Cell & Environ- ment, 19, 768-774. |
19 |
Loader NJ, Switsur VR, Field EM ( 1995). High-resolution stable isotope analysis of tree rings: implications of ‘microdendroclimatology’ for palaeoenvironmental research. The Holocene, 5, 457-460.
DOI URL |
20 |
McCarroll D, Jalkanen R, Hicks S, Tuovinen M, Gagen M, Pawellek F, Eckstein D, Schmitt U, Autio J, Heikkinen O ( 2003). Multiproxy dendroclimatology: a pilot study in northern Finland. The Holocene, 13, 829-838.
DOI URL |
21 | McCarroll D, Loader NJ ( 2004). Stable isotopes in tree rings. Quaternary Science Reviews, 23, 771-801. |
22 | McCarroll D, Pawellek F ( 2001). Stable carbon isotope ratios of Pinus sylvestris from northern Finland and the potential for extracting a climate signal from long Fennoscandian chronologies. The Holocene, 11, 517-526. |
23 | Michelot A, Eglin T, Dufrêne E, Lelarge-Trouverie C, Damesin C ( 2011). Comparison of seasonal variations in water-use efficiency calculated from the carbon isotope composition of tree rings and flux data in a temperate forest. Plant, Cell & Environment, 34, 230-244. |
24 | O’Leary MH ( 1981). Carbon isotope fractionation in plants. Phytochemistry, 20, 553-567. |
25 | Porté A, Loustau D ( 2001). Seasonal and interannual variations in carbon isotope discrimination in a maritime pine ( Pinus pinaster) stand assessed from the isotopic composition of cellulose in annual rings. Tree Physiology, 21, 861-868. |
26 | Robertson I, Loader NJ, McCarroll D, Carter AHC, Cheng L, Leavitt SW ( 2004). δ 13C of tree-ring lignin as an indirect measure of climate change . Water, Air, and Soil Pollution, 4, 531-544. |
27 | Schulze B, Wirth C, Linke P, Brand WA, Kuhlmann I, Horna V, Schulze ED ( 2004). Laser ablation-combustion-GC- IRMS — a new method for online analysis of intra-annual variation of δ 13C in tree rings. Tree Physiology, 24, 1193-1201. |
28 | Shang ZY ( 商志远), Wang J ( 王建), Cui MX ( 崔明星), Chen ZJ ( 陈振举), Wang ZJ ( 王志军), Liu F ( 刘丰), Qian JL ( 钱君龙 ) ( 2011). Analysis of stable carbon isotopes in different components of tree rings of Pinus sylvestris var. mongolica. Acta Ecologica Sinica (生态学报), 31, 5148-5158. (in Chinese with English abstract) |
29 | Skomarkova MV, Vaganov EA, Mund M, Knohl A, Linke P, Boerner A, Schulze ED ( 2006). Inter-annual and seasonal variability of radial growth, wood density and carbon isotope ratios in tree rings of beech ( Fagus sylvatica) growing in Germany and Italy. Trees, 20, 571-586. |
30 | Smith JL, Paul EA ( 1988). Use of an in situ labeling technique for the determination of seasonal 14C distribution in Ponderosa pine. Plant and Soil, 106, 221-229. |
31 | Wang J ( 王建), Qian JL ( 钱君龙), Liang Z ( 梁中), Zhao XY ( 赵兴云), Shang ZY ( 商志远), Chen X ( 陈霞), Lu XM ( 陆小明 ) ( 2008). Sampling strategy for carbon isotope analysis of tree rings: a case study of Cryptomeria fortunei from Mt. Tianmu, China. Acta Ecologica Sinica (生态学报), 28, 6070-6078. (in Chinese with English abstract) |
32 | Wang XC ( 王晓春), Song LP ( 宋来萍), Zhang YD ( 张远东 ) ( 2011). Climate-tree growth relationships of Pinus sylvestris var. mongolica in the northern Daxing’an Mountains, China. Chinese Journal of Plant Ecology (植物生态学报), 35, 294-302. (in Chinese with English abstract) |
33 | Weigl M, Grabner M, Helle G, Schleser GH, Wimmer R ( 2008). Characteristics of radial growth and stable isotopes in a single oak tree to be used in climate studies. Science of the Total Environment, 393, 154-161. |
34 | Wilson AT, Grinsted JM ( 1977). 12C/ 13C in cellulose and lignin as palaeothermometers . Nature, 265, 133-135. |
35 | Zhao XL ( 赵兴梁), Li WY ( 李万英 ) (1963). Pinus sylvestris var. mongolica Litv (樟子松). China Agricultural Publishing House, Beijing. 9-10. (in Chinese) |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn