Chin J Plant Ecol ›› 2025, Vol. 49 ›› Issue (1): 103-117.DOI: 10.17521/cjpe.2024.0162 cstr: 32100.14.cjpe.2024.0162
• Research Articles • Previous Articles Next Articles
WANG Wen-Ying1, XIAO Yuan-Ming2,3,*(), WANG Xiao-Yun4, XU Jia-Xin1, MA Yu-Hua1, LI Qiang-Feng1, ZHOU Guo-Ying2,3,*(
)(
)
Received:
2024-05-17
Accepted:
2024-10-09
Online:
2025-01-20
Published:
2025-03-08
Contact:
XIAO Yuan-Ming, ZHOU Guo-Ying
Supported by:
WANG Wen-Ying, XIAO Yuan-Ming, WANG Xiao-Yun, XU Jia-Xin, MA Yu-Hua, LI Qiang-Feng, ZHOU Guo-Ying. Relationship between plant diversity and ecosystem multifunctionality in degraded alpine meadows under multifunctional group species combination models[J]. Chin J Plant Ecol, 2025, 49(1): 103-117.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0162
Fig. 1 Effects of different functional group species combinations on plant diversity (mean ± SE, n = 5). CK, control; G, grasses mixture; G + L, grass + legume mixture; G + L + F, grass + legume + forb mixture; G + L + S, grass + legume + sedge mixture. Different lowercase letters indicate significant differences between treatments (p < 0.05).
Fig. 2 Effects of different functional group species combinations on plant biomass (mean ± SE, n = 5). CK, control; G, grasses mixture; G + L, grass + legume mixture; G + L + F, grass + legume + forb mixture; G + L + S, grass + legume + sedge mixture. Different lowercase letters indicate significant differences between treatments (p < 0.05).
土壤指标 Soil index | 土壤深度 Soil depth (cm) | 对照 Control | G | G + L | G + L + S | G + L + F |
---|---|---|---|---|---|---|
铵态氮含量 NH4+-N content (mg·kg-1) | 0-10 | 4.34 ± 0.34b | 4.65 ± 0.41b | 4.79 ± 0.28b | 7.03 ± 0.43a | 6.10 ± 0.37a |
10-20 | 3.71 ± 0.31b | 4.19 ± 0.33b | 4.27 ± 0.49b | 5.90 ± 0.53a | 4.80 ± 0.37ab | |
20-30 | 2.70 ± 0.29b | 2.98 ± 0.19ab | 3.19 ± 0.20ab | 3.58 ± 0.20a | 3.32 ± 0.20ab | |
硝态氮含量 NO3--N content (mg·kg-1) | 0-10 | 31.27 ± 3.09b | 31.50 ± 1.57b | 35.62 ± 1.21b | 44.91 ± 3.09a | 38.37 ± 2.60ab |
10-20 | 17.77 ± 1.49b | 18.03 ± 0.81b | 18.17 ± 0.70b | 22.90 ± 1.08a | 18.72 ± 1.72b | |
20-30 | 15.47 ± 0.76a | 15.31 ± 0.47a | 15.71 ± 0.90a | 17.96 ± 1.56a | 17.04 ± 1.31a | |
全氮含量 TN content (g·kg-1) | 0-10 | 2.08 ± 0.06b | 2.13 ± 0.10b | 2.25 ± 0.16ab | 2.62 ± 0.15a | 2.26 ± 0.18ab |
10-20 | 1.70 ± 0.08b | 1.74 ± 0.12b | 1.78 ± 0.06ab | 2.21 ± 0.19a | 1.86 ± 0.21ab | |
20-30 | 1.52 ± 0.05b | 1.48 ± 0.07b | 1.58 ± 0.08b | 1.96 ± 0.13a | 1.60 ± 0.20b | |
全磷含量 TP content (g·kg-1) | 0-10 | 0.29 ± 0.00b | 0.30 ± 0.02b | 0.34 ± 0.02ab | 0.37 ± 0.03a | 0.35 ± 0.02ab |
10-20 | 0.31 ± 0.02b | 0.33 ± 0.02b | 0.38 ± 0.02ab | 0.41 ± 0.03a | 0.40 ± 0.02a | |
20-30 | 0.28 ± 0.00b | 0.29 ± 0.01b | 0.34 ± 0.00a | 0.36 ± 0.02a | 0.36 ± 0.02a | |
速效磷含量 AP content (mg·kg-1) | 0-10 | 5.25 ± 0.29b | 5.89 ± 0.08b | 5.96 ± 0.29b | 7.31 ± 0.37a | 7.29 ± 0.23a |
10-20 | 4.49 ± 0.15b | 4.76 ± 0.10b | 5.67 ± 0.19a | 5.72 ± 0.15a | 5.85 ± 0.31a | |
20-30 | 4.09 ± 0.22b | 4.98 ± 0.08a | 5.03 ± 0.36a | 5.53 ± 0.31a | 5.42 ± 0.31a | |
有机质含量 SOM content (g·kg-1) | 0-10 | 44.65 ± 1.18c | 51.49 ± 2.15b | 52.25 ± 1.46b | 68.74 ± 2.02a | 53.01 ± 0.80b |
10-20 | 35.17 ± 1.39b | 37.50 ± 3.36ab | 38.04 ± 1.56ab | 43.83 ± 1.49a | 41.28 ± 1.93ab | |
20-30 | 32.01 ± 1.63b | 32.69 ± 2.29b | 34.57 ± 0.65ab | 38.22 ± 0.98a | 35.52 ± 1.35ab | |
pH | 0-10 | 7.16 ± 0.13a | 7.24 ± 0.11a | 7.18 ± 0.05a | 7.12 ± 0.09a | 7.28 ± 0.06a |
10-20 | 7.17 ± 0.12a | 7.29 ± 0.09a | 7.24 ± 0.05a | 7.24 ± 0.07a | 7.33 ± 0.05a | |
20-30 | 7.21 ± 0.08a | 7.35 ± 0.09a | 7.27 ± 0.05a | 7.28 ± 0.06a | 7.33 ± 0.05a | |
电导率 EC (μs·cm-1) | 0-10 | 76.44 ± 2.16a | 62.14 ± 2.79b | 59.24 ± 2.25b | 54.90 ± 3.07b | 55.56 ± 3.49b |
10-20 | 57.28 ± 2.11a | 51.06 ± 2.89ab | 46.06 ± 1.66b | 46.46 ± 2.69b | 50.48 ± 1.63ab | |
20-30 | 53.66 ± 2.16a | 52.06 ± 2.77a | 42.10 ± 3.58b | 39.02 ± 3.31b | 38.58 ± 2.08b |
Table 1 Effects of different functional group species combinations on soil factors (mean ± SE, n = 5)
土壤指标 Soil index | 土壤深度 Soil depth (cm) | 对照 Control | G | G + L | G + L + S | G + L + F |
---|---|---|---|---|---|---|
铵态氮含量 NH4+-N content (mg·kg-1) | 0-10 | 4.34 ± 0.34b | 4.65 ± 0.41b | 4.79 ± 0.28b | 7.03 ± 0.43a | 6.10 ± 0.37a |
10-20 | 3.71 ± 0.31b | 4.19 ± 0.33b | 4.27 ± 0.49b | 5.90 ± 0.53a | 4.80 ± 0.37ab | |
20-30 | 2.70 ± 0.29b | 2.98 ± 0.19ab | 3.19 ± 0.20ab | 3.58 ± 0.20a | 3.32 ± 0.20ab | |
硝态氮含量 NO3--N content (mg·kg-1) | 0-10 | 31.27 ± 3.09b | 31.50 ± 1.57b | 35.62 ± 1.21b | 44.91 ± 3.09a | 38.37 ± 2.60ab |
10-20 | 17.77 ± 1.49b | 18.03 ± 0.81b | 18.17 ± 0.70b | 22.90 ± 1.08a | 18.72 ± 1.72b | |
20-30 | 15.47 ± 0.76a | 15.31 ± 0.47a | 15.71 ± 0.90a | 17.96 ± 1.56a | 17.04 ± 1.31a | |
全氮含量 TN content (g·kg-1) | 0-10 | 2.08 ± 0.06b | 2.13 ± 0.10b | 2.25 ± 0.16ab | 2.62 ± 0.15a | 2.26 ± 0.18ab |
10-20 | 1.70 ± 0.08b | 1.74 ± 0.12b | 1.78 ± 0.06ab | 2.21 ± 0.19a | 1.86 ± 0.21ab | |
20-30 | 1.52 ± 0.05b | 1.48 ± 0.07b | 1.58 ± 0.08b | 1.96 ± 0.13a | 1.60 ± 0.20b | |
全磷含量 TP content (g·kg-1) | 0-10 | 0.29 ± 0.00b | 0.30 ± 0.02b | 0.34 ± 0.02ab | 0.37 ± 0.03a | 0.35 ± 0.02ab |
10-20 | 0.31 ± 0.02b | 0.33 ± 0.02b | 0.38 ± 0.02ab | 0.41 ± 0.03a | 0.40 ± 0.02a | |
20-30 | 0.28 ± 0.00b | 0.29 ± 0.01b | 0.34 ± 0.00a | 0.36 ± 0.02a | 0.36 ± 0.02a | |
速效磷含量 AP content (mg·kg-1) | 0-10 | 5.25 ± 0.29b | 5.89 ± 0.08b | 5.96 ± 0.29b | 7.31 ± 0.37a | 7.29 ± 0.23a |
10-20 | 4.49 ± 0.15b | 4.76 ± 0.10b | 5.67 ± 0.19a | 5.72 ± 0.15a | 5.85 ± 0.31a | |
20-30 | 4.09 ± 0.22b | 4.98 ± 0.08a | 5.03 ± 0.36a | 5.53 ± 0.31a | 5.42 ± 0.31a | |
有机质含量 SOM content (g·kg-1) | 0-10 | 44.65 ± 1.18c | 51.49 ± 2.15b | 52.25 ± 1.46b | 68.74 ± 2.02a | 53.01 ± 0.80b |
10-20 | 35.17 ± 1.39b | 37.50 ± 3.36ab | 38.04 ± 1.56ab | 43.83 ± 1.49a | 41.28 ± 1.93ab | |
20-30 | 32.01 ± 1.63b | 32.69 ± 2.29b | 34.57 ± 0.65ab | 38.22 ± 0.98a | 35.52 ± 1.35ab | |
pH | 0-10 | 7.16 ± 0.13a | 7.24 ± 0.11a | 7.18 ± 0.05a | 7.12 ± 0.09a | 7.28 ± 0.06a |
10-20 | 7.17 ± 0.12a | 7.29 ± 0.09a | 7.24 ± 0.05a | 7.24 ± 0.07a | 7.33 ± 0.05a | |
20-30 | 7.21 ± 0.08a | 7.35 ± 0.09a | 7.27 ± 0.05a | 7.28 ± 0.06a | 7.33 ± 0.05a | |
电导率 EC (μs·cm-1) | 0-10 | 76.44 ± 2.16a | 62.14 ± 2.79b | 59.24 ± 2.25b | 54.90 ± 3.07b | 55.56 ± 3.49b |
10-20 | 57.28 ± 2.11a | 51.06 ± 2.89ab | 46.06 ± 1.66b | 46.46 ± 2.69b | 50.48 ± 1.63ab | |
20-30 | 53.66 ± 2.16a | 52.06 ± 2.77a | 42.10 ± 3.58b | 39.02 ± 3.31b | 38.58 ± 2.08b |
Fig. 3 Effects of different functional group species combinations on ecosystem multifunctionality (mean ± SE, n = 5). CK, control; G, grasses mixture; G + L, grass + legume mixture; G + L + F, grass + legume + forb mixture; G + L + S, grass + legume + sedge mixture. Different lowercase letters indicate significant differences between treatments (p < 0.05).
Fig. 4 Relative contributions of ecosystem single functions to ecosystem multifunctionality. CK, control; G, grasses mixture; G + L, grass + legume mixture; G + L + F, grass + legume + forb mixture; G + L + S, grass + legume + sedge mixture. AGB, aboveground biomass; AP, available phosphorus content; BGB, belowground biomass; Cov, coverage; H, height; NH4+-N, ammonium nitrogen content; NO3--N, nitrate nitrogen content; SOM, soil organic matter content; TN, total nitrogen content; TP, total phosphorus content.
[1] | A D, Chang T, Qin RM, Wei JJ, Su HY, Hu X, Ma L, Zhang ZH, Shi ZC, Li S, Yuan F, Li HL, Zhou HK (2024). Changes in soil carbon, nitrogen, and phosphorus content and stoichiometric characteristics of artificial grassland soils. Acta Agrestia Sinica, 32, 827-837. |
[阿的哈则, 常涛, 秦瑞敏, 魏晶晶, 苏洪烨, 胡雪, 马丽, 张中华, 史正晨, 李珊, 袁访, 李宏林, 周华坤 (2024). 人工草地土壤碳氮磷含量变化及化学计量特征研究. 草地学报, 32, 827-837.]
DOI |
|
[2] | Bao SD (2000). Soil Agricultural Chemistry Analysis. 3rd ed. China Agriculture Press, Beijing. |
[鲍士旦 (2000). 土壤农化分析. 3版. 中国农业出版社, 北京.] | |
[3] | Bi YX, Zhou P, Li SJ, Wei YQ, Xiong X, Shi YH, Liu N, Zhang YJ (2019). Interspecific interactions contribute to higher forage yield and are affected by phosphorus application in a fully-mixed perennial legume and grass intercropping system. Field Crops Research, 244, 107636. DOI: 10.1016/j.fcr.2019.107636. |
[4] | Bongers FJ, Schmid B, Bruelheide H, Bongers F, Li S, von Oheimb G, Li Y, Cheng A, Ma K, Liu X (2021). Functional diversity effects on productivity increase with age in a forest biodiversity experiment. Nature Ecology & Evolution, 5, 1594-1603. |
[5] | Byrnes JEK, Gamfeldt L, Isbell F, Lefcheck JS, Griffin JN, Hector A, Cardinale BJ, Hooper DU, Dee LE, Emmett Duffy J (2014). Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods in Ecology and Evolution, 5, 111-124. |
[6] | Dietrich P, Ebeling A, Meyer ST, Asato AEB, Bröcher M, Gleixner G, Huang Y, Roscher C, Schmid B, Vogel A, Eisenhauer N (2024). Plant diversity and community age stabilize ecosystem multifunctionality. Global Change Biology, 30, e17225. DOI: 10.1111/gcb.17225. |
[7] |
Duan LH, Liu XL, Han B, Wei XT, Cai RC, Shao XQ (2021). Effects of native species reseeding on the community stability of alpine meadow in the Tibet Plateau. Acta Agrestia Sinica, 29, 1793-1800.
DOI |
[段丽辉, 刘晓丽, 韩冰, 位晓婷, 才仁措, 邵新庆 (2021). 乡土物种补播对青藏高原高寒草甸群落稳定性的影响. 草地学报, 29, 1793-1800.]
DOI |
|
[8] |
Fang JY, Wang XP, Shen ZH, Tang ZY, He JS, Yu D, Jiang Y, Wang ZH, Zheng CY, Zhu JL, Guo ZD (2009). Methods and protocols for plant community inventory. Biodiversity Science, 17, 533-548.
DOI |
[方精云, 王襄平, 沈泽昊, 唐志尧, 贺金生, 于丹, 江源, 王志恒, 郑成洋, 朱江玲, 郭兆迪 (2009). 植物群落清查的主要内容、方法和技术规范. 生物多样性, 17, 533-548.]
DOI |
|
[9] | Fornara DA, Tilman D (2008). Plant functional composition influences rates of soil carbon and nitrogen accumulation. Journal of Ecology, 96, 314-322. |
[10] | Fornara DA, Tilman D, Hobbie SE (2009). Linkages between plant functional composition, fine root processes and potential soil N mineralization rates. Journal of Ecology, 97, 48-56. |
[11] | Furey GN, Tilman D (2021). Plant biodiversity and the regeneration of soil fertility. Proceedings of the National Academy of Sciences of the United States of America, 118, e2111321118. DOI: 10.1073/pnas.2111321118. |
[12] | Ganjurjav H, Gao Q, Gornish ES, Schwartz MW, Liang Y, Cao X, Zhang W, Zhang Y, Li W, Wan Y, Li Y, Danjiu LB, Guo H, Lin E (2016). Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 223, 233-240. |
[13] | Han Y, Ma FY, Xie GL, Qin GH, Ma SG (2014). Spatial heterogeneity of soil electrical conductivity in a mixed plantation of the Yellow River Delta saline land. Science of Soil and Water Conservation, 12(5), 84-89. |
[韩跃, 马风云, 解国磊, 秦光华, 马胜国 (2014). 黄河三角洲盐碱地混交林土壤电导率的空间异质性. 中国水土保持科学, 12(5), 84-89.] | |
[14] | Hao AH, Duan HC, Wang XF, Zhao GH, You QG, Peng F, Du HQ, Liu FY, Li CY, Lai CM, Xue X (2021). Different response of alpine meadow and alpine steppe to climatic and anthropogenic disturbance on the Qinghai-Tibetan Plateau. Global Ecology and Conservation, 27, e01512. DOI: 10.1016/j.agrformet.2016.03.017. |
[15] |
Hautier Y, Niklaus PA, Hector A (2009). Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636-638.
DOI PMID |
[16] | Hayes E, Higgins S, Geris J, Mullan D (2022). Grassland reseeding: impact on soil surface nutrient accumulation and using LiDAR-based image differencing to infer implications for water quality. Agriculture, 12, 1854. DOI: 10.3390/agriculture12111854. |
[17] | He JS, Bu HY, Hu XW, Feng YH, Li SL, Zhu JX, Liu GH, Wang YR, Nan ZB (2020a). Close-to-nature restoration of degraded alpine grasslands: theoretical basis and technical approach. Chinese Science Bulletin, 65, 3898-3908. |
[贺金生, 卜海燕, 胡小文, 冯彦皓, 李守丽, 朱剑霄, 刘国华, 王彦荣, 南志标 (2020a). 退化高寒草地的近自然恢复: 理论基础与技术途径. 科学通报, 65, 3898-3908.] | |
[18] | He JS, Liu ZP, Yao T, Sun SC, Lü Z, Hu XW, Cao GM, Wu XW, Li L, Bu HY, Zhu JX (2020b). Analysis of the main constraints and restoration techniques of degraded grassland on the Tibetan Plateau. Science & Technology Review, 38(17), 66-80. |
[贺金生, 刘志鹏, 姚拓, 孙书存, 吕植, 胡小文, 曹广民, 吴新卫, 李黎, 卜海燕, 朱剑霄 (2020b). 青藏高原退化草地恢复的制约因子及修复技术. 科技导报, 38(17), 66-80.] | |
[19] | Hector A, Bagchi R (2007). Biodiversity and ecosystem multifunctionality. Nature, 448, 188-190. |
[20] | Hou FJ, Wang CM, Lou SN, Hou XY, Hu TM (2016). Rangeland productivity in China. Engineering Sciences, 18(1), 80-93. |
[侯扶江, 王春梅, 娄珊宁, 侯向阳, 呼天明 (2016). 我国草原生产力. 中国工程科学, 18(1), 80-93.]
DOI |
|
[21] | Jiang KW, Zhang QQ, Wang YF, Li H, Yang YQ, Ding Y, Tursunnay R (2024). Response of grassland ecosystem multifunctionality to grazing in the middle part of the northern slope, Tianshan Mountain. Acta Ecologica Sinica, 44, 3440-3456. |
[江康威, 张青青, 王亚菲, 李宏, 杨永强, 丁雨, 吐尔逊娜依·热依木 (2024). 天山北坡中段草地生态系统多功能性对放牧的响应. 生态学报, 44, 3440-3456.] | |
[22] | Jiang L, Hu J, Yang ZA, Zhan W, Zhao C, Zhu D, He YX, Chen H, Peng CH (2021). Effects of plant functional group removal on community structure, diversity and production in alpine meadow. Acta Ecologica Sinica, 41, 1402-1411. |
[姜林, 胡骥, 杨振安, 詹伟, 赵川, 朱单, 何奕忻, 陈槐, 彭长辉 (2021). 植物功能群去除对高寒草甸群落结构、多样性及生产力的影响. 生态学报, 41, 1402-1411.] | |
[23] |
Jiang S, Jardinaud MF, Gao J, Pecrix Y, Wen J, Mysore K, Xu P, Sanchez-Canizares C, Ruan Y, Li Q, Zhu M, Li F, Wang E, Poole PS, Gamas P, Murray JD (2021). NIN-like protein transcription factors regulate leghemoglobin genes in legume nodules. Science, 374, 625-628.
DOI PMID |
[24] | Jiao S, Lu YH, Wei GH (2022). Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Global Change Biology, 28, 140-153. |
[25] | Kuzyakov Y, Domanski G (2000). Carbon input by plants into the soil, review. Journal of Plant Nutrition and Soil Science, 163, 421-431. |
[26] | Li JH, Li XP, Lu H, Yao T, Wang LD, Guo CX, Shi SL (2017). Characteristics of, and the correlation between, vegetation and N-fixing soil bacteria in alpine grassland showing various degrees of degradation. Acta Ecologica Sinica, 37, 3647-3654. |
[李建宏, 李雪萍, 卢虎, 姚拓, 王理德, 郭春秀, 师尚礼 (2017). 高寒地区不同退化草地植被特性和土壤固氮菌群特性及其相关性. 生态学报, 37, 3647-3654.] | |
[27] | Li JP, Zheng ZR, Zhao NX, Gao YB (2016). Relationship between ecosystem multifuntionality and species diversity in grassland ecosystems under land-use types of clipping, enclosure and grazing. Chinese Journal of Plant Ecology, 40, 735-747. |
[李静鹏, 郑志荣, 赵念席, 高玉葆 (2016). 刈割、围封、放牧三种利用方式下草原生态系统的多功能性与植物物种多样性之间的关系. 植物生态学报, 40, 735-747.]
DOI |
|
[28] | Li W, Wang JL, Zhang XJ, Shi SL, Cao WX (2018). Effect of degradation and rebuilding of artificial grasslands on soil respiration and carbon and nitrogen pools on an alpine meadow of the Qinghai-Tibetan Plateau. Ecological Engineering, 111, 134-142. |
[29] | Lu YX, Mu L, Yang HM (2019). Advances in improved soil fertility with legume-grass mixtures. Chinese Journal of Grassland, 41(1), 94-100. |
[芦奕晓, 牟乐, 杨惠敏 (2019). 豆科与禾本科牧草混播改良土壤的研究进展. 中国草地学报, 41(1), 94-100.] | |
[30] | Ma FF, Zhang FY, Quan Q, Wang JS, Chen WN, Wang BX, Zhou QP, Niu SL (2021). Alleviation of light limitation increases plant diversity and ecosystem carbon sequestration under nitrogen enrichment in an alpine meadow. Agricultural and Forest Meteorology, 298, 108269. DOI: 10.1016/j.agrformet.2020.108269. |
[31] | Ma YS, Shang ZH, Shi JJ, Dong QM, Long RJ (2007). Studies on allocate skills of artificial community of “black soil type” degraded grassland in the Yellow River source region. Acta Agriculturae Boreali-Occidentalis Sinica, 16(5), 1-6. |
[马玉寿, 尚占环, 施建军, 董全民, 龙瑞军 (2007). 黄河源区 “黑土型”退化草地人工群落组分配置技术研究. 西北农业学报, 16(5), 1-6.] | |
[32] |
Ma ZX, Cui HJ, Ge QS (2022). Prediction of net primary productivity change pattern in China based on vegetation dynamic models. Acta Geographica Sinica, 77, 1821-1836.
DOI |
[马忠学, 崔惠娟, 葛全胜 (2022). 基于植被动态模式预估中国植被净初级生产力变化格局. 地理学报, 77, 1821-1836.]
DOI |
|
[33] | Maestre FT, Castillo-Monroy AP, Bowker MA, Ochoa-Hueso R (2012a). Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern. Journal of Ecology, 100, 317-330. |
[34] | Maestre FT, Quero JL, Gotelli NJ, Escudero A, Ochoa V, Delgado-Baquerizo M, García-Gómez M, Bowker MA, Soliveres S, Escolar C, García-Palacios P, Berdugo M, Valencia E, Gozalo B, Gallardo A, et al. (2012b). Plant species richness and ecosystem multifunctionality in global drylands. Science, 335, 214-218. |
[35] | Peng F, Xue X, Li C, Lai C, Sun J, Tsubo M, Tsunekawa A, Wang T (2020). Plant community of alpine steppe shows stronger association with soil properties than alpine meadow alongside degradation. Science of the Total Environment, 733, 139048. DOI: 10.1016/j.scitotenv.2020.139048004. |
[36] | Shang ZH, Dong QM, Shi JJ, Zhou HK, Dong SK, Shao XQ, Li SX, Wang YL, Ma YS, Ding LM, Cao GM, Long RJ (2018). Research progress in recent ten years of ecological restoration for “black soil land” degraded grassland on Tibetan Plateau—Concurrently discuss of ecological restoration in Sangjiangyuan region. Acta Agrestia Sinica, 26(1), 1-21. |
[尚占环, 董全民, 施建军, 周华坤, 董世魁, 邵新庆, 李世雄, 王彦龙, 马玉寿, 丁路明, 曹广民, 龙瑞军 (2018). 青藏高原“黑土滩”退化草地及其生态恢复近10年研究进展——兼论三江源生态恢复问题. 草地学报, 26(1), 1-21.]
DOI |
|
[37] | Sierra J, Nygren P (2006). Transfer of N fixed by a legume tree to the associated grass in a tropical silvopastoral system. Soil Biology & Biochemistry, 38, 1893-1903. |
[38] |
Slade EM, Bagchi R, Keller N, Philipson CD (2019). When do more species maximize more ecosystem services? Trends in Plant Science, 24, 790-793.
DOI PMID |
[39] | Song LY, Gong JR, Li XB, Ding Y, Shi JY, Zhang ZH, Zhang WY, Li Y, Zhang SQ, Dong JJ (2022). Plant phosphorus demand stimulates rhizosphere phosphorus transition by root exudates and mycorrhizal fungi under different grazing intensities. Geoderma, 423, 115964. DOI: 10.1016/j.geoderma.2022.115964. |
[40] | Su HY, Ma L, Chang T, Qin RM, Zhang ZH, She YD, Wei JJ, Zhou CY, Hu X, Shi ZC, Adi HZ, Li HL, Zhou HK (2023). Effects of main land-use types on plant and microbial diversity and ecosystem multifunctionality in degraded alpine grasslands. Land, 12, 638. DOI: 10.3390/land.12030638. |
[41] | Sun L, Yue Y, Hu TX (2022). Research progress on the effects of disturbance on ecosystem multifunctionality. Acta Ecologica Sinica, 42, 6066-6075. |
[孙龙, 岳阳, 胡同欣 (2022). 干扰对生态系统多功能性的影响研究进展. 生态学报, 42, 6066-6075.] | |
[42] | Sun W, Liu YL, Wang DP, Zhao M, Yang HL, Song Q, Xiao H, Wang KL, Cao J, Rong YP (2021). Effects of reseeding Leymus chinensis (Trin.) Tzvel. and Medicago falcata L. on plant community characteristics of degraded meadow steppe. Acta Agrestia Sinica, 29, 1809-1817. |
[孙伟, 刘玉玲, 王德平, 赵敏, 杨合龙, 宋倩, 肖红, 王开丽, 曹婧, 戎郁萍 (2021). 补播羊草和黄花苜蓿对退化草甸植物群落特征的影响. 草地学报, 29, 1809-1817.]
DOI |
|
[43] | Tahir M, Wei X, Liu HP, Li JY, Zhou JQ, Kang B, Jiang DM, Yan YH (2023). Mixed legume-grass seeding and nitrogen fertilizer input enhance forage yield and nutritional quality by improving the soil enzyme activities in Sichuan, China. Frontiers in Plant Science, 14, 1176150. DOI: 10.3389/fpls.2023.1176150. |
[44] | Tian AH, Zhao JS, Zhang SJ, Fu CB, Xiong HG (2020). Hyperspectral estimation of saline soil electrical conductivity based on fractional derivative. Chinese Journal of Eco-Agriculture, 28, 599-607. |
[田安红, 赵俊三, 张顺吉, 付承彪, 熊黑钢 (2020). 基于分数阶微分的盐渍土电导率高光谱估算研究. 中国生态农业学报, 28, 599-607.] | |
[45] | Wagg C, Roscher C, Weigelt A, Vogel A, Ebeling A, deLuca E, Roeder A, Kleinspehn C, Temperton VM, Meyer ST, Scherer-Lorenzen M, Buchmann N, Fischer M, Weisser WW, Eisenhauer N, Schmid B (2022). Biodiversity- stability relationships strengthen over time in a long-term grassland experiment. Nature Communications, 13, 7752. DOI: 10.1038/s41467-022-35189-2. |
[46] | Wang C, Hou YH, Hu YX, Zheng RL, Li XN (2023). Plant diversity increases above- and below-ground biomass by regulating multidimensional functional trait characteristics. Annals of Botany, 131, 1001-1010. |
[47] | Wang DL, Gao Y (2005). Competitive evolution and coevolution. Chinese Journal of Ecology, 24, 1182-1186. |
[王德利, 高莹 (2005). 竞争进化与协同进化. 生态学杂志, 24, 1182-1186.] | |
[48] |
Wang DL, Wang L, Xin XP, Li LH, Tang HJ (2020). Systematic restoration for degraded grasslands: concept, mechanisms and approaches. Scientia Agricultura Sinica, 53, 2532-2540.
DOI |
[王德利, 王岭, 辛晓平, 李凌浩, 唐华俊 (2020). 退化草地的系统性恢复: 概念、机制与途径. 中国农业科学, 53, 2532-2540.]
DOI |
|
[49] | Wang J, Zhang DS, Xiao YM, Wang B, Zhou GY (2023). Diversity of species and functional traits drive jointly responses of aboveground biomass to long-term grazing exclusion at alpine steppe. Acta Ecologica Sinica, 43, 2465-2475. |
[王娟, 张登山, 肖元明, 王博, 周国英 (2023). 物种多样性和功能性状驱动高寒草原地上生物量对长期禁牧的响应. 生态学报, 43, 2465-2475.] | |
[50] | Wang K, Wang C, Feng XM, Wu X, Fu BJ (2022). Research progress on the relationship between biodiversity and ecosystem multifunctionality. Acta Ecologica Sinica, 42, 11-23. |
[王凯, 王聪, 冯晓明, 伍星, 傅伯杰 (2022). 生物多样性与生态系统多功能性的关系研究进展. 生态学报, 42, 11-23.] | |
[51] | Wang MT, Zhao YH, Miao YJ, Ma SJ, Sun L, Xu YM, Bao S, Zhou L (2022). Study on forage quality of mixed planting Medicago sativa L. and Festuca elata Keng ex E. Alexeev in Nyingchi valley, Tibet. Acta Agrestia Sinica, 30, 1590-1596. |
[王明涛, 赵玉红, 苗彦军, 马素洁, 孙磊, 徐雅梅, 包赛很那, 周龙 (2022). 西藏林芝河谷地带紫花苜蓿和高羊茅混播牧草品质研究. 草地学报, 30, 1590-1596.]
DOI |
|
[52] | Wang P, Zhou DW, Zhang BT (2009). Coexistence and inter-specific competition in grass-legume mixture. Acta Ecologica Sinica, 29, 2560-2567. |
[王平, 周道玮, 张宝田 (2009). 禾-豆混播草地种间竞争与共存. 生态学报, 29, 2560-2567.] | |
[53] | Wang T, Yang SW, Hua R, Chu B, Ye GH, Niu YJ, Tang ZS, Hua LM (2020). Response characteristics of composition of plant functional groups to various grassland degradation conditions in alpine steppe on the Tibetan Plateau, China. Acta Ecologica Sinica, 40, 2225-2233. |
[王婷, 杨思维, 花蕊, 楚彬, 叶国辉, 牛钰杰, 唐庄生, 花立民 (2020). 高寒草原植物功能群组成对退化程度的响应. 生态学报, 40, 2225-2233.] | |
[54] | Wang XF, Ma Y, Zhang GF, Lin D, Zhang DG (2021). Relationship between plant community diversity and ecosystem multifunctionality during alpine meadow degradation. Acta Agrestia Sinica, 29, 1053-1060. |
[王晓芬, 马源, 张格非, 林栋, 张德罡 (2021). 高寒草甸退化阶段植物群落多样性与系统多功能性的联系. 草地学报, 29, 1053-1060.]
DOI |
|
[55] | Wang XJ, Cao WX, Wang SL, Li XL, Li W, Liu YZ, Wang XY (2021). Effects of perennial Legume-Gramineae mixtures on forage yield and quality in the Hexi Corridor Region. Pratacultural Science, 38, 1339-1350. |
[王小军, 曹文侠, 王世林, 李小龙, 李文, 刘玉祯, 王辛有 (2021). 河西走廊多年生豆禾混播对牧草产量和品质的影响. 草业科学, 38, 1339-1350.] | |
[56] | Wang YH, Gong JR, Liu M, Huang YM, Yan X, Zhang ZY, Xu S, Luo QP (2015). Effects of grassland-use on soil respiration and litter decomposition. Chinese Journal of Plant Ecology, 39, 239-248. |
[王忆慧, 龚吉蕊, 刘敏, 黄永梅, 晏欣, 张梓瑜, 徐沙, 罗亲普 (2015). 草地利用方式对土壤呼吸和凋落物分解的影响. 植物生态学报, 39, 239-248.]
DOI |
|
[57] | Wang YN, Hu YG, Wang ZR, Li YK, Zhang ZH, Zhou HK (2023). Impacts of artificial revegetation on soil fungal community in desertified alpine grassland. Acta Pedologica Sinica, 60, 280-291. |
[王亚妮, 胡宜刚, 王增如, 李以康, 张振华, 周华坤 (2023). 人工植被重建对沙化高寒草地土壤真菌群落特征的影响. 土壤学报, 60, 280-291.] | |
[58] | Wu SN, Zhang X, Gao XX, Xu YD, Wu XH, Shan XK, Liu SL, Dong QM, Dong SK, Wen L (2019). Succession dynamics of a plant community of degraded alpine meadow during the human-induced restoration process in the Three Rivers Source region. Acta Ecologica Sinica, 39, 2444-2453. |
[武胜男, 张曦, 高晓霞, 许驭丹, 吴晓慧, 单席凯, 刘世梁, 董全民, 董世魁, 温璐 (2019). 三江源区“黑土滩”型退化草地人工恢复植物群落的演替动态. 生态学报, 39, 2444-2453.] | |
[59] | Xie KY, Li XL, He F, Wan LQ, Wang D, Qin Y, Yu Q (2014). Response of alfalfa and smooth brome to nitrogen fertilizer in monoculture and mixed grasslands. Acta Prataculturae Sinica, 23(6), 148-156. |
[谢开云, 李向林, 何峰, 万里强, 王栋, 秦燕, 余群 (2014). 单播与混播下紫花苜蓿与无芒雀麦生物量对氮肥的响应. 草业学报, 23(6), 148-156.]
DOI |
|
[60] | Xu W, Jing X, Ma ZY, He JS (2016a). A review on the measurement of ecosystem multifunctionality. Biodiversity Science, 24, 72-84. |
[徐炜, 井新, 马志远, 贺金生 (2016a). 生态系统多功能性的测度方法. 生物多样性, 24, 72-84.] | |
[61] | Xu W, Ma ZY, Jing X, He JS (2016b). Biodiversity and ecosystem multifunctionality: advances and perspectives. Biodiversity Science, 24, 55-71. |
[徐炜, 马志远, 井新, 贺金生 (2016b). 生物多样性与生态系统多功能性: 进展与展望. 生物多样性, 24, 55-71.] | |
[62] | Xu Z, Guo X, Allen WJ, Yu X, Hu Y, Wang J, Li M, Guo W (2024). Plant community diversity alters the response of ecosystem multifunctionality to multiple global change factors. Global Change Biology, 30, e17182. DOI: 10.1111/gcb.17182. |
[63] | Yan HL, Gu SS, Li SZ, Shen WL, Zhou XL, Yu H, Ma K, Zhao YG, Wang YC, Zheng H, Deng Y, Lu GX (2022). Grass-legume mixtures enhance forage production via the bacterial community. Agriculture, Ecosystems & Environment, 338, 108087. DOI: 10.1016/j.agee.2022.108087. |
[64] | Yang HR, Ma YS, Li SX, Sheng L, Wang YL, Yi CG (2011). Dynamics of vegetation characteristics and soil physical properties of Poa pratensis cv. Qinghai. Pratacultural Science, 28, 910-914. |
[杨慧茹, 马玉寿, 李世雄, 盛丽, 王彦龙, 伊晨刚 (2011). 青海草地早熟禾栽培草地植被特征及土壤物理性状动态. 草业科学, 28, 910-914.] | |
[65] | Yang YW, Li XL, Zhou HK (2011). Analysis for soil characteristics of degraded grassland on alpine meadow. Agricultural Science & Technology, 12, 1221-1225. |
[66] | Zavaleta ES, Pasari JR, Hulvey KB, Tilman GD (2010). Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 107, 1443-1446. |
[67] | Zhan TY, Hou G, Liu M, Sun J, Fu S (2019). Different characteristics of vegetation and soil properties along degraded gradients of alpine grasslands in the Qinghai-Tibet Plateau. Pratacultural Science, 36, 1010-1021. |
[詹天宇, 侯阁, 刘苗, 孙建, 付顺 (2019). 青藏高原不同退化梯度高寒草地植被与土壤属性分异特征. 草业科学, 36, 1010-1021.] | |
[68] | Zhang CF, Ndungu CN, Feng L, Huang JY, Ba S, Liu WZ, Cai MM (2024). Plant diversity is more important than soil microbial diversity in explaining soil multifunctionality in Qinghai-Tibetan Plateau wetlands. Journal of Environmental Management, 365, 121509. DOI: 10.1016/j.jenvman.2024.121509. |
[69] | Zhang FG, Xu XX, Shen ZZ, Xiao Y (2020). Soil properties and microbial communities are the main contributors to aboveground vegetative biomass in reseeded grassland after long-term growth. Journal of Soils and Sediments, 20, 824-835. |
[70] | Zhang Q, Ma L, Zhang ZH, Xu WH, Zhou BR, Song MH, Qiao AH, Wang F, She YD, Yang XY, Guo J, Zhou HK (2019a). Ecological restoration of degraded grassland in Qinghai-Tibet alpine region: degradation status, restoration measures, effects and prospects. Acta Ecologica Sinica, 39, 7441-7451. |
[张骞, 马丽, 张中华, 徐文华, 周秉荣, 宋明华, 乔安海, 王芳, 佘延娣, 杨晓渊, 郭婧, 周华坤 (2019a). 青藏高寒区退化草地生态恢复: 退化现状、恢复措施、效应与展望. 生态学报, 39, 7441-7451.] | |
[71] | Zhang Q, Zhang ZH, Ma L, Yang XY, Guo J, Xu WH, Zhou BR, Shao XQ, Wang F, Jia YZ, He YL, Jin X, Zhou HK (2019b). Effects of mixed sowing of different pasture grasses on soil nutrients and biomass in degraded alpine meadows. Acta Agrestia Sinica, 27, 1659-1666. |
[张骞, 张中华, 马丽, 杨晓渊, 郭婧, 徐文华, 周秉荣, 邵新庆, 王芳, 贾永忠, 贺有龙, 金欣, 周华坤 (2019b). 不同牧草混播对退化高寒草甸土壤养分及生物量的影响. 草地学报, 27, 1659-1666.] | |
[72] | Zhang YC, Niu DC, Han T, Chen HY, Fu H (2012). Effect of reseeding on productivity and plant diversity on alpine meadows. Acta Prataculturae Sinica, 21, 305-309. |
[张永超, 牛得草, 韩潼, 陈鸿洋, 傅华 (2012). 补播对高寒草甸生产力和植物多样性的影响. 草业学报, 21, 305-309.] | |
[73] | Zhang YS, Zhao XQ (2002). Quantitative characteristics of degenerative succession in Festuca sinensis sowing grassland in the alpine pastoral area. Chinese Journal of Applied Ecology, 13, 285-289. |
[张耀生, 赵新全 (2002). 高寒牧区中华羊茅人工草地退化演替的数量特征研究. 应用生态学报, 13, 285-289.] | |
[74] | Zheng W, Jia N, Tang GR, Zhu JZ (2015). Effects of mixed species, mixed ratios of legume to grass on soil nutrients in surface soils of legume-grass mixture pasture. Pratacultural Science, 32, 329-339. |
[郑伟, 加娜尔古丽, 唐高溶, 朱进忠 (2015). 混播种类与混播比例对豆禾混播草地浅层土壤养分的影响. 草业科学, 32, 329-339.] | |
[75] | Zhou JL, Xu ZG, He XS, Lu N (2022). Review on methods of measuring grassland above-ground biomass. Central South Forest Inventory and Planning, 41(2), 36-40. |
[周景乐, 徐志高, 何旭升, 卢楠 (2022). 草地地上生物量测量方法综述. 中南林业调查规划, 41(2), 36-40.] | |
[76] | Zhu YQ, Guan ZX, Zheng W, Wang X (2018). Effects of species diversity and community structure on nitrogen use efficiency of mixed legume + grass pastures. Acta Prataculturae Sinica, 27(10), 1-14. |
[朱亚琼, 关正翾, 郑伟, 王祥 (2018). 混播种类和群体结构对豆禾牧草混播系统氮素利用效率的影响. 草业学报, 27(10), 1-14.]
DOI |
[1] | Dongmei Li Long Sun Yu Han Tong-xin HU Guang Yang Huiying Cai. Impact of prescribed burning on the relationships of biodiversity and ecosystem multifunctionality of Pinus koraiensis Plantation [J]. Chin J Plant Ecol, 2025, 49(3): 0-0. |
[2] | MA Dong-Feng, JIA Cun-Zhi, WANG Xue-Peng, ZHAO Peng-Peng, HU Xiao-Wen. Effect of multi-species grouping on restoration of alpine degraded meadows in Gannan, China [J]. Chin J Plant Ecol, 2025, 49(1): 93-102. |
[3] | ZHANG Hui, ZHAO Yun-Peng, LIU Xiao-Chen, GUO Zeng-Peng, HU Guo-Rui, FENG Yan-Hao, MA Miao-Jun. Dynamics of soil seed bank and its role in plant community regeneration during alpine meadow degradation [J]. Chin J Plant Ecol, 2025, 49(1): 74-82. |
[4] | WANG Lin, LI Xue, WANG Yu, WANG Xin, HU Xiao-Wen, YANG Mei, ZHU Jian-Xiao. Effects of different coating agents on seed growth and planting of native grasses in alpine grassland [J]. Chin J Plant Ecol, 2025, 49(1): 118-128. |
[5] | NIU Ya-Ping, GAO Xiao-Xia, YAO Shi-Ting, YANG Yuan-He, PENG Yun-Feng. Linkages of plant diversity and functional groups to aboveground productivity upon alpine grassland degradation [J]. Chin J Plant Ecol, 2025, 49(1): 83-92. |
[6] | XU Jia-Xin, XIAO Yuan-Ming, WANG Xiao-Yun, WANG Wen-Ying, MA Yu-Hua, LI Qiang-Feng, ZHOU Guo-Ying. Effects of microbial fertilizer and nitrogen and phosphorus fertilizer backfilling on soil physicochemical properties and enzyme activities in degraded alpine meadows [J]. Chin J Plant Ecol, 2025, 49(1): 159-172. |
[7] | LIU Wei-Hui, SONG Xiao-Yan, CAIRENDUOJIE , DING Lu-Ming, WANG Chang-Ting. Effects of degradation degree on the root morphological traits and biomass of dominant plant species in alpine meadows [J]. Chin J Plant Ecol, 2024, 48(12): 1666-1682. |
[8] | LI Yun-Yi, ZHENG Jin, YAN Xiao-Yan, LI Shuang, LUO Lin, TONG Jin, ZHAO Chun-Zhang. Effects of warming on phyllosphere and rhizosphere bacterial communities in Picea asperata and Fargesia nitida [J]. Chin J Plant Ecol, 2024, 48(12): 1692-1707. |
[9] | ZHANG Jia-Rui, DUAN Xiao-Yang, LAN Tian-Xiang, SURIGAOGE Surigaoge, LIU Lin, GUO Zhong-Yang, LÜ Hao-Ran, ZHANG Wei-Ping, LI Long. Advances in the role of plant diversity in soil organic carbon content and stability [J]. Chin J Plant Ecol, 2024, 48(11): 1393-1405. |
[10] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[11] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[12] | LÜ Zi-Li, LIU Bin, CHANG Feng, MA Zi-Jing, CAO Qiu-Mei. Relationship between plant functional diversity and ecosystem multifunctionality in Bayanbulak alpine meadow along an altitude gradient [J]. Chin J Plant Ecol, 2023, 47(6): 822-832. |
[13] | ZHANG Qi, FENG Ke, CHANG Zhi-Hui, HE Shuang-Hui, XU Wei-Qi. Effects of shrub encroachment on plant and soil microbial in the forest-grassland ecotone [J]. Chin J Plant Ecol, 2023, 47(6): 770-781. |
[14] | LI Wei, ZHANG Rong. Case verification of community structure determining community productivity in subalpine meadow [J]. Chin J Plant Ecol, 2023, 47(5): 713-723. |
[15] | SHI Sheng-Bo, ZHOU Dang-Wei, LI Tian-Cai, DE Ke-Jia, GAO Xiu-Zhen, MA Jia-Lin, SUN Tao, WANG Fang-Lin. Responses of photosynthetic function of Kobresia pygmaea to simulated nocturnal low temperature on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(3): 361-373. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn