Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (11): 1445-1458.DOI: 10.17521/cjpe.2024.0128 cstr: 32100.14.cjpe.2024.0128
• Research Articles • Previous Articles Next Articles
HUANG Wen-Lan1, LIU Yao2, JIAN Yi3, ZHANG Lin-Hui1, CHEN Su1, HUANG Lu-Lu1, YU Li-Yun1, LI Han1, WANG Li-Xia1, TAN Bo1, ZHANG Li1,*()
Received:
2024-04-25
Accepted:
2024-08-23
Online:
2024-11-20
Published:
2024-08-23
Contact:
*ZHANG Li (14046@sicau.edu.cn)
Supported by:
HUANG Wen-Lan, LIU Yao, JIAN Yi, ZHANG Lin-Hui, CHEN Su, HUANG Lu-Lu, YU Li-Yun, LI Han, WANG Li-Xia, TAN Bo, ZHANG Li. Effects of different snow treatments on soil humus content in subalpine forest soils in western Sichuan, China[J]. Chin J Plant Ecol, 2024, 48(11): 1445-1458.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0128
Fig. 1 Effects of different snow treatments on soil moisture content (A), pH (B), soil organic carbon (C), total nitrogen (D), and soil total phosphorus (E) contents in subalpine forests in western Sichuan (mean ± SD, n = 5). * indicate significant differences in main effects at different times in the same soil layer (p < 0.05). Different uppercase letters indicate significant differences in main effects between treatments at the same soil layer (p < 0.05).
![]() |
Table 1 Efects of soil layer and snow treatment on soil physicochemical properties, humic substances, and optical properties at different sampling times
![]() |
Fig. 2 Effects of different snow treatments on soil extractable humus content (A), humic acid content (B), fulvic acid content (C), humic acid/fulvic acid (D), humic acid/extractable humus (E), hue coefficient (F), optical density value (G), and A600/C (H) in subalpine forest soils in western Sichuan (mean ± SD, n = 5). * indicating significant differences in main effects at different times in the same soil layer (p < 0.05). Different uppercase letters indicate significant differences in main effects between treatments at the same soil layer (p < 0.05). Different lowercase letters indicate significant differences in simple effects between treatments at the same time and soil layer (p < 0.05).
Fig. 3 Kumuda type of humic substances in different soil layers in subalpine forest in western Sichuan. Stability of humic substances: A > B > P > Rp. Values are averaged across sampling dates.
Fig. 4 Soil humus was correlated with physical and chemical properties during the snow melting period (A, B) and early snow formation period (C, D) in subalpine forests in western Sichuan. The size of the circular dot is used to show the strength of the correlation, color is used to represent the positive and negative correlation coefficients, and the color block of the square is used to represent the p-value of the correlation test. E4/E6, optical density value; FA, fulvic acid content; FTC, freeze-thaw cycle; HA, humic acid content; HA/FA, humic acid /fulvic acid; HS, extractable humic substance content; PQ, humic acid/extractable humic substance; SOC, soil organic carbon content; SWC, soil water content; Tm, temperature; TN, total nitrogen content; TP, total phosphorus content; Δlog K, hue coefficient.
[1] | Abakumov EV, Cajthaml T, Brus J, Frouz J (2013). Humus accumulation, humification, and humic acid composition in soils of two post-mining chronosequences after coal mining. Journal of Soils and Sediments, 13, 491-500. |
[2] | Adani F, Spagnol M, Nierop KGJ (2007). Biochemical origin and refractory properties of humic acid extracted from maize plants: the contribution of lignin. Biogeochemistry, 82, 55-65. |
[3] | Berg B (2014). Decomposition patterns for foliar litter—A theory for influencing factors. Soil Biology & Biochemistry, 78, 222-232. |
[4] | Bokhorst S, Phoenix GK, Bjerke JW, Callaghan TV, Huyer-Brugman F, Berg MP (2012). Extreme winter warming events more negatively impact small rather than large soil fauna: shift in community composition explained by traits not taxa. Global Change Biology, 18, 1152-1162. |
[5] | Brooks PD, Williams MW, Schmidt SK (1996). Microbial activity under alpine snowpacks, Niwot Ridge, Colorado. Biogeochemistry, 32, 93-113. |
[6] | Chen ZH, Zhang XR, Tan B, Wei XY, Chen Y, Yang YL, Wu QG, Zhang L (2020). Effects of the freeze-thaw cycle on soil enzyme activities in a sub-alpine forest in western Sichuan. Acta Ecologica Sinica, 40, 2662-2669. |
[陈子豪, 张晓蓉, 谭波, 卫芯宇, 谌亚, 杨玉莲, 吴庆贵, 张丽 (2020). 冻融循环对川西亚高山森林土壤酶活性的影响. 生态学报, 40, 2662-2669.] | |
[7] | Chu H, Zong LG, Wang ZY, Xie SH, Yang N, Luo M (2013). Dynamic changes in humus composition in vegetable soils different in cultivation mode. Acta Pedologica Sinica, 50, 931-939. |
[褚慧, 宗良纲, 汪张懿, 谢少华, 杨旎, 罗敏 (2013). 不同种植模式下菜地土壤腐殖质组分特性的动态变化. 土壤学报, 50, 931-939.] | |
[8] |
Comerford DP, Schaberg PG, Templer PH, Socci AM, Campbell JL, Wallin KF (2013). Influence of experimental snow removal on root and canopy physiology of sugar maple trees in a northern hardwood forest. Oecologia, 171, 261-269.
DOI PMID |
[9] |
Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 19, 988-995.
DOI PMID |
[10] | Dang YA, Li SQ, Wang GD (2012). Distribution characteristics of humus fraction in soil profile for the typical regions in the Loess Plateau. Acta Ecologica Sinica, 32, 1820-1829. |
[党亚爱, 李世清, 王国栋 (2012). 黄土高原典型区域土壤腐殖酸组分剖面分布特征. 生态学报, 32, 1820-1829.] | |
[11] | Deng RJ, Yang WQ, Zhang J, Wu FZ (2010). Changes in litter quality of subalpine forests during one freeze-thaw season. Acta Ecologica Sinica, 30, 830-835. |
[邓仁菊, 杨万勤, 张健, 吴福忠 (2010). 季节性冻融期间亚高山森林凋落物的质量变化. 生态学报, 30, 830-835.] | |
[12] | Dou S, Li Y, Guan S, Guo D, Zhang MY, Jin L (2016). The structural distinctiveness of humic substances and its formation mechanism in simulated incubation. Acta Pedologica Sinica, 53, 821-831. |
[窦森, 李艳, 关松, 郭聃, 张明阳, 金良 (2016). 腐殖物质特异性及其产生机制. 土壤学报, 53, 821-831.] | |
[13] | Dou S, Tardy Y, Zhang JJ, Li K, Yu SQ, Ping LF, Guan S, Hou SY, Lin XW, Gao X (2010). Thermodynamic stability of humic acid and fulvic acid in soil and its driving factors. Acta Pedologica Sinica, 47, 71-76. |
[窦森, Yves Tardy, 张晋京, 李凯, 于水强, 平立凤, 关松, 侯素艳, 林学巍, 高娴 (2010). 土壤胡敏酸与富里酸热力学稳定性及其驱动因素初步研究. 土壤学报, 47, 71-76.] | |
[14] | Du T, Zhang L, Chen YL, Zhang Y, Zhu HM, Xu ZF, Tan B, You CM, Liu Y, Wang LX, Liu SN, Xu HW, Xu L, Li H (2024). Decreased snow depth inhibits litter decomposition via changes in litter microbial biomass and enzyme activity. Science of the Total Environment, 921, 171078. DOI: 10.1016/j.scitotenv.2024.171078. |
[15] | Gigliotti G, Businelli D, Giusquiani PL (1999). Composition changes of soil humus after massive application of urban waste compost: a comparison between FT-IR spectroscopy and humification parameters. Nutrient Cycling in Agroecosystems, 55, 23-28. |
[16] | Haei M, Öquist MG, Kreyling J, Ilstedt U, Laudon H (2013). Winter climate controls soil carbon dynamics during summer in boreal forests. Environmental Research Letters, 8, 024017. DOI: 10.1088/1748-9326/8/2/024017. |
[17] | Ikeya K, Watanabe A (2003). Direct expression of an index for the degree of humification of humic acids using organic carbon concentration. Soil Science and Plant Nutrition, 49, 47-53. |
[18] | IPCC (2021). The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[19] | Isobe K, Oka H, Watanabe T, Tateno R, Urakawa R, Liang C, Senoo K, Shibata H (2018). High soil microbial activity in the winter season enhances nitrogen cycling in a cool-temperate deciduous forest. Soil Biology & Biochemistry, 124, 90-100. |
[20] | Jia PL, An SS, Li CC, Zeng QC, Wang BR, Bai XJ (2020). Dynamics of soil nutrients and their ecological stoichiometry characteristics under different longitudes in the east-west forest belt of the Loess Plateau. Journal of Soil and Water Conservation, 34(1), 315-321. |
[贾培龙, 安韶山, 李程程, 曾全超, 王宝荣, 白雪娟 (2020). 黄土高原森林带土壤养分和微生物量及其生态化学计量变化特征. 水土保持学报, 34(1), 315-321.] | |
[21] | Jia SH, Wang WW, Zhang RS (2017). Distribution characteristics of soil organic carbon and humus composition in different forest types. Journal of Soil and Water Conservation, 31(6), 189-195. |
[贾树海, 王薇薇, 张日升 (2017). 不同林型土壤有机碳及腐殖质组成的分布特征. 水土保持学报, 31(6), 189-195.] | |
[22] | Konestabo HS, Michelsen A, Holmstrup M (2007). Responses of springtail and mite populations to prolonged periods of soil freeze-thaw cycles in a sub-arctic ecosystem. Applied Soil Ecology, 36, 136-146. |
[23] | Kreyling J, Haei M, Laudon H (2013). Snow removal reduces annual cellulose decomposition in a riparian boreal forest. Canadian Journal of Soil Science, 93, 427-433. |
[24] | Kuzyakov Y (2010). Priming effects: interactions between living and dead organic matter. Soil Biology & Biochemistry, 42, 1363-1371. |
[25] |
Ladwig LM, Ratajczak ZR, Ocheltree TW, Hafich KA, Churchill AC, Frey SJK, Fuss CB, Kazanski CE, Muñoz JD, Petrie MD, Reinmann AB, Smith JG (2016). Beyond Arctic and alpine: the influence of winter climate on temperate ecosystems. Ecology, 97, 372-382.
PMID |
[26] | Li H, Wu FZ, Yang WQ, Xu LY, Ni XY, He J, Tan B, Hu Y (2016). Effects of forest gaps on litter lignin and cellulose dynamics vary seasonally in an alpine forest. Forests, 7, 27. DOI: 10.3390/f7020027. |
[27] | Lin CY, Li XL, Zhang J, Sun HS, Sun HF, Ma CB, Li CY (2022). Study on the characteristics of soil humus change during the degradation process of alpine marshland. Acta Agrestia Sinica, 30, 1027-1036. |
[林春英, 李希来, 张静, 孙海松, 孙华方, 马程彪, 李成一 (2022). 高寒沼泽湿地退化过程中土壤腐殖质变化特征的研究. 草地学报, 30, 1027-1036.]
DOI |
|
[28] | Lipson DA, Schmidt SK, Monson RK (2000). Carbon availability and temperature control the post-snowmelt decline in alpine soil microbial biomass. Soil Biology & Biochemistry, 32, 441-448. |
[29] |
Liu Y, Jiao ZB, Tan B, Li H, Wang LX, Liu SN, You CM, Xu ZF, Zhang L (2022). Litter removal effects on dynamics of soil humic substances in subalpine forests of western Sichuan, China. Chinese Journal of Plant Ecology, 46, 330-339.
DOI |
[刘谣, 焦泽彬, 谭波, 李晗, 王丽霞, 刘思凝, 游成铭, 徐振锋, 张丽 (2022). 川西亚高山森林凋落物去除对土壤腐殖质动态的影响. 植物生态学报, 46, 330-339.]
DOI |
|
[30] | Liu YH, Pei HK (2004). Study on composition and characteristics of soil humus under alpine-arctic meadow vegetation. Chinese Journal of Soil Science, 35, 562-565. |
[刘育红, 裴海昆 (2004). 高寒草甸植被土壤腐殖质组成及性质的研究. 土壤通报, 35, 562-565.] | |
[31] | Lu RK (1999). Methods for Agricultural Chemical Analysis of Soil. China Agricultural Science and Technology Press, Beijing. |
[鲁如坤 (1999). 土壤农业化学分析方法. 中国农业科学技术出版社, 北京.] | |
[32] | Ni XY, Yang WQ, Li H, Xu LY, He J, Wu FZ (2014a). Effects of snowpack on early foliar litter humification during winter in a subalpine forest of western Sichuan. Chinese Journal of Plant Ecology, 38, 540-549. |
[倪祥银, 杨万勤, 李晗, 徐李亚, 何洁, 吴福忠 (2014a). 雪被斑块对川西亚高山森林6种凋落叶冬季腐殖化的影响. 植物生态学报, 38, 540-549.] | |
[33] | Ni XY, Yang WQ, Tan B, He J, Xu LY, Li H, Wu FZ (2015). Accelerated foliar litter humification in forest gaps: dual feedbacks of carbon sequestration during winter and the growing season in an alpine forest. Geoderma, 241-242, 136-144. |
[34] | Ni XY, Yang WQ, Tan B, Li H, He J, Xu LY, Wu FZ (2016). Forest gaps slow the sequestration of soil organic matter: a humification experiment with six foliar litters in an alpine forest. Scientific Reports, 6, 19744. DOI: 10.1038/srep19744. |
[35] | Ni XY, Yang WQ, Xu LY, He J, Li H, Wu FZ (2014b). The effect of snow patches on the accumulation of humic acid and fulvic acid during the humification process of fallen leaves in alpine forests. Acta Pedologica Sinica, 51, 1138-1152. |
[倪祥银, 杨万勤, 徐李亚, 何洁, 李晗, 吴福忠 (2014b). 雪被斑块对高山森林凋落叶腐殖化过程中胡敏酸和富里酸累积的影响. 土壤学报, 51, 1138-1152.] | |
[36] | Niu J, Zhou XQ, Jiang N, Wang YF (2011). Characteristics of soil microbial communities under dry and wet condition in Zoige alpine wetland. Acta Ecologica Sinica, 31, 474-482. |
[牛佳, 周小奇, 蒋娜, 王艳芬 (2011). 若尔盖高寒湿地干湿土壤条件下微生物群落结构特征. 生态学报, 31, 474-482.] | |
[37] |
Pan GX, Ding YJ, Chen ST, Sun JL, Feng X, Zhang C, Doross M, Zheng JF, Zhang XH, Cheng K, Liu XY, Bian RJ, Li LQ (2019). Exploring the nature of soil organic matter from humic substances isolation to SOMics of molecular assemblage. Advances in Earth Science, 34, 451-470.
DOI |
[潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, Marios Doross, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿 (2019). 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质. 地球科学进展, 34, 451-470.]
DOI |
|
[38] | Ponge JF (2013). Plant-soil feedbacks mediated by humus forms: a review. Soil Biology & Biochemistry, 57, 1048-1060. |
[39] | Richard G, Guyot G, Aguer JP, Ter Halle A, Trubetskaya OE, Trubetskoi OA (2008). Role of fractionation in studying the photochemical properties of humic substances. Russian Journal of General Chemistry, 78, 2265-2272. |
[40] | Serudo RL, de Oliveira LC, Rocha JC, Paterlini WC, Rosa AH, da Silva HC, Botero WG (2007). Reduction capability of soil humic substances from the Rio Negro Basin, Brazil, towards Hg(II) studied by a multimethod approach and principal component analysis (PCA). Geoderma, 138, 229-236. |
[41] | Shen J, Bartha R (1997). Priming effect of glucose polymers in soil-based biodegradation tests. Soil Biology & Biochemistry, 29, 1195-1198. |
[42] |
Shi LJ, Wang HM, Fu XL, Kou L, Meng SW, Dai XQ (2020). Soil enzyme activities and their stoichiometry of typical plantations in mid-subtropical China. Chinese Journal of Applied Ecology, 31, 1980-1988.
DOI |
[史丽娟, 王辉民, 付晓莉, 寇亮, 孟盛旺, 戴晓琴 (2020). 中亚热带典型人工林土壤酶活性及其化学计量特征. 应用生态学报, 31, 1980-1988.]
DOI |
|
[43] | Shibata H, Hasegawa Y, Watanabe T, Fukuzawa K (2013). Impact of snowpack decrease on net nitrogen mineralization and nitrification in forest soil of northern Japan. Biogeochemistry, 116, 69-82. |
[44] | Stevenson FJ (1995). Humus Chemistry: Genesis, Composition, Reactions. 2nd ed. John Wiley & Sons, New York. |
[45] | Tan B, Wu FZ, Yang WQ, Liu L, Yu S (2010). Characteristics of soil animal community in the subalpine/alpine forests of western Sichuan during onset of freezing. Acta Ecologica Sinica, 30, 93-99. |
[46] | Tan B, Wu FZ, Yang WQ, Yu S, Liu L, Wang A, Yang YL (2012). Activities of soil oxidordeuctase and their response to seasonal freeze-thaw in the subalpine/alpine forests of western Sichuan. Acta Ecologica Sinica, 32, 6670-6678. |
[谭波, 吴福忠, 杨万勤, 余胜, 刘利, 王奥, 杨玉莲 (2012). 川西亚高山/高山森林土壤氧化还原酶活性及其对季节性冻融的响应. 生态学报, 32, 6670-6678.] | |
[47] | Tan Y, Yang WQ, Liao S, Peng Y, Li J, Wu FZ (2017). Effects of soil fauna on winter litter humification along an altitudinal gradient in cold ecosystems in western Sichuan. Acta Ecologica Sinica, 37, 1595-1602. |
[谭羽, 杨万勤, 廖姝, 彭艳, 李俊, 吴福忠 (2017). 川西高寒生态系统不同海拔土壤动物对冬季凋落叶腐殖化过程的影响. 生态学报, 37, 1595-1602.] | |
[48] |
Tan Y, Yang WQ, Ni XY, Tan B, Yue K, Cao R, Liao S, Wu FZ (2019). Soil fauna affects the optical properties in alkaline solutions extracted (humic acid-like) from forest litters during different phenological periods. Canadian Journal of Soil Science, 99, 195-207.
DOI |
[49] | Venn SE, Thomas HJD (2021). Snowmelt timing affects short-term decomposition rates in an alpine snowbed. Ecosphere, 12, e03393. DOI: 10.1002/ecs2.3393. |
[50] | Wang CD, Xu YM, Ma XH, Liu GL, Qu XL, Li DY, Zeng QB, Wang SS (2019). Humus composition of topsoil in quality flue-cured tobacco producing region in China. Acta Pedologica Sinica, 56, 919-928. |
[王程栋, 徐宜民, 马兴华, 刘光亮, 曲潇玲, 李东阳, 曾庆宾, 王树声 (2019). 中国优质烤烟产区耕层土壤腐殖质组分特征. 土壤学报, 56, 919-928.] | |
[51] | Wang H, Liang WJ, Nan HW (2020). Relationship between nutrients in different soil layers andtopographic factors of natural pine forest Pinus tabulaeformis Garr. Journal of Shanxi Agricultural University (Natural Science Edition), 40(2), 120-128. |
[王慧, 梁文俊, 南宏伟 (2020). 油松天然林不同土壤层养分及其与地形因子的关系. 山西农业大学学报(自然科学版), 40(2), 120-128.] | |
[52] | Wang HC, Tian GL, Chen CP, Chang EH, Chou CY, Chiou CR, Chiu CY (2019). Response of humic acids and soil organic matter to vegetation replacement in subtropical high mountain forests. Journal of Geophysical Research: Biogeosciences, 124, 3727-3736. |
[53] | Wang W, Wu JG, Li YH, Li JM, Zhao XY, Qu XJ, Hu J (2017). Effects of organic materials on the composition and structure of humic substance in the rhizosphere soil of different crops. Journal of Soil and Water Conservation, 31(2), 215-220. |
[王维, 吴景贵, 李蕴慧, 李建明, 赵欣宇, 曲晓晶, 胡娟 (2017). 有机物料对不同作物根系土壤腐殖质组成和结构的影响. 水土保持学报, 31(2), 215-220.] | |
[54] | Wei XY, Ni XY, Shen Y, Chen ZH, Yang YL, Wu FZ (2021). Effects of litterfall on soil humification in three subalpine forests. Acta Ecologica Sinica, 41, 8266-8275. |
[卫芯宇, 倪祥银, 谌亚, 陈子豪, 杨玉莲, 吴福忠 (2021). 三种不同类型亚高山森林凋落物输入对土壤腐殖化的影响. 生态学报, 41, 8266-8275.] | |
[55] | Wei XY, Yang WQ, Zhang L, Tan B, Shen Y, Dong YL, Wu FZ (2018). Effects of litter addition on soil humification during freeze-thaw cycles in a subalpine forest. Acta Ecologica Sinica, 38, 6521-6529. |
[卫芯宇, 杨万勤, 张丽, 谭波, 谌亚, 董玉梁, 吴福忠 (2018). 冻融环境下凋落叶添加对亚高山森林土壤腐殖化程度的影响. 生态学报, 38, 6521-6529.] | |
[56] | Wei XY, Yang YL, Shen Y, Chen ZH, Dong YL, Wu FZ, Zhang L (2020). Effects of litterfall on the accumulation of extracted soil humic substances in subalpine forests. Frontiers in Plant Science, 11, 254. DOI: 10.3389/fpls.2020.00254. |
[57] |
Wei XY, Yang YL, Wu FZ, Chen ZH, Shen Y, Dong YL, Zhang L (2019). Effects of litter addition on the dynamics of soil humic substances during freeze-thaw events in a subalpine forest. Chinese Journal of Applied Ecology, 30, 2257-2266.
DOI |
[卫芯宇, 杨玉莲, 吴福忠, 陈子豪, 谌亚, 董玉梁, 张丽 (2019). 冻融环境下亚高山森林凋落叶添加对土壤腐殖质动态的影响. 应用生态学报, 30, 2257-2266.]
DOI |
|
[58] | Wipf S, Rixen C (2010). A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Research, 29, 95-109. |
[59] | Withington CL, Sanford Jr RL (2007). Decomposition rates of buried substrates increase with altitude in the forest-alpine tundra ecotone. Soil Biology & Biochemistry, 39, 68-75. |
[60] | Wu FZ, Yang WQ, Zhang J, Deng RJ (2010). Litter decomposition in two subalpine forests during the freeze-thaw season. Acta Oecologica, 36, 135-140. |
[61] |
Xu LY, Yang WQ, Li H, Ni XY, He J, Wu FZ (2014). Effects of snow cover on water soluble and organic solvent soluble components during foliar litter decomposition in an alpine forest. Chinese Journal of Applied Ecology, 25, 3067-3075.
PMID |
[徐李亚, 杨万勤, 李晗, 倪祥银, 何洁, 吴福忠 (2014). 雪被覆盖对高山森林凋落物分解过程中水溶性和有机溶性组分含量的影响. 应用生态学报, 25, 3067-3075.] | |
[62] | Yang F, Ni XY, Zeng X, Li H, Tan B, Liang ZY, Liu BW, Xu ZF, Zhang J (2021). Short-term winter snow reduction stimulates soil nutrient leaching without changing the microbial biomass in an alpine fir forest. Global Ecology and Conservation, 25, e01434. DOI: 10.1016/j.gecco.2020.e01434. |
[63] | Yang YL, Wu FZ, He ZH, Xu ZF, Liu Y, Yang WQ, Tan B (2012). Effects of snow pack removal on soil microbial biomass carbon and nitrogen and the number of soil culturable microorganisms during wintertime in alpine Abies faxoniana forest of western Sichuan, Southwest China. Chinese Journal of Applied Ecology, 23, 1809-1816. |
[杨玉莲, 吴福忠, 何振华, 徐振锋, 刘洋, 杨万勤, 谭波 (2012). 雪被去除对川西高山冷杉林冬季土壤微生物生物量碳氮和可培养微生物数量的影响. 应用生态学报, 23, 1809-1816.] | |
[64] | Zanella A, Ponge JF, Matteodo M (2018). Humusica 1, article 7: Terrestrial humus systems and forms—Field practice and sampling problems. Applied Soil Ecology, 122, 92-102. |
[65] | Zeng DH, Mao R, Chang SX, Li LJ, Yang D (2010). Carbon mineralization of tree leaf litter and crop residues from poplar-based agroforestry systems in Northeast China: a laboratory study. Applied Soil Ecology, 44, 133-137. |
[66] | Zhang JY, Li C, Zeng HP, Hu ML, Dong DC (2019). Distribution characteristics of humus in purple soil profile under different vegetation types. Bulletin of Soil and Water Conservation, 39, 85-91. |
[张健瑜, 李灿, 曾和平, 胡梦淩, 董达诚 (2019). 不同植被类型紫色土腐殖质的剖面分布特征. 水土保持通报, 39, 85-91.] | |
[67] | Zhang RS, Jia SH, Wang WW (2020). Variation characteristics of the composition of soil organic carbon and humus carbon in Pinus sylvestris var. mongolica plantations. Liaoning Agricultural Sciences, (4), 1-6. |
[张日升, 贾树海, 王薇薇 (2020). 樟子松人工林土壤有机碳及腐殖质碳组成的变化特征. 辽宁农业科学, (4), 1-6.] | |
[68] |
Zhao YY, Wu FZ, Yang WQ, Tan B, He W (2016). Variations in bacterial communities during foliar litter decomposition in the winter and growing seasons in an alpine forest of the eastern Tibetan Plateau. Canadian Journal of Microbiology, 62, 35-48.
DOI PMID |
[69] | Zheng YY, Zhang JB, Tan J, Zhang CZ, Yu ZH (2019). Study on chemical composition and structural characteristics of humus from different sources. Acta Pedologica Sinica, 56, 386-397. |
[郑延云, 张佳宝, 谭钧, 张丛志, 余正洪 (2019). 不同来源腐殖质的化学组成与结构特征研究. 土壤学报, 56, 386-397.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn