Chin J Plant Ecol ›› 2016, Vol. 40 ›› Issue (6): 533-542.DOI: 10.17521/cjpe.2015.0478
Special Issue: 稳定同位素生态学; 生物地球化学
• Research Articles • Next Articles
Xin XIONG1,2, Hui-Ling ZHANG1,2, Jian-Ping WU1,2, Guo-Wei CHU1, Guo-Yi ZHOU1, De-Qiang ZHANG1,*()
Received:
2015-12-29
Accepted:
2016-04-23
Online:
2016-06-10
Published:
2016-06-15
Contact:
De-Qiang ZHANG
Xin XIONG, Hui-Ling ZHANG, Jian-Ping WU, Guo-Wei CHU, Guo-Yi ZHOU, De-Qiang ZHANG. 13C and 15N isotopic signatures of plant-soil continuum along a successional gradient in Dinghushan Biosphere Reserve[J]. Chin J Plant Ecol, 2016, 40(6): 533-542.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2015.0478
共有树种 Common species | 林型 Forest type | 稳定碳同位素比率 δ13C (‰) | 稳定氮同位素比率 δ15N (‰) |
---|---|---|---|
马尾松 Pinus massoniana | 松林 Pine forest | -29.28 (0.19) | -5.15 (0.24) |
混交林 Mixed forest | -30.30 (0.10)** | -4.07 (0.11)* | |
木荷 Schima superba | 混交林 Mixed forest | -30.77 (0.53) | -3.56 (0.18) |
阔叶林 Broad-leaved forest | -29.19 (0.69) | -5.41 (0.09)** | |
锥 Castanopsis chinensis | 混交林 Mixed forest | -30.90 (0.21) | -2.73 (0.41) |
阔叶林 Broad-leaved forest | -29.88 (0.79) | -3.09 (0.57) | |
厚壳桂 Cryptocarya chinensis | 混交林 Mixed forest | -33.37 (0.12) | -3.75 (0.21) |
阔叶林 Broad-leaved forest | -32.94 (0.35) | -3.59 (0.40) |
Table 1 Differences in foliar carbon isotope ratio (δ13C) and nitrogen isotope ratio (δ15N) of common dominant species among different forest types
共有树种 Common species | 林型 Forest type | 稳定碳同位素比率 δ13C (‰) | 稳定氮同位素比率 δ15N (‰) |
---|---|---|---|
马尾松 Pinus massoniana | 松林 Pine forest | -29.28 (0.19) | -5.15 (0.24) |
混交林 Mixed forest | -30.30 (0.10)** | -4.07 (0.11)* | |
木荷 Schima superba | 混交林 Mixed forest | -30.77 (0.53) | -3.56 (0.18) |
阔叶林 Broad-leaved forest | -29.19 (0.69) | -5.41 (0.09)** | |
锥 Castanopsis chinensis | 混交林 Mixed forest | -30.90 (0.21) | -2.73 (0.41) |
阔叶林 Broad-leaved forest | -29.88 (0.79) | -3.09 (0.57) | |
厚壳桂 Cryptocarya chinensis | 混交林 Mixed forest | -33.37 (0.12) | -3.75 (0.21) |
阔叶林 Broad-leaved forest | -32.94 (0.35) | -3.59 (0.40) |
林型 Forest type | 稳定碳同位素比率 δ13C (‰) | 稳定氮同位素比率 δ15N (‰) | 碳氮比 C:N |
---|---|---|---|
松林 Pine forest | -28.84 (0.09)a | -5.19 (0.08)b | 46.11 (0.63)a |
混交林 Mixed forest | -29.78 (0.04)b | -4.40 (0.06)ab | 41.39 (0.42)b |
阔叶林 Broad-leaved forest | -30.43 (0.19)c | -4.02 (0.52)a | 31.73 (1.87)c |
Table 2 The stable carbon isotope ratio (δ13C) and stable nitrogen isotope ratio (δ15N) and the C:N of the litter from different forest types
林型 Forest type | 稳定碳同位素比率 δ13C (‰) | 稳定氮同位素比率 δ15N (‰) | 碳氮比 C:N |
---|---|---|---|
松林 Pine forest | -28.84 (0.09)a | -5.19 (0.08)b | 46.11 (0.63)a |
混交林 Mixed forest | -29.78 (0.04)b | -4.40 (0.06)ab | 41.39 (0.42)b |
阔叶林 Broad-leaved forest | -30.43 (0.19)c | -4.02 (0.52)a | 31.73 (1.87)c |
主效应和交互作用 Main effect or interaction | 因变量 Dependent variable | ||||||
---|---|---|---|---|---|---|---|
稳定碳同位素比率 δ13C | 稳定氮同位素比率 δ15N | 土壤总有机碳生物 TOC | 易氧化有机碳 含量 ROC | 微生物生物量 碳含量 MBC | 总氮含量 TN | 碳氮比 C:N | |
林型 Forest type | F2 = 96.39** | F2 = 2.02 | F2 = 54.74** | F2 = 24.81** | F2 = 15.34** | F2 = 92.32** | F2 = 25.77** |
土层 Soil layer | F3 = 53.77** | F3 = 133.56** | F3 = 233.24** | F3 = 244.47** | F3 = 23.74** | F3 = 232.26** | F3 = 162.36** |
林型×土层 Forest type × soil layer | F11 = 3.00** | F11 = 1.65 | F11 = 7.47** | F11 = 4.62** | F11 = 1.83 | F11 = 6.99** | F11 = 4.90** |
Table 3 Effects of forest type, soil layer and and their interaction on soil stable carbon isotope ratio (δ13C), stable nitrogen isotope ratio (δ15N), total organic carbon (TOC), readily oxidized organic carbon content (ROC), microbial biomass carbon content (MBC), total nitrogen content (TN) and the C to N ratio (C:N)
主效应和交互作用 Main effect or interaction | 因变量 Dependent variable | ||||||
---|---|---|---|---|---|---|---|
稳定碳同位素比率 δ13C | 稳定氮同位素比率 δ15N | 土壤总有机碳生物 TOC | 易氧化有机碳 含量 ROC | 微生物生物量 碳含量 MBC | 总氮含量 TN | 碳氮比 C:N | |
林型 Forest type | F2 = 96.39** | F2 = 2.02 | F2 = 54.74** | F2 = 24.81** | F2 = 15.34** | F2 = 92.32** | F2 = 25.77** |
土层 Soil layer | F3 = 53.77** | F3 = 133.56** | F3 = 233.24** | F3 = 244.47** | F3 = 23.74** | F3 = 232.26** | F3 = 162.36** |
林型×土层 Forest type × soil layer | F11 = 3.00** | F11 = 1.65 | F11 = 7.47** | F11 = 4.62** | F11 = 1.83 | F11 = 6.99** | F11 = 4.90** |
Fig. 2 Distribution characteristics of soil stable carbon isotope ratio (δ13C, A) and total organic carbon content (TOC, B) and stable nitrogen isotope ratio (δ15N, C) and total nitrogen content (TN, D) along soil profiles (mean ± SE). BF, broad-leaved forest; MF, mixed forest; PF, pine forest.
Fig. 3 Change of readily oxidized organic carbon content (ROC, A) and microbial biomass carbon content (MBC, B) and the C to N ratio (C:N, C) at different soil layers under different forests (mean ± SE). Different letters indicate significant differences among forests for the same soil layer at p < 0.05. BF, broad-leaved forest; MF, mixed forest; PF, pine forest.
1 | Balesdent J, Girardin C, Mariotti A (1993). Site-related δ13C of tree leaves and soil organic matter in a temperate forest.Ecology, 74, 1713-1721. |
2 | Bernoux M, Cerri CC, Neill C, Moraes JFL (1998). The use of stable carbon isotopes for estimating soil organic matter turnover rates.Geoderma, 82, 43-58. |
3 | Blair GJ, Lefroy RDB, Lisle L (1995). Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural systems.Aus- tralian Journal of Agricultural Research, 46, 1459-1466. |
4 | Cernusak LA, Ubierna N, Winter K, Holtum JAM, Marshall JD, Farquhar GD (2013). Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants.New Phytologist, 200, 950-965. |
5 | Chen H, Gurmesa GA, Zhang W, Zhu XM, Zheng MH, Mao QG, Zhang T, Mo JM (2015). Nitrogen saturation in humid tropical forests after 6 years of nitrogen and phosphorus addition: Hypothesis testing.Functional Ecology, 17(2), 59-73. |
6 | Chen QQ, Shen CD, Peng SL, Yi WX, Sun YM, Li ZA, Jiang MT (2002). Characteristics and controlling factors of soil organic matter turnover processes in the subtropical mountainous area, South China.Acta Ecologica Sinica, 22, 1446-1454. (in Chinese with English abstract)[陈庆强, 沈承德, 彭少麟, 易惟熙, 孙彦敏, 李志安, 姜漫涛 (2002). 华南亚热带山地土壤有机质更新特征及其影响因子. 生态学报, 22, 1446-1454.] |
7 | Chen SP, Bai YF, Zhang LX, Han XG (2005). Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China.Environmental and Experimental Botany, 53, 65-75. |
8 | Cheng XL, Yang YH, Li M, Dou XL, Zhang QF (2013). The impact of agricultural land use changes on soil organic carbon dynamics in the Danjiangkou Reservior area of China.Plant and Soil, 366, 415-424. |
9 | Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA (2009). Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability.New Phytologist, 183, 980-992. |
10 | Ehleringer JR, Buchmann N, Flanagan LB (2000). Carbon isotope ratios in belowground carbon cycle processes.Ecological Applications, 10, 412-422. |
11 | Ehleringer JR, Lin ZF, Field CB, Kuo CY (1986). Leaf carbon isotope ratio and mineral composition in subtropical plants along an irradiance cline.Oecologia, 72, 109-114. |
12 | Falkengren-Grerup U, Michelsen A, Olsson MO, Quarmby C, Sleep D (2004). Plant nitrate use in deciduous woodland: The relationship between leaf N, 15N natural abundance of forbs and soil N mineralisationmineralization.Soil Biology & Biochemistry, 36, 1885-1891. |
13 | Farquhar GD, O’Leary MH, Berry JA (1982). On the relationship between carbon isotope discrimination and the inter- cellular carbon dioxide concentration in leaves.Australian Journal of Plant Physiology, 9, 121-137. |
14 | Field C, Merino J, Mooney HA (1983). Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens.Oecologia, 60, 384-389. |
15 | Galdo ID, Six J, Peressotti A, Cotrufo MF (2003). Assessing the impact of land-use change on soil sequestration in agriculture soils by means of organic matter fraction and stable C isotopes.Global Change Biology, 9, 1204-1213. |
16 | Garten CT, Taylor GE (1992). Foliar δ13C within a temperate deciduous forest: Spatial, temporal, and species sources of variation.Oecologia, 90, 1-7. |
17 | Gleixner G, Danier HJ, Werner RA, Schmidt HL (1993). Correlations between the 13C content of primary and secondary plant products in different cell compartments and that in decomposing Basidiomycetes.Plant Physiology, 102, 1287-1290. |
18 | Hobbie EA, Macko SA, Williams M (2000). Correlation be- tween foliar δ15N and nitrogen concentrations may indicate plant-mycorrhizal interactions.Oecologia, 122, 273-283. |
19 | Hobbie EA, Ouimette AP (2009). Controls of nitrogen isotope patterns in soil profiles.Biogeochemistry, 95, 355-371. |
20 | Hobbie EA, Werner RA (2004). Intramolecular, compound- specific, and bulk carbon isotope patterns in C3 and C4 plants: A review and synthesis.New Phytologist, 161, 371-385. |
21 | Högberg P (1997). 15N natural abundance in soil-plant systems.New Phytologist, 137, 179-203. |
22 | Högberg P, Ekblad A (1996). Substrate-induced respiration measured in situ in a C3-plant ecosystem using additions of C4-sucrose.Soil Biology & Biochemistry, 28, 1131-1138. |
23 | Huang YH, Li YL, Xiao Y, Wenigmann KO, Zhou GY, Zhang DQ, Wenigmann M, Tang XL, Liu JX (2011). Controls of litter quality on the carbon sink in soils through partitioning the products of decomposing litter in a forest succession series in South China.Forest Ecology and Management, 261, 1170-1177. |
24 | Huang ZL, Kong GH, Zhang QM, Liu SZ (1998). Structure, species diversity and population dynamics of the lower subtropical evergreen broad-leaved forest in Dinghushan Biosphere Reserve.Tropical and Subtropical Forest Ecosystem, 1, 64-75. (in Chinese with English abstract)[黄忠良, 孔国辉, 张倩媚, 刘世忠 (1998). 鼎湖山南亚热带常绿阔叶林结构、物种多样性及种群动态的研究. 热带亚热带森林生态系统研究, 1, 64-75.] |
25 | Kahmen A, Wanek W, Buchmann N (2008). Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient.Oecologia, 156, 861-870. |
26 | Ledgard SF, Feney JR, Simpson JR (1984). Variations in natural enrichment of 15N in the profiles of some Australian pasture soils.Australian Journal of Soil Research, 22, 155-164. |
27 | Liao JD, Boutton TW, Jastrow JD (2006). Organic matter turnover in soil physical fractions following woody plant invasion of grassland: Evidence from natural 13C and 15N.Soil Biology & Biochemistry, 38, 3197-3210. |
28 | Liu XD, Zhou GY, Chen XZ, Zhang DQ, Zhang QM (2014). Forest microclimate change along with the succession and response to climate change in south subtropical region.Acta Ecologica Sinica, 34, 2755-2764. (in Chinese with English abstract)[刘效东, 周国逸, 陈修治, 张德强, 张倩媚 (2014). 南亚热带森林演替过程中小气候的改变及对气候变化的响应. 生态学报, 34, 2755-2764.] |
29 | Mariotti A, Pierre D, Vedy JC, Bruckert S, Guillemot J (1980). The abundance of natural nitrogen 15 in the organic matter of soils along an altitudinal gradient.Catena, 7, 293-300. |
30 | Nadelhoffer KJ, Fry B (1988). Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter.Soil Science Society of America Journal, 52, 1633-1640. |
31 | O’Leary MH (1981). Carbon isotope fractionation in plants.Phytochemistry, 20, 553-567. |
32 | O’Leary MH (1988). Carbon isotopes in photosynthesis.Bioscience, 38, 328-336. |
33 | Ouyang X, Li YL, Zhang QM (2014). Characteristics of microclimate in a mixed coniferous and broadleaf forest in Dinghushan Biosphere Reserve.Chinese Journal of Ecology, 33, 575-582. (in Chinese with English abstract)[欧阳旭, 李跃林, 张倩媚 (2014). 鼎湖山针阔叶混交林小气候调节效应. 生态学杂志, 33, 575-582.] |
34 | Pardo LH, Hemond HF, Montoya JP, Fahey TJ, Siccama TG (2002). Response of the natural abundance of 15N in forest soils and foliage to high nitrate loss following clear cutting.Canadian Journal of Forest Research, 32, 1126-1136. |
35 | Shearer G, Kohl DH (1986). N2-fixation in field settings: Estimations based on natural 15N abundance.Australian Journal of Plant Physiology, 13, 699-756. |
36 | Sun GC, Lin ZF, Lin GZ, Li SS (1993). 13C/12C ratio and water use efficiency of Pinus massoniana in subtropical artificial forest.Chinese Journal of Applied Ecology, 4, 325-327. (in Chinese with English abstract)[孙谷畴, 林植芳, 林桂珠, 李双顺 (1993). 亚热带人工林松树13C/12C比率和水分利用效率. 应用生态学报, 4, 325-327.] |
37 | Tcherkez G, Hodges M (2008). How stable isotopes may help to elucidate primary nitrogen metabolism and its interaction with (photo) respiration in C3 leaves.Journal of Experimental Botany, 59, 941-953. |
38 | Templer PH, Arthur MA, Lovett GM, Weathers KC (2007). Plant and soil natural abundance δ15N: Indicators of relative rates of nitrogen cycling in temperate forest ecosystems.Oecologia, 153, 399-406. |
39 | Tiessen H, Karamanos RE, Stewart JWB, Selles F (1984). Natural nitrogen-15 abundance as an indicator of soil organic matter transformations in native and cultivated soils.Soil Science Society of America Journal, 48, 312-315. |
40 | Tsialtas JT, Handley LL, Kassioumi MT, Veresoglou DS, Gagianas AA (2001). Interspecific variation in potential water use efficiency and its relation to plant species abundance in a water-limited grassland.Functional Ecology, 15, 605-614. |
41 | Vance ED, Brookes PC, Jenkinson DS (1987). An extraction method for measuring soil microbial biomass C.Soil Biology & Biochemistry, 19, 703-707. |
42 | Xu YQ, He JC, Cheng WX, Xing XR, Li LH (2010). Natural 15N abundance in soils and plants in relation to N cycling in a rangeland in Inner Mongolia.Journal of Plant Ecology, 3, 201-207. |
43 | Yu GR, Wang SQ, Chen PQ, Li QK (2005). Isotope tracer approaches in soil organic carbon cycle research.Advances in Earth Science, 20, 568-577. (in Chinese with English abstract)[于贵瑞, 王绍强, 陈泮勤, 李庆康 (2005). 碳同位素技术在土壤碳循环研究中的应用. 地球科学进展, 20, 568-577.] |
44 | Zhang J, Gu L, Bao F, Cao Y, Hao Y, He J, Li J, Li Y, Ren Y, Wang F, Wu R, Yao B, Zhao Y, Lin G, Wu B, Lu Q, Meng P (2015). Nitrogen control of 13C enrichment in heterotrophic organs relative to leaves in a landscape- building desert plant species.Biogeosciences, 12, 15-27. |
45 | Zhou GY, Liu SG, Li ZA, Zhang DQ, Tang XL, Zhou CY, Yan JH, Mo JM (2006a). Old-growth forests can accumulate carbon in soils.Science, 314, 1417. |
46 | Zhou GY, Zhou CY, Liu SG, Tang XL, Ouyang XJ, Zhang DQ, Liu SZ, Liu JX, Yan JH, Wen DZ, Xu GL, Zhou CY, Luo Y, Guan LL, Liu Y (2006b). Belowground carbon balance and carbon accumulation rate in the successional serials of monsoon evergreen broad-leaved forest.Science in China Serial D-Earth Science, 49, 311-321. |
[1] | Qingshui Yu xiaofeng ni Jiangling Zhu Zhi-Yao TANG Jing-Yun FANG. Effects of 10 years of nitrogen and phosphorus additions on leaf non-structural carbohydrates of dominant plants in two tropical rainforests in the Jianfengling, Hainan [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | 建 周 Han Wang. A review of forest size structure studies: from statistical description to theoretical deduction [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[3] | FU Liang-Chen, DING Zong-Ju, TANG Mao, ZENG Hui, ZHU Biao. Rhizosphere effects of Betula platyphylla and Quercus mongolica and their seasonal dynamics in Dongling Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(4): 508-522. |
[4] | ZHANG Yu-Jian, LIU Yan-Hong. Tree physiology and major influencing factors under forest fires [J]. Chin J Plant Ecol, 2024, 48(3): 269-286. |
[5] | YANG An-Na, LI Zeng-Yan, MOU Ling, YANG Bai-Yu, SAI Bi-Le, ZHANG Li, ZHANG Zeng-Ke, WANG Wan-Sheng, DU Yun-Cai, YOU Wen-Hui, YAN En-Rong. Variation in soil bacterial community across vegetation types in Dajinshan Island, Shanghai [J]. Chin J Plant Ecol, 2024, 48(3): 377-389. |
[6] | XUE Zhi-Fang, LIU Tong, WANG Li-Sheng, SONG Ji-Hu, CHEN Hong-Yang, XU Ling, YUAN Ye. Community structure and characteristics of plain valley forests in main tributaries of Ertix River Basin, China [J]. Chin J Plant Ecol, 2024, 48(3): 390-402. |
[7] | NIU Yi-Di, CAI Ti-Jiu. Changes in species diversity and influencing factors in secondary forest succession in northern Da Hinggan Mountains [J]. Chin J Plant Ecol, 2024, 48(3): 349-363. |
[8] | CHEN Zhao-Quan, WANG Ming-Hui, HU Zi-Han, LANG Xue-Dong, HE Yun-Qiong, LIU Wan-De. Mechanisms of seedling community assembly in a monsoon evergreen broadleaf forest in Pu’er, Yunnan, China [J]. Chin J Plant Ecol, 2024, 48(1): 68-79. |
[9] | YUAN Ya-Ni, ZHOU Zhe, CHEN Bin-Zhou, GUO Yao-Xin, YUE Ming. Differential ecological strategies in functional traits among coexisting tree species in a Quercus aliena var. acuteserrata forest [J]. Chin J Plant Ecol, 2023, 47(9): 1270-1277. |
[10] | ZHANG Ying, ZHANG Chang-Hong, WANG Qi-Tong, ZHU Xiao-Min, YIN Hua-Jun. Difference of soil carbon sequestration between rhizosphere and bulk soil in a mountain coniferous forest in southwestern China under nitrogen deposition [J]. Chin J Plant Ecol, 2023, 47(9): 1234-1244. |
[11] | ZHANG Hui-Ling, ZHANG Yao-Yi, PENG Qing-Qing, YANG Jing, NI Xiang-Yin, WU Fu-Zhong. Variations of trace-elements resorption efficiency in leaves of different tree species as affected by life forms in a mid-subtropical common garden [J]. Chin J Plant Ecol, 2023, 47(7): 978-987. |
[12] | SHEN Jian, HE Zong-Ming, DONG Qiang, GAO Shi-Lei, LIN Yu. Effects of mild fire on soil respiration rate and abiotic factors in coastal sandy plantation [J]. Chin J Plant Ecol, 2023, 47(7): 1032-1042. |
[13] | ZHANG Zhong-Yang, SONG Xi-Qiang, REN Ming-Xun, ZHANG Zhe. Ecological functions of vascular epiphytes in habitat construction [J]. Chin J Plant Ecol, 2023, 47(7): 895-911. |
[14] | ZHANG Qi, FENG Ke, CHANG Zhi-Hui, HE Shuang-Hui, XU Wei-Qi. Effects of shrub encroachment on plant and soil microbial in the forest-grassland ecotone [J]. Chin J Plant Ecol, 2023, 47(6): 770-781. |
[15] | DU Ting, CHEN Yu-Lian, BI Jing-Hui, YANG Yu-Ting, ZHANG Li, YOU Cheng-Ming, TAN Bo, XU Zhen-Feng, WANG Li-Xia, LIU Si-Ning, LI Han. Effects of forest gap on losses of total phenols and condensed tannins of foliar litter in a subalpine forest of western Sichuan, China [J]. Chin J Plant Ecol, 2023, 47(5): 660-671. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn