Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (11): 1459-1470.DOI: 10.17521/cjpe.2024.0018 cstr: 32100.14.cjpe.2024.0018
• Research Articles • Previous Articles Next Articles
TAO Qiong1,2, MIAO Ning1,*(), YUE Xi-Ming1,3, LUO Jian-Qiong1, XUE Pan-Pan1, WANG Hui4
Received:
2024-01-23
Accepted:
2024-08-23
Online:
2024-11-20
Published:
2024-08-23
Contact:
*MIAO Ning (miaoning@scu.edu.cn)
Supported by:
TAO Qiong, MIAO Ning, YUE Xi-Ming, LUO Jian-Qiong, XUE Pan-Pan, WANG Hui. Influencing factors of biomass accumulation and allocation of Abies fargesii var. faxoniana seedlings in the subalpine region of western Sichuan, China[J]. Chin J Plant Ecol, 2024, 48(11): 1459-1470.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0018
林分类型 Forest type | 样点 Sample site | 样点编号 Site code | 背景 Background | 乔木层 Tree layer | 灌木层 Shrub layer | 草本层 Herb layer | 坡向 Aspect slope | 坡度 Slope (°) | 海拔 Altitude (m) | 样本量 Sample size |
---|---|---|---|---|---|---|---|---|---|---|
BB | SHG | 1 | 盖度 Coverage (%) | 70 | 35 | 85 | NW | 25-28 | 3 396 | 45 |
平均高度 Average height (m) | 13 | 3.5 | 0.4 | |||||||
BA | 272 | 2 | 盖度 Coverage (%) | 60 | 35 | 70 | N | 25-35 | 3 258 | 72 |
平均高度 Average height (m) | 14 | 3.5 | 0.4 | |||||||
AP | 189 | 3 | 盖度 Coverage (%) | 70 | 20 | 45 | N | 35-37 | 3 995 | 44 |
4 | 平均高度 Average height (m) | 12 | 2.0 | 0.3 | 35-40 | 3 793 | 44 | |||
SJB | 5 | 盖度 Coverage (%) | 47 | 25 | 27 | W | 32-35 | 3 958 | 44 | |
6 | 平均高度 Average height (m) | 12 | 2.0 | 0.2 | 27-30 | 3 793 | 45 | |||
295 | 7 | 盖度 Coverage (%) | 60 | 50 | 40 | NW | 30-33 | 3 974 | 43 | |
8 | 平均高度 Average height (m) | 10 | 4.0 | 0.3 | 30-33 | 3 812 | 45 | |||
JBG | 9 | 盖度 Coverage (%) | 65 | 25 | 10 | NE | 35-38 | 4 008 | 45 | |
10 | 平均高度 Average height (m) | 13 | 5.0 | 0.1 | 30-35 | 3 780 | 45 |
Table 1 Stand characteristics of sample sites and sample size of Abies fargesii var. faxoniana seedlings biomass in subalpine area of western Sichuan
林分类型 Forest type | 样点 Sample site | 样点编号 Site code | 背景 Background | 乔木层 Tree layer | 灌木层 Shrub layer | 草本层 Herb layer | 坡向 Aspect slope | 坡度 Slope (°) | 海拔 Altitude (m) | 样本量 Sample size |
---|---|---|---|---|---|---|---|---|---|---|
BB | SHG | 1 | 盖度 Coverage (%) | 70 | 35 | 85 | NW | 25-28 | 3 396 | 45 |
平均高度 Average height (m) | 13 | 3.5 | 0.4 | |||||||
BA | 272 | 2 | 盖度 Coverage (%) | 60 | 35 | 70 | N | 25-35 | 3 258 | 72 |
平均高度 Average height (m) | 14 | 3.5 | 0.4 | |||||||
AP | 189 | 3 | 盖度 Coverage (%) | 70 | 20 | 45 | N | 35-37 | 3 995 | 44 |
4 | 平均高度 Average height (m) | 12 | 2.0 | 0.3 | 35-40 | 3 793 | 44 | |||
SJB | 5 | 盖度 Coverage (%) | 47 | 25 | 27 | W | 32-35 | 3 958 | 44 | |
6 | 平均高度 Average height (m) | 12 | 2.0 | 0.2 | 27-30 | 3 793 | 45 | |||
295 | 7 | 盖度 Coverage (%) | 60 | 50 | 40 | NW | 30-33 | 3 974 | 43 | |
8 | 平均高度 Average height (m) | 10 | 4.0 | 0.3 | 30-33 | 3 812 | 45 | |||
JBG | 9 | 盖度 Coverage (%) | 65 | 25 | 10 | NE | 35-38 | 4 008 | 45 | |
10 | 平均高度 Average height (m) | 13 | 5.0 | 0.1 | 30-35 | 3 780 | 45 |
Fig. 1 Relative sample site locations of Abies fargesii var. faxoniana seedlings in subalpine area of western Sichuan. E, east slope aspect; N, north slope aspect; NE, northeast slope aspect; NW, northwest slope aspect; W, west slope aspect. 1-10 are sample site codes, detailed information see Table 1.
变量 Variable | 缩写 Abbreviation | 林型 Forest type | 平均值±标准误 Mean ± SE |
---|---|---|---|
郁闭度 Canopy coverage (%) | CC | AP | 46 ± 2c |
BA | 59 ± 2b | ||
BB | 72 ± 1a | ||
灌木盖度 Shrub coverage (%) | SC | AP | 18 ± 1a |
BA | 7 ± 2b | ||
BB | 9 ± 2b | ||
灌木高度 Shrub height (m) | SH | AP | 0.43 ± 0.04b |
BA | 0.88 ± 0.26a | ||
BB | 0.32 ± 0.05b | ||
箭竹盖度 Fargesia coverage (%) | FC | AP | - |
BA | 29 ± 3a | ||
BB | 4 ± 1b | ||
箭竹高度 Fargesia height (m) | FH | AP | - |
BA | 1.38 ± 0.16a | ||
BB | 0.22 ± 0.03b | ||
草本盖度 Herbage coverage (%) | HC | AP | 22 ± 1c |
BA | 34 ± 3a | ||
BB | 27 ± 4b | ||
草本高度 Herbage height (m) | HH | AP | 0.08 ± 0.01b |
BA | 0.23 ± 0.01a | ||
BB | 0.17 ± 0.02a | ||
苔藓盖度 Moss coverage (%) | MC | AP | 88 ± 1a |
BA | 44 ± 4b | ||
BB | 32 ± 5b | ||
苔藓厚度 Moss thicknesses (cm) | MT | AP | 6.62 ± 0.19a |
BA | 2.35 ± 0.16b | ||
BB | 2.32 ± 0.24b | ||
凋落物盖度 Litter coverage (%) | LC | AP | 25 ± 1b |
BA | 48 ± 2a | ||
BB | 22 ± 2b | ||
凋落物厚度 Litter thicknesses (cm) | LT | AP | 1.26 ± 0.07b |
BA | 2.73 ± 0.17a | ||
BB | 2.64 ± 0.29a |
Table 2 Traits of microhabitats around Abies fargesii var. faxoniana seedlings in three forest types
变量 Variable | 缩写 Abbreviation | 林型 Forest type | 平均值±标准误 Mean ± SE |
---|---|---|---|
郁闭度 Canopy coverage (%) | CC | AP | 46 ± 2c |
BA | 59 ± 2b | ||
BB | 72 ± 1a | ||
灌木盖度 Shrub coverage (%) | SC | AP | 18 ± 1a |
BA | 7 ± 2b | ||
BB | 9 ± 2b | ||
灌木高度 Shrub height (m) | SH | AP | 0.43 ± 0.04b |
BA | 0.88 ± 0.26a | ||
BB | 0.32 ± 0.05b | ||
箭竹盖度 Fargesia coverage (%) | FC | AP | - |
BA | 29 ± 3a | ||
BB | 4 ± 1b | ||
箭竹高度 Fargesia height (m) | FH | AP | - |
BA | 1.38 ± 0.16a | ||
BB | 0.22 ± 0.03b | ||
草本盖度 Herbage coverage (%) | HC | AP | 22 ± 1c |
BA | 34 ± 3a | ||
BB | 27 ± 4b | ||
草本高度 Herbage height (m) | HH | AP | 0.08 ± 0.01b |
BA | 0.23 ± 0.01a | ||
BB | 0.17 ± 0.02a | ||
苔藓盖度 Moss coverage (%) | MC | AP | 88 ± 1a |
BA | 44 ± 4b | ||
BB | 32 ± 5b | ||
苔藓厚度 Moss thicknesses (cm) | MT | AP | 6.62 ± 0.19a |
BA | 2.35 ± 0.16b | ||
BB | 2.32 ± 0.24b | ||
凋落物盖度 Litter coverage (%) | LC | AP | 25 ± 1b |
BA | 48 ± 2a | ||
BB | 22 ± 2b | ||
凋落物厚度 Litter thicknesses (cm) | LT | AP | 1.26 ± 0.07b |
BA | 2.73 ± 0.17a | ||
BB | 2.64 ± 0.29a |
Fig. 2 Annual biomass increment (A) and organ biomass fraction (B) of Abies fargesii var. faxoniana seedlings in different forest types (mean ± SE). Different uppercase letters indicate significant differences between organs (p < 0.05), different lowercase letters indicate significant differences between the forest types (p < 0.05). AP, Abies fargesii var. faxoniana primary forest; BA, Betula albosinensis - Abies fargesii var. faxoniana needleleaf-broadleaf forest; BB, Betula albosinensis broadleaf forest.
Fig. 3 Relationships between total seedling biomass and seedling age of Abies fargesii var. faxoniana in different forest types. All regression models were significant at the α = 0.001 level. AP, Abies fargesii var. faxoniana primary forest; BA, Betula albosinensis - Abies fargesii var. faxoniana needleleaf-broadleaf forest; BB, Betula albosinensis broadleaf forest.
Fig. 4 Allometric relationships for different dimensions (A, leaf-root; B, stem-root; C, leaf-stem) of Abies fargesii var. faxoniana seedlings in different forest types. All regression models were significant at the α = 0.001 level. p indicates a significant difference in slope with 1.0. AP, Abies fargesii var. faxoniana primary forest; BA, Betula albosinensis - Abies fargesii var. faxoniana needleleaf-broadleaf forest; BB, Betula albosinensis broadleaf forest.
Fig. 5 Redundancy analysis (RDA) diagram of all factors and biomass of Abies fargesii var. faxoniana seedlings (A) and the relative importance of individual factors (B). The model was significant at the α = 0.001 level. AL, altitude; AMI, annual biomass increment; AS, aspect slope; CC, canopy coverage; FC, Fargesia coverage; FH, Fargesia height; HC, herbage overage; HH, herbage height; LC, litter coverage; LMF, leaf biomass fraction; LT, litter thickness; MC, moss coverage; MT, moss thickness; RMF, root biomass fraction; SC, shrub coverage; SH, shrub height; SMF, stem biomass fraction; SU, substrate type. N, north slope aspect; NE, northeast slope aspect; NW, northwest slope aspect; W, west slope aspect.
林分类型 Forest type | 响应变量 Response variable | 解释变量 Explanatory variable | 参数 Estimate | 标准误 SE | t | p |
---|---|---|---|---|---|---|
岷江冷杉原始林 Abies fargesii var. faxoniana primary forest | RMF | AS (NW) | 0.44 | 0.15 | 2.93 | 0.004** |
SU (soil) | 0.72 | 0.23 | 3.06 | 0.002** | ||
SH | -0.17 | 0.08 | -2.06 | 0.041* | ||
HC | -0.14 | 0.07 | -2.01 | 0.045* | ||
MT | 0.25 | 0.08 | 3.22 | 0.001** | ||
SMF | AS (W) | 0.51 | 0.14 | 3.52 | <0.001*** | |
LMF | AS (NW) | -0.47 | 0.17 | -2.68 | 0.030* | |
AS (W) | -0.58 | 0.18 | -3.12 | 0.013* | ||
SU (rock) | -0.90 | 0.35 | -2.54 | 0.012* | ||
SU (soil) | -0.64 | 0.23 | -2.80 | 0.005** | ||
MT | -0.19 | 0.07 | -2.75 | 0.008** | ||
AMI | AS (W) | 0.67 | 0.20 | 3.33 | 0.009** | |
SH | 0.20 | 0.08 | 2.51 | 0.012* | ||
红桦-岷江冷杉针阔混交林 Betula. albosinensis - Abies fargesii var. faxoniana needleleaf-broadleaf forest | RMF | MC | 0.49 | 0.15 | 3.27 | 0.002** |
MT | -0.65 | 0.31 | -2.06 | 0.044* | ||
SMF | ns | |||||
LMF | ns | |||||
AMI | ns | |||||
红桦阔叶林 Betula albosinensis broadleaf forest | RMF | HH | 0.34 | 0.14 | 2.48 | 0.018* |
SMF | ns | |||||
LMF | HC | -0.35 | 0.15 | -2.24 | 0.031* | |
AMI | CC | -0.35 | 0.15 | -2.40 | 0.021* | |
FC | 1.59 | 0.49 | 3.24 | 0.002** | ||
HH | -0.29 | 0.12 | -2.41 | 0.020* |
Table 3 Relationship between Abies fargesii var. faxoniana seedling biomass and habitat factors in different forest types
林分类型 Forest type | 响应变量 Response variable | 解释变量 Explanatory variable | 参数 Estimate | 标准误 SE | t | p |
---|---|---|---|---|---|---|
岷江冷杉原始林 Abies fargesii var. faxoniana primary forest | RMF | AS (NW) | 0.44 | 0.15 | 2.93 | 0.004** |
SU (soil) | 0.72 | 0.23 | 3.06 | 0.002** | ||
SH | -0.17 | 0.08 | -2.06 | 0.041* | ||
HC | -0.14 | 0.07 | -2.01 | 0.045* | ||
MT | 0.25 | 0.08 | 3.22 | 0.001** | ||
SMF | AS (W) | 0.51 | 0.14 | 3.52 | <0.001*** | |
LMF | AS (NW) | -0.47 | 0.17 | -2.68 | 0.030* | |
AS (W) | -0.58 | 0.18 | -3.12 | 0.013* | ||
SU (rock) | -0.90 | 0.35 | -2.54 | 0.012* | ||
SU (soil) | -0.64 | 0.23 | -2.80 | 0.005** | ||
MT | -0.19 | 0.07 | -2.75 | 0.008** | ||
AMI | AS (W) | 0.67 | 0.20 | 3.33 | 0.009** | |
SH | 0.20 | 0.08 | 2.51 | 0.012* | ||
红桦-岷江冷杉针阔混交林 Betula. albosinensis - Abies fargesii var. faxoniana needleleaf-broadleaf forest | RMF | MC | 0.49 | 0.15 | 3.27 | 0.002** |
MT | -0.65 | 0.31 | -2.06 | 0.044* | ||
SMF | ns | |||||
LMF | ns | |||||
AMI | ns | |||||
红桦阔叶林 Betula albosinensis broadleaf forest | RMF | HH | 0.34 | 0.14 | 2.48 | 0.018* |
SMF | ns | |||||
LMF | HC | -0.35 | 0.15 | -2.24 | 0.031* | |
AMI | CC | -0.35 | 0.15 | -2.40 | 0.021* | |
FC | 1.59 | 0.49 | 3.24 | 0.002** | ||
HH | -0.29 | 0.12 | -2.41 | 0.020* |
[1] |
Antonelli A, Kissling WD, Flantua SGA, Bermúdez MA, Mulch A, Muellner-Riehl AN, Kreft H, Linder HP, Badgley C, Fjeldså J, Fritz SA, Rahbek C, Herman F, Hooghiemstra H, Hoorn C (2018). Geological and climatic influences on mountain biodiversity. Nature Geoscience, 11, 718-725.
DOI |
[2] | Batllori E, Camarero JJ, Ninot JM, Gutiérrez E (2009). Seedling recruitment, survival and facilitation in alpine Pinus uncinata tree line ecotones. Implications and potential responses to climate warming. Global Ecology and Biogeography, 18, 460-472. |
[3] | Beatty SW, Sholes ODV (1988). Leaf litter effect on plant species composition of deciduous forest treefall pits. Canadian Journal of Forest Research, 18, 553-559. |
[4] | Bernoulli M, Körner C (1999). Dry matter allocation in treeline trees. Phyton-Annales Rei Botanicae, 39, 7-12. |
[5] | Coll L, Ameztegui A (2019). Elevation modulates the phenotypic responses to light of four co-occurring Pyrenean forest tree species. Annals of Forest Science, 76, 41. DOI: 10.1007/s13595-019-0831-1. |
[6] |
Freestone AL (2006). Facilitation drives local abundance and regional distribution of a rare plant in a harsh environment. Ecology, 87, 2728-2735.
PMID |
[7] | Hicks Jr RR, Frank Jr PS (1984). Relationship of aspect to soil nutrients, species importance and biomass in a forested watershed in West Virginia. Forest Ecology and Management, 8, 281-291. |
[8] | Holtmeier FK, Broll G (1992). The influence of tree islands and microtopography on pedoecological conditions in the forest-alpine tundra ecotone on Niwot Ridge, Colorado front range, U.S.A. Arctic and Alpine Research, 24, 216-228. |
[9] | Hu JL, Yang WQ, Zhang J, Deng RJ (2009). Characteristics of biomass and carbon stock of fir and birch fine roots in subalpine forest of western Sichuan, China. Chinese Journal of Applied and Environmental Biology, 15, 313-317. |
[胡建利, 杨万勤, 张健, 邓仁菊 (2009). 川西亚高山冷杉和白桦细根生物量与碳储量特征. 应用与环境生物学报, 15, 313-317.] | |
[10] |
Inman-Narahari F, Ostertag R, Asner GP, Cordell S, Hubbell SP, Sack L (2014). Trade-offs in seedling growth and survival within and across tropical forest microhabitats. Ecology and Evolution, 4, 3755-3767.
DOI PMID |
[11] | Jeschke M, Kiehl K (2008). Effects of a dense moss layer on germination and establishment of vascular plants in newly created calcareous grasslands. Flora, 203, 557-566. |
[12] | Körner C (2012). Treelines will be understood once the functional difference between a tree and a shrub is. Ambio, 41, 197-206. |
[13] | Lacointe A (2000). Carbon allocation among tree organs: a review of basic processes and representation in functional-structural tree models. Annals of Forest Science, 57, 521-533. |
[14] | Lai JS, Zou Y, Zhang JL, Peres-Neto PR (2022). Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods in Ecology and Evolution, 13, 782-788. |
[15] | Li MH, Yang J (2004). Effects of microsite on growth of Pinus cembra in the subalpine zone of the Austrian Alps. Annals of Forest Science, 61, 319-325. |
[16] | Li MH, Yang J, Kräuchi N (2003). Growth responses of Picea abies and Larix decidua to elevation in subalpine areas of Tyrol, Austria. Canadian Journal of Forest Research, 33, 653-662. |
[17] |
Liu S, Liao JX, Xiao C, Fan XH (2016). Effects of biotic neighbors and habitat heterogeneity on tree seedling survival in a secondary mixed conifer and broad-leaved forest in Changbai Mountain. Chinese Journal of Plant Ecology, 40, 711-722.
DOI |
[刘帅, 廖嘉星, 肖翠, 范秀华 (2016). 长白山次生针阔混交林乔木幼苗存活的影响因素分析. 植物生态学报, 40, 711-722.]
DOI |
|
[18] | Liu S, Luo D, Yang HG, Shi ZM, Liu QL, Zhang L, Kang Y, Ma Q (2018). Fine root biomass, productivity and turnover of Abies faxoniana primary forest in subalpine region of western Sichuan, China. Chinese Journal of Ecology, 37, 987-993. |
[刘顺, 罗达, 杨洪国, 史作民, 刘千里, 张利, 康英, 马青 (2018). 川西亚高山岷江冷杉原始林细根生物量、生产力和周转. 生态学杂志, 37, 987-993.] | |
[19] | Ma JM, Liu SR, Liu XL (2010). Root biomass in the restoration process of subalpine dark coniferous forests in western Sichuan, China. Journal of Guangxi Normal University (Natural Science Edition), 28(3), 56-60. |
[马姜明, 刘世荣, 刘兴良 (2010). 川西亚高山暗针叶林恢复过程中根系生物量研究. 广西师范大学学报(自然科学版), 28(3), 56-60.] | |
[20] |
Ma JM, Liu SR, Shi ZM, Zhang YD, Miao N (2009). Natural regeneration of Abies faxoniana along restoration gradients of subalpine dark coniferous forest in western Sichuan, China. Chinese Journal of Plant Ecology, 33, 646-657.
DOI |
[马姜明, 刘世荣, 史作民, 张远东, 缪宁 (2009). 川西亚高山暗针叶林恢复过程中岷江冷杉天然更新状况及其影响因子. 植物生态学报, 33, 646-657.]
DOI |
|
[21] | Mori A, Mizumachi E, Osono T, Doi Y(2004). Substrate-associated seedling recruitment and establishment of major conifer species in an old-growth subalpine forest in central Japan. Forest Ecology and Management, 196, 287-297. |
[22] | Narukawa Y, Iida S, Tanouchi H, Abe S, Yamamoto SI (2003). State of fallen logs and the occurrence of conifer seedlings and saplings in boreal and subalpine old-growth forests in Japan. Ecological Research, 18, 267-277. |
[23] | Narukawa Y, Yamamoto S (2003). Development of conifer seedlings roots on soil and fallen logs in boreal and subalpine coniferous forests of Japan. Forest Ecology and Management, 175, 131-139. |
[24] | Pang XY, Yuan XJ, Wang A, Li MH, Liu XL, Pan HL, Yu FH, Lei JP (2018). Effects of simulated warming and functional group removal on survival and growth of Abies faxoniana seedlings. Chinese Journal of Applied Ecology, 29, 687-695. |
[庞晓瑜, 袁秀锦, 王奥, 李迈和, 刘兴良, 潘红丽, 于飞海, 雷静品 (2018). 模拟增温和功能群去除对岷江冷杉幼苗存活和生长的影响. 应用生态学报, 29, 687-695.]
DOI |
|
[25] | Parker WC, Watson SR, Cairns DW (1997). The role of hair-cap mosses (Polytrichum spp.) in natural regeneration of white spruce (Picea glauca (Moench) Voss). Forest Ecology and Management, 92, 19-28. |
[26] | Ping XY, Zhou GS, Sun JS (2010). Advances in the study of photosynthate allocation and its controls. Chinese Journal of Plant Ecology, 34, 100-111. |
[平晓燕, 周广胜, 孙敬松 (2010). 植物光合产物分配及其影响因子研究进展. 植物生态学报, 34, 100-111.]
DOI |
|
[27] | Poorter H, Nagel O (2000). The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Australian Journal of Plant Physiology, 27, 595-607. |
[28] |
Reich PB, Luo YJ, Bradford JB, Poorter H, Perry CH, Oleksyn J (2014). Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots. Proceedings of the National Academy of Sciences of the United States of America, 111, 13721-13726.
DOI PMID |
[29] | Resler LM, Butler DR, Malanson GP (2013). Topographic shelter and conifer establishment and mortality in an alpine environment, Glacier National Park, Montana. Physical Geography, 26, 112-125. |
[30] | Šamonil P, Daněk P, Baldrian P, Tláskal V, Tejnecký V, Drábek O (2020). Convergence, divergence or chaos? Consequences of tree trunk decay for pedogenesis and the soil microbiome in a temperate natural forest. Geoderma, 376, 114499. DOI: 10.1016/j.geoderma.2020.114499. |
[31] | Shao JY, Du JH, Li SF, Huang YX, Liang WN, Liao JQ (2019). Tree seedling distribution, regeneration mechanism and response to climate change in alpine treeline ecotone. Chinese Journal of Applied Ecology, 30, 2854-2864. |
[邵佳怡, 杜建会, 李升发, 黄一鑫, 梁伟诺, 廖家强 (2019). 高山林线生态交错区木本植物幼苗分布特征、更新机制及其对气候变化的响应. 应用生态学报, 30, 2854-2864.]
DOI |
|
[32] | Simon A, Gratzer G, Sieghardt M (2011). The influence of windthrow microsites on tree regeneration and establishment in an old growth mountain forest. Forest Ecology and Management, 262, 1289-1297. |
[33] | Taylor AH, Qin ZS (1988). Regeneration patterns in old-growth Abies-Betula forests in the Wolong Natural Reserve, Sichuan, China. Journal of Ecology, 76, 1204-1218. |
[34] | Taylor AH, Shi W, Jun Z, Ping L, Jin M, Huang J (2006). Regeneration patterns and tree species coexistence in old-growth Abies-Picea forests in southwestern China. Forest Ecology and Management, 223, 303-317. |
[35] |
Thakur TK, Swamy SL, Bijalwan A, Dobriyal MJR (2019). Assessment of biomass and net primary productivity of a dry tropical forest using geospatial technology. Journal of Forestry Research, 30, 157-170.
DOI |
[36] | von Arx G, Graf Pannatier E, Thimonier A, Rebetez M (2013). Microclimate in forests with varying leaf area index and soil moisture: potential implications for seedling establishment in a changing climate. Journal of Ecology, 101, 1201-1213. |
[37] | Wang QT, Zhao CY, Gao CC, Xie HH, Qiao Y, Gao YF, Yuan LM, Wang WB, Ge LJ, Zhang GD (2017). Effects of environmental variables on seedling-sapling distribution of Qinghai spruce (Picea crassifolia) along altitudinal gradients. Forest Ecology and Management, 384, 54-64. |
[38] | Wang Z, Wang D, Liu Q, Xing X, Liu B, Jin S, Tigabu M (2022). Meta-analysis of effects of forest litter on seedling establishment. Forests, 13, 644. DOI: 10.3390/f13050644. |
[39] | Warton DI, Duursma RA, Falster DS, Taskinen S (2012). Smatr 3—An R package for estimation and inference about allometric lines. Methods in Ecology and Evolution, 3, 257-259. |
[40] | Xian JR, Hu TX, Zhang YB, Wang KY (2007). Effects of forest canopy gap on Abies faxoniana seedling’s biomass and its allocation in subalpine coniferous forest of west Sichuan. Chinese Journal of Applied Ecology, 18, 721-727. |
[鲜骏仁, 胡庭兴, 张远彬, 王开运 (2007). 林窗对川西亚高山岷江冷杉幼苗生物量及其分配格局的影响. 应用生态学报, 18, 721-727.] | |
[41] | Xu ZF, Hu TX, Zhang YB, Xian JR, Wang KY (2008). Responses of phenology and growth of Betula utilis and Abies faxoniana in subalpine timberline ecotone to simulated global warming, western Sichuan, China. Journal of Plant Ecology (Chinese Version), 32, 1061-1071. |
[徐振锋, 胡庭兴, 张远彬, 鲜骏仁, 王开运 (2008). 川西亚高山林线交错带糙皮桦和岷江冷杉幼苗物候与生长对模拟增温的响应. 植物生态学报, 32, 1061-1071.]
DOI |
|
[42] | Yang B, Wang JC, Zhang YB (2010). Effect of long-term warming on growth and biomass allocation of Abies faxoniana seedlings. Acta Ecologica Sinica, 30, 5994-6000. |
[杨兵, 王进闯, 张远彬 (2010). 长期模拟增温对岷江冷杉幼苗生长与生物量分配的影响. 生态学报, 30, 5994-6000.] | |
[43] | Yin HJ, Lai T, Cheng XY, Jiang XM, Liu Q (2008). Warming effects on growth and physiology of seedlings of Betula albosinensis and Abies faxoniana under two contrasting light conditions in subalpine coniferous forest of western Sichuan, China. Journal of Plant Ecology (Chinese Version), 32, 1072-1083. |
[尹华军, 赖挺, 程新颖, 蒋先敏, 刘庆 (2008). 增温对川西亚高山针叶林内不同光环境下红桦和岷江冷杉幼苗生长和生理的影响. 植物生态学报, 32, 1072-1083.] | |
[44] | Zamfir M (2000). Effects of bryophytes and lichens on seedling emergence of alvar plants: evidence from greenhouse experiments. Oikos, 88, 603-611. |
[45] | Zhang XS, Zhou CN, Lu J (2022). Influence of topography, soil properties and plant community on the biomass of Abies georgei var. smithii seedlings in Southeast Tibet. Journal of Mountain Science, 19, 2664-2677. |
[46] | Zhang YD, Liu YC, Gu FX, Guo MM, Miao N, Liu SR (2019). Litter composition and its dynamic in five main forest types in subalpine areas of west Sichuan, China. Acta Ecologica Sinica, 39, 502-508. |
[张远东, 刘彦春, 顾峰雪, 郭明明, 缪宁, 刘世荣 (2019). 川西亚高山五种主要森林类型凋落物组成及动态. 生态学报, 39, 502-508.] | |
[47] | Zhang YD, Zhao CM, Liu SR (2005a). The influence factors of sub-alpine forest restoration in Miyaluo, west Sichuan. Scieniia Silvae Sinicae, 41(4), 189-193. |
[张远东, 赵常明, 刘世荣 (2005a). 川西米亚罗林区森林恢复的影响因子分析. 林业科学, 41(4), 189-193.] | |
[48] | Zhang YD, Liu SR, Zhao CM (2005b). Spatial pattern of subalpine forest restoration in west Sichuan. Chinese Journal of Applied Ecology, 16, 1706-1710. |
[张远东, 刘世荣, 赵常明 (2005b). 川西亚高山森林恢复的空间格局分析. 应用生态学报, 16, 1706-1710.] |
[1] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[2] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[3] | LIU Yan-Jie, LIU Yu-Long, WANG Chuan-Kuan, WANG Xing-Chang. Comparison of leaf cost-benefit relationship for five pinnate compound-leaf tree species in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1540-1550. |
[4] | ZHENG Ning, LI Su-Ying, WANG Xin-Ting, LÜ Shi-Hai, ZHAO Peng-Cheng, ZANG Chen, XU Yu-Long, HE Jing, QIN Wen-Hao, GAO Heng-Rui. Dominance of different plant life forms in the typical steppe evidenced from impacts of environmental factors on chlorophyll [J]. Chin J Plant Ecol, 2022, 46(8): 951-960. |
[5] | HAO Jian-Feng, ZHOU Run-Hui, YAO Xiao-Lan, YU Jing, CHEN Cong-Lin, XIANG Lin, WANG Yao-Yao, SU Tian-Cheng, QI Jin-Qiu. Effects of the second generation wild boar grazing on species diversity and soil physicochemical properties of coniferous-broad-leaved mixed forest in Jiajin Mountain, China [J]. Chin J Plant Ecol, 2022, 46(2): 197-207. |
[6] | Yang ZHANG, Ming-Tai AN, Jian-Yong WU, Feng LIU, Wei WANG. Geographical distribution pattern and dominant climatic factors of the Paphiopedilum Subgen. Brachypetalum in China [J]. Chin J Plant Ecol, 2022, 46(1): 40-50. |
[7] | Nan DONG, Ming-Ming TANG, Wen-Qian CUI, Meng-Yao YUE, Jie LIU, Yu-Jie HUANG. Growth of chestnut and tea seedlings under different root partitioning patterns [J]. Chin J Plant Ecol, 2022, 46(1): 62-73. |
[8] | WANG Jiao, GUAN Xin, ZHANG Wei-Dong, HUANG Ke, ZHU Mu-Nan, YANG Qing-Peng. Responses of biomass allocation patterns to nitrogen addition of Cunninghamia lanceolata seedlings [J]. Chin J Plant Ecol, 2021, 45(11): 1231-1240. |
[9] | XING Lei, DUAN Na, LI Qing-He, LIU Cheng-Gong, LI Hui-Qing, SUN Gao-Jie. Variation in biomass allocation of Nitraria tangutorum during different phenological phases [J]. Chin J Plant Ecol, 2020, 44(7): 763-771. |
[10] | CHEN Guo-Peng, YANG Ke-Tong, WANG Li, WANG Fei, CAO Xiu-Wen, CHEN Lin-Sheng. Allometric relations for biomass partitioning of seven alpine Rhododendron species in south of Gansu [J]. Chin J Plant Ecol, 2020, 44(10): 1040-1049. |
[11] | CHEN Lin, WANG Lei, YANG Xin-Guo, SONG Nai-Ping, LI Yue-Fei, SU Ying, BIAN Ying-Ying, ZHU Zhong-You, MENG Wen-Ting. Reproductive characteristics of Artemisia scoparia and the analysis of the underlying soil drivers in a desert steppe of China [J]. Chin J Plant Ecol, 2019, 43(1): 65-76. |
[12] | ZHANG Na, ZHU Yang-Chun, LI Zhi-Qiang, LU Xin, FAN Ru-Qin, LIU Li-ZhuTONG , Fei, CHEN Jing, MU Chun-Sheng, ZHANG Zhen-Hua. Effect of Pb pollution on the growth, biomass allocation and photosynthesis of Phragmites australis in flood and drought environment [J]. Chin J Plant Ecol, 2018, 42(2): 229-239. |
[13] | Yan-Jun SONG, Wen-Bin TIAN, Xiang-Yu LIU, Fang YIN, Jun-Yang CHENG, Dan-Ni ZHU, ARSHAD Ali, En-Rong YAN. Associations between litterfall dynamics and micro-climate in forests of Putuoshan Island, Zhejiang, China [J]. Chin J Plant Ecol, 2016, 40(11): 1154-1163. |
[14] | YU Jian,XU Qian-Qian,LIU Wen-Hui,LUO Chun-Wang,YANG Jun-Long,LI Jun-Qing,LIU Qi-Jing. Response of radial growth to climate change for Larix olgensis along an altitudinal gradient on the eastern slope of Changbai Mountain, Northeast China [J]. Chin J Plan Ecolo, 2016, 40(1): 24-35. |
[15] | CHEN Qing-Qing,LI De-Zhi. Kin recognition in Setaria italica under the condition of root segregation [J]. Chin J Plan Ecolo, 2015, 39(12): 1188-1197. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn