Chin J Plan Ecolo ›› 2015, Vol. 39 ›› Issue (3): 300-308.doi: 10.17521/cjpe.2015.0029

• Orginal Article • Previous Articles    

Research progress in the effects of leaf hydraulic characteristics on plant physiological functions

GONG Rong1,2, GAO Qiong1,2,*()   

  1. 1State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
    2Academy of Disaster Reduction and Emergency, Beijing Normal University, Beijing 100875, China
  • Received:2014-10-11 Accepted:2014-12-17 Online:2015-03-17 Published:2015-03-01
  • Contact: Qiong GAO E-mail:gaoq@bnu.edu.cn
  • About author:

    # Co-first authors

Abstract:

Leaf is the main organ for plant photosynthesis, respiration, and transpiration. Earlier studies mainly focused on water transportation pathway in leaves, but leaf vein architecture and its ecological significance have been rarely studied. Recently, studies of leaf vein architecture, functions of stomatal structure, and leaf hydraulic characteristics have become major focuses of plant ecological research. This paper reviews the index of leaf vein architectural traits (i.e., vein density, diameter, and distance between veins), the influence of leaf hydraulic characteristic on plant functions such as growth, water transportation, gas exchange, and the relationship between leaf hydraulic conductance and drought adaptability for plants. Leaf vein architecture is the foundation of leaf physiological functions, and future studies should explore various types of relationships between plant leaf vein architectural traits and functional characteristics such as hydraulic conductance, photosynthesis, and respiration. Future research might also aim at development of stem-branch-leaf continuum model to explore ecophysiological mechanisms of plant functional structures and efficiency of water transportation, and to assess the adaptation of plants to the future climate scenarios.

Key words: leaf vein architecture, hydraulic conductance, drought adaptability, physiological function, physiological ecology mechanism

Table 1

An index system for leaf venation functional traits"

叶脉结构指标
Index of leaf vein structure
叶脉系统功能
Vein system function
叶脉直径
Vein diameter
机械支持 Mechanical support (+)
物质运输 Matter transport (+)
虫害防御 Defense of insect damage (+)
导水率 Hydraulic conductance (+)
栓塞脆弱性 Vulnerable to embolism (-)
叶脉密度
Vein density
物质运输 Matter transport (+)
机械支持 Mechanical support (+)
虫害防御 Defense of insect damage (+)
气孔密度 Stomatal density (+)
气孔导度 Stomatal conductance (+)
导水率 Hydraulic conductance (+)
气体交换速率 Rate of gas exchange (+)
抗旱能力 Tolerance of drought (+)
叶脉网络构建成本 Costs to venation networks (-)
叶脉闭合度
Loopiness of veins
导水路径 Water pathways (+)
虫害防御 Defense of insect damage (+)
叶脉间距
Distance between veins
物质运输 Matter transport (-)
碳、水通量 carbon and water fluxes (-)
叶脉分级
Vein hierarchy
次脉密度 Minor vein density (+)
叶脉网络构建成本 Costs to venation networks (+)
1 Ackerson RC, Radin JW (1983). Abscisic acid accumulation in cotton leaves in response to dehydration at high pressure.Plant Physiology, 71, 432-433.
2 An F, Zhang SX, Zhao PJ (2005). Relations between xylem embolisms and physiological indexes in eight woody plants I. Relationships with xylem water potentials.Acta Botanica Boreali-Occidentalia Sinica, 25, 1595-1600. (in Chinese with English Abstract)
[安锋, 张硕新, 赵平娟 (2005). 8种木本植物木质部栓塞变化与生理生态指标关系的研究I. 与植物木质部水势的关系. 西北植物学报, 25, 1595-1600.]
3 Blackman CJ, Brodribb TJ, Jordan GJ (2009). Leaf hydraulics and drought stress: Response, recovery and survivorship in four woody temperate plant species.Plant, Cell & Environment, 32, 1584-1595.
4 Blackman CJ, Brodribb TJ, Jordan GJ (2010). Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms.New Phytologist, 188, 1113-1123.
5 Blackman CJ, Brodribb TJ, Jordan GJ (2012). Leaf hydraulic vulnerability influences species’ bioclimatic limits in a diverse group of woody angiosperms.Oecologia, 168, 1-10.
6 Blonder B, Violle C, Bentley LP, Enquist BJ (2011). Venation networks and the origin of the leaf economics spectrum.Ecology Letters, 14, 91-100.
7 Borghetti M, Cinnirella S, Magnani F, Saracino A (1998). Impact of long-term drought on xylem embolism and growth in Pinus halepensis Mill.Trees, 12, 187-195.
8 Brodribb TJ, Feild TS, Jordan GJ (2007). Leaf maximum photosynthetic rate and venation are linked by hydraulics.Plant Physiology, 144, 1890-1898.
9 Brodribb TJ, Feild TS, Sack L (2010). Viewing leaf structure and evolution from a hydraulic perspective.Functional Plant Biology, 37, 488-498.
10 Brodribb TJ, Holbrook NM (2003). Changes in leaf hydraulic conductance during leaf shedding in seasonally dry tropical forest.New Phytologist, 158, 295-303.
11 Brodribb TJ, Holbrook NM (2005). Water stress deforms tracheids peripheral to the leaf vein of a tropical conifer.Plant Physiology, 137, 1139-1146.
12 Brodribb TJ, Jordan GJ (2008). Internal coordination between hydraulics and stomatal control in leaves.Plant, Cell & Environment, 31, 1557-1564.
13 Brodribb TJ, Jordan GJ (2011). Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees.New Phytologist, 192, 437-448.
14 Cai J, Tyree MT (2010). The impact of vessel size on vulnerability curves: Data and models for within-species variability in saplings of aspen, Populus tremuloides Michx.Plant, Cell & Environment, 33, 1059-1069.
15 Chang YQ, Xu WY, Mu LQ, Jiang XH, Chai CR (2012). Effects of drought stress on anatomical structure of leaves of three species of shrubs and their drought resistances.Journal of Northeast Forestry University, 40(3), 36-40. (in Chinese with English Abstract)
[常英俏, 徐文远, 穆立蔷, 姜雪昊, 柴春荣 (2012). 干旱胁迫对3种观赏灌木叶片解剖结构的影响及抗旱性分析. 东北林业大学学报, 40(3), 36-40.]
16 Chapin FS III, Matson PA, Mooney HA (2002). Principles of Terrestrial Ecosystem Ecology. Springer-Verlag, New York.
17 Cochard H, Froux F, Mayr S, Coutand C (2004). Xylem wall collapse in water-stressed pine needles.Plant Physiology, 134, 401-408.
18 Cochard H, Venisse JS, Barigah TS, Brunel N, Herbette S, Guilliot A, Tyree MT, Sakr S (2007). Putative role of aquaporins in variable hydraulic conductance of leaves in response to light.Plant Physiology, 143, 122-133.
19 Ewers FW, Fisher JB (1989). Techniques for measuring vessel lengths and diameters in stems of woody plants.American Journal of Botany, 76, 645-656.
20 Gortan E, Nardini A, Gasco A, Salleo S (2009). The hydraulic conductance of Fraxinus ornus leaves is constrained by soil water availability and coordinated with gas exchange rates.Tree Physiology, 29, 529-539.
21 Han G (2010). Drought Resistant Physiological Basis of Six Xerophilous Shroubs. PhD dissertation, Northwest A & F University, Yangling, Shaanxi. (in Chinese with English Abstract)
[韩刚 (2010). 六种旱生灌木抗旱生理基础研究. 博士学位论文, 西北农林科技大学, 陕西杨凌.]
22 Jacobsen AL, Esler KJ, Pratt RB, Ewers FW (2009). Water stress tolerance of shrubs in Mediterranean-type climate regions: Convergence of fynbos and succulent karoo communities with California shrub communities.American Journal of Botany, 96, 1445-1453.
23 Johnson DM, Meinzer FC, Woodruff DR, Mcculloh KA (2009). Leaf xylem embolism, detected acoustically and by cryo-SEM, corresponds to decreases in leaf hydraulic conductance in four evergreen species.Plant, Cell & Environment, 32, 828-836.
24 Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, Garnier E, Westoby M, Reich PB, Wright IJ, Cornelissen JHC, Violle C, Harrison SP, van Bodegom PM, Reichstein M, Enquist BJ, Soudzilovskaia NA, Ackerly DD, Anand M, Atkin O, Bahn M, Baker TR, Baldocchi D, Bekker R, Blanco CC, Blonder B, Bond WJ, Bradstock R, Bunker DE, Casanoves F, Cavender-Bares J, Chambers JQ, Chapin FS III, Chave J, Coomes D, Cornwell WK, Craine JM, Dobrin BH, Duarte L, Durka W, Elser J, Esser G, Estiarte M, Fagan WF, Fang J, Fernández-Méndez F, Fidelis A, Finegan B, Flores O, Ford H, Frank D, Freschet GT, Fyllas NM, Gallagher RV, Green WA, Gutierrez AG, Hickler T, Higgins SI, Hodgson JG, Jalili A, Jansen S, Joly CA, Kerkhoff AJ, Kirkup D, Kitajima K, Kleyer M, Klotz S, Knops JMH, Kramer K, Kühn I, Kurokawa H, Laughlin D, Lee TD, Leishman M, Lens F, Lenz T, Lewis SL, Lloyd J, Llusià J, Louault F, Ma S, Mahecha MD, Manning P, Massad T, Medlyn BE, Messier J, Moles AT, Üller SCM, Nadrowski K, Naeem S, Niinemets Ü, Nöllert S, Nüske A, Ogaya R, Oleksyn J, Onipchenko VG, Onoda Y, Ordoñez J, Overbeck G, Ozinga WA, Patiño S, Paula S, Pausas JG, Peñuelas J, Phillips OL, Pillar V, Poorter H, Poorter L, Poschlod P, Prinzing A, Proulx R, Rammig A, Reinsch S, Reu B, Sack L, Salgado-Negret B, Sardans J, Shiodera S, Shipley B, Siefert A, Sosinski E, Soussana JF, Swaine E, Swenson N, Thompson K, Thornton P, Waldram M, Weiher E, White M, White S, Wright SJ, Yguel B, Zaehle S, Zanne AE, Wirth C (2011). TRY—A global database of plant traits.Global Change Biology, 17, 2905-2935.
25 Lange OL, Nobel PS, Osmond CB (1982). Physiological Plant Ecology. Springer-Verlag, New York.
26 Li JY, Zhai HB (2000). Hydraulic architecture and drought resistance of woody plants.Chinese Journal of Applied Ecology, 11, 301-305. (in Chinese with English Abstract)
[李吉跃, 翟洪波 (2000). 木本植物水力结构与抗旱性. 应用生态学报, 11, 301-305.]
27 Li L, Zeng H, Guo DL (2013). Leaf venation functional traits and their ecological significance.Chinese Journal of Plant Ecology, 37, 691-698. (in Chinese with English Abstract)
[李乐, 曾辉, 郭大立 (2013). 叶脉网络功能性状及其生态学意义. 植物生态学报, 37, 691-698.]
28 Li LZ, Shao LH, Yu YW, Chen JG, Zhang DG (2009). Study on leaf dissection structure and drought resistance of four shrubs growing in desert steppe in Tsaidam.Grassland and Turf, (3), 20-23. (in Chinese with English Abstract)
[李林芝, 邵麟惠, 于应文, 陈建纲, 张德罡 (2009). 柴达木荒漠草原4种灌木叶片解剖结构与其抗旱性的研究. 草原与草坪, (3), 20-23.]
29 Lo GM, Nardini A, Trifilò P, Salleo S (2005). Diurnal and seasonal variations in leaf hydraulic conductance in evergreen and deciduous trees.Tree Physiology, 25, 505-512.
30 Lo Gullo MA, Raimondo F, Crisafulli A, Salleo S, Nardini A (2010). Leaf hydraulic architecture and water relations of three ferns from contrasting light habitats.Functional Plant Biology, 37, 566-574.
31 Lo Gullo MA, Salleo S (1988). Different strategies of drought resistance in three Mediterranean sclerophyllous trees growing in the same environmental conditions.New Phytologist, 108, 267-276.
32 Mcgill BJ, Enquist BJ, Weiher E, Westoby M (2006). Rebuilding community ecology from functional traits.Trends in Ecology & Evolution, 21, 178-185.
33 Meinzer FC (2002). Co-ordination of vapour and liquid phase water transport properties in plants.Plant, Cell & Environment, 25, 265-274.
34 Miranda JDD, Padilla FM, Martínez-Vilalta J, Pugnaire FI (2010). Woody species of a semi-arid community are only moderately resistant to cavitation.Functional Plant Biology, 37, 828-839.
35 Nardini A (2001). Are sclerophylls and malacophylls hydraulically different?Biologia Plantarum, 44, 239-245.
36 Nardini A, Gortan E, Salleo S (2005). Hydraulic efficiency of the leaf venation system in sun- and shade-adapted species.Functional Plant Biology, 32, 953-961.
37 Nardini A, Luglio J (2014). Leaf hydraulic capacity and drought vulnerability: Possible trade-offs and correlations with climate across three major biomes.Functional Ecology, 28, 810-818.
38 Nardini A, Pedá G, Salleo S (2012). Alternative methods for scaling leaf hydraulic conductance offer new insights into the structure-function relationships of sun and shade leaves.Functional Plant Biology, 39, 394-401.
39 Nardini A, Salleo S (2000). Limitation of stomatal conductance by hydraulic traits: Sensing or preventing xylem cavitation?Trees, 15, 14-24.
40 Nardini A, Salleo S (2005). Water stress-induced modifications of leaf hydraulic architecture in sunflower: Co-ordination with gas exchange.Journal of Experimental Botany, 56, 3093-3101.
41 Nardini A, Salleo S, Raimondo F (2003). Changes in leaf hydraulic conductance correlate with leaf vein embolism in Cercis siliquastrum L.Trees, 17, 529-534.
42 Pan YP, Chen YP (2014). Recent advances in leaf hydraulic traits.Chinese Journal of Ecology, 33, 2834-2841. (in Chinese with English Abstract)
[潘莹萍, 陈亚鹏 (2014). 叶片水力性状研究进展. 生态学杂志, 33, 2834-2841.]
43 Pittermann J, Sperry JS (2003). Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers.Tree Physiology, 23, 907-914.
44 Pockman WT, Sperry JS (2000). Vulnerability to xylem cavitation and the distribution of Sonoran Desert vegetation.American Journal of Botany, 87, 1287-1299.
45 Roth-Nebelsick A, Uhl D, Mosbrugger V, Kerp H (2001). Evolution and function of leaf venation architecture: A review.Annals of Botany, 87, 553-566.
46 Sack L, Cowan PD, Holbrook NM (2003a). The major veins of mesomorphic leaves revisited: Tests for conductive overload in Acer saccharum (Aceraceae) and Quercus rubra (Fagaceae).American Journal of Botany, 90, 32-39.
47 Sack L, Cowan PD, Jaikumar N, Holbrook NM (2003b). The ‘hydrology’ of leaves: Co-ordination of structure and function in temperate woody species.Plant, Cell & Environment, 26, 1343-1356.
48 Sack L, Dietrich EM, Streeter CM, Sanchez-Gomez D, Holbrook NM (2008). Leaf palmate venation and vascular redundancy confer tolerance of hydraulic disruption.Proceedings of the National Academy of Sciences of the United States of America, 105, 1567-1572.
49 Sack L, Frole K (2006). Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees.Ecology, 87, 483-491.
50 Sack L, Holbrook NM (2006). Leaf hydraulics.Annual Review of Plant Biology, 57, 361-381.
51 Sack L, Scoffoni C (2013). Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future.New Phytologist, 198, 983-1000.
52 Sack L, Scoffoni C, John GP, Poorter H, Mason CM, Mendez- Alonzo R, Donovan LA (2013). How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis.Journal of Experimental Botany, 64, 4053-4080.
53 Sack L, Scoffoni C, McKown AD, Frole K, Rawls M, Havran JC, Tran H, Tran T (2012). Developmentally based scaling of leaf venation architecture explains global ecological patterns.Nature Communications, 3, 837.
54 Sack L, Streeter CM, Holbrook NM (2004). Hydraulic analysis of water flow through leaves of sugar maple and red oak.Plant Physiology, 134, 1824-1833.
55 Sack L, Tyree MT, Holbrooke NM (2005). Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees.New Phytologist, 167, 403-413.
56 Scoffoni C, McKown AD, Rawls M, Sack L (2012). Dynamics of leaf hydraulic conductance with water status: Quantification and analysis of species differences under steady state.Journal of Experimental Botany, 63, 643-658.
57 Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011). Decline of leaf hydraulic conductance with dehydration: Relationship to leaf size and venation architecture.Plant Physiology, 156, 832-843.
58 Sellin A, Kupper P (2007). Temperature, light and leaf hydraulic conductance of little-leaf linden (Tilia cordata) in a mixed forest canopy.Tree Physiology, 27, 679-688.
59 Sellin A, Õunapuu E, Kupper P (2008). Effects of light intensity and duration on leaf hydraulic conductance and distribution of resistance in shoots of silver birch (Betula pendula).Physiologia Plantarum, 134, 412-420.
60 Shatil-Cohen A, Attia Z, Moshelion M (2011). Bundle-sheath cell regulation of xylem-mesophyll water transport via aquaporins under drought stress: A target of xylem-borne ABA?The Plant Journal, 67, 72-80.
61 Shen WJ, Zhang SX, Zhang CX (1999). Progress of studies on xylem embolism in woody plants.Journal of Northwest Forestry University, 14, 33-41. (in Chinese with English Abstract)
[申卫军, 张硕新, 张存旭 (1999). 木本植物木质部栓塞研究进展. 西北林学院学报, 14, 33-41.]
62 Sperry JS (2000). Hydraulic constraints on plant gas exchange.Agricultural and Forest Meteorology, 104, 13-23.
63 Stuart SA, Choat B, Martin KC, Holbrook NM, Ball MC (2007). The role of freezing in setting the latitudinal limits of mangrove forests.New Phytologist, 173, 576-583.
64 Tausend PC, Meinzer FC, Goldstein G (2000). Control of transpiration in three coffee cultivars: The role of hydraulic and crown architecture.Trees, 14, 181-190.
65 Trifilò P, Nardini A, Lo Gullo MA, Salleo S (2003). Vein cavitation and stomatal behaviour of sunflower (Helianthus annuus) leaves under water limitation.Physiologia Plantarum, 119, 409-417.
66 Tyree MT, Nardini A, Salleo S, Sack L, El Omari B (2005). The dependence of leaf hydraulic conductance on irradiance during HPFM measurements: Any role for stomatal response?Journal of Experimental Botany, 56, 737-744.
67 Ueno O, Kawano Y, Wakayama M, Takeda T (2006). Leaf vascular systems in C3 and C4 grasses: A two-dimensional analysis.Annals of Botany, 97, 611-621.
68 Walls RL (2011). Angiosperm leaf vein patterns are linked to leaf functions in a global-scale data set.American Journal of Botany, 98, 244-253.
69 Wang AY, Jiang YJ, Hao GY, Cao KF (2008). The effect of seasonal drought to plant hydraulics and photosynthesis of three dominant evergreen tree species in seasonal tropical rainforest of Xishuangbanna limestone area.Acta Botanica Yunnanica, 30, 325-332. (in Chinese with English Abstract)
[王爱英, 姜艳娟, 郝广友, 曹坤芳 (2008). 季节性干旱胁迫对石灰山三种常绿优势树种的水分和光合生理的影响. 云南植物研究, 30, 325-332.]
70 Witkowski ETF, Lamont BB (1991). Leaf specific mass confounds leaf density and thickness.Oecologia, 88, 486-493.
71 Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JH, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum.Nature, 428, 821-827.
72 Xue ZD, Han RL, Hou QC, Wang SQ, Zhang ZS (2004). Anatomical study of xeromorphism of leaves in cutting for five brushes in Yan’an region.Acta Botanica Boreali- Occidentalia Sinica, 24, 1200-1206. (in Chinese with English Abstract)
[薛智德, 韩蕊莲, 侯庆春, 王胜琪, 张振师 (2004). 延安地区5种灌木叶旱性结构的解剖研究. 西北植物学报, 24, 1200-1206.]
73 Zhang ZL, Liu GD, Zhang FC, Zheng CX, Kang YH (2014). Research progress of plant leaf hydraulic conductivity.Chinese Journal of Ecology, 33, 1663-1670. (in Chinese with English Abstract)
[张志亮, 刘国东, 张富仓, 郑彩霞, 康银红 (2014). 植物叶片导水率的研究进展. 生态学杂志, 33, 1663-1670.]
74 Zhou HH, Li WH, Aypu M, Xu Q (2012). Xylem hydraulic conductivity and embolism properties of desert riparian forest plants and its response to drought stress.Chinese Journal of Plant Ecology, 36, 19-29. (in Chinese with English Abstract)
[周洪华, 李卫红, 木巴热克·阿尤普, 徐茜 (2012). 荒漠河岸林植物木质部导水与栓塞特征及其对干旱胁迫的响应. 植物生态学报, 36, 19-29.]
75 Zwieniecki MA, Brodribb TJ, Holbrook NM (2007). Hydraulic design of leaves: Insights from rehydration kinetics.Plant, Cell & Environment, 30, 910-921.
76 Zwieniecki MA, Melcher PJ, Boyce CK, Sack L, Holbrook NM (2002). Hydraulic architecture of leaf venation in Laurus nobilis L.Plant, Cell & Environment, 25, 1445-1450.
[1] Shang Yuting, Zhang Nina, Shangguan Zhouping, Chen Juan. Physiological Function and Mechanism of Hydrogen Sulfide in Plants [J]. Chin Bull Bot, 2018, 53(4): 565-574.
[2] Ji-Mei HAN, Wang-Feng ZHANG, Dong-Liang XIONG, Jaume FLEXAS, Ya-Li ZHANG. Mesophyll conductance and its limiting factors in plant leaves [J]. Chin J Plan Ecolo, 2017, 41(8): 914-924.
[3] Zhi-Min LI, Chuan-Kuan WANG, Dan-Dan LUO. Variations and interrelationships of foliar hydraulic and photosynthetic traits for Larix gmelinii [J]. Chin J Plan Ecolo, 2017, 41(11): 1140-1148.
[4] Ying JIN, Chuan-Kuan WANG. Leaf hydraulic traits and their trade-offs for nine Chinese temperate tree species with different wood properties [J]. Chin J Plan Ecolo, 2016, 40(7): 702-710.
[5] Liqing Song, Chunmei Hu, Xilin Hou, Lei Shi, Li’an Liu, Jingcheng Yang, Chuangdao Jiang. Relationship Between Photosynthetic Characteristics and Leaf Vein Density in Sorghum bicolor and Perilla frutescens [J]. Chin Bull Bot, 2015, 50(1): 100-106.
[6] ZHANG Cui-Ping, MENG Ping, LI Jian-Zhong, WAN Xian-Chong. Interactive effects of soil acidification and phosphorus deficiency on photosynthetic characteristics and growth in Juglans regia seedlings [J]. Chin J Plan Ecolo, 2014, 38(12): 1345-1355.
[7] Xiumei Dong, Qing Chao, Baichen Wang. Research Progress in Plant Phosphoenolpyruvate Carboxykinase [J]. Chin Bull Bot, 2013, 48(3): 320-328.
[8] YANG Qi-Liang, ZHANG Fu-Cang, LIU Xiao-Gang, YANG Zhen-Yu. EFFECTS OF DRIP IRRIGATION MODE AND NaCl CONCENTRATION ON GROWTH AND HYDRAULIC CONDUCTANCE OF APPLE SEEDLINGS [J]. Chin J Plan Ecolo, 2009, 33(4): 824-832.
[9] LIU Jun-Shan, GAO Qiong, ZHU Yu-Jie, WANG Kun. HYDRAULIC REDISTRIBUTION: NEWLY RECOGNIZED SMALL CYCLE WITHIN THE SOIL-PLANT-ATMOSPHERE CONTINUUM [J]. Chin J Plan Ecolo, 2007, 31(5): 794-803.
[10] . The Progress in the Basic 7S Globulin and Leginsulin [J]. Chin Bull Bot, 2005, 22(增刊): 68-74.
[11] SUN Hai-Long, WU Chu, XU Wen-Jing, WANG Zheng-Quan. VARIATIONS OF ROOT HYDRAULIC CONDUCTANCE OF MANCHURIAN ASH SEEDLINGS IN DIFFERENT CONCENTRATIONS [J]. Chin J Plan Ecolo, 2005, 29(5): 706-712.
[12] AN Hua-Ming CHEN Li-Geng FAN Wei-Guo HU Xi-Qin. Advances in Research on Function, Biosynthesis and Metabolism of Ascorbic Acid in Higher Plants [J]. Chin Bull Bot, 2004, 21(05): 608-617.
[13] TONG Jian-Song YANG Zhen-LeLI Liang-Bi KUANG Ting-Yun. Progress in Study on Digalactosyl Diacylglycerol of Photosynthetic Membrane Lipids [J]. Chin Bull Bot, 2003, 20(05): 531-538.
[14] LIU Hui-Ying ZHU Zhu-Jun. Advances on the Studies of Invertase on Sucrose Metabolism in Higher Plant [J]. Chin Bull Bot, 2002, 19(06): 666-674.
[15] HE Long-Fei;LIU You-Liang;SHEN Zhen-Guo and WANG Ai-Qin. Ion Channel Characteristics, Functions, Regulatory Factors and Molecular Biology of Plants [J]. Chin Bull Bot, 1999, 16(05): 517-525.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Li-lin. Studies on Flower Bud Differentiation in Vitro[J]. Chin Bull Bot, 1989, 6(02): 72 -76 .
[2] Lu Zuo-min. Study on the Drought Resistance of Artemisia ordosica with Different Ages[J]. Chin Bull Bot, 1993, 10(01): 58 -59 .
[3] WU Jian-Fan WANG Yun-Hua. Progress in Studies on Nutrition and Fertilization of Non-Pollution Vegetables[J]. Chin Bull Bot, 2000, 17(06): 492 -503 .
[4] ZHU Mei-Jun;KANG Yun;CHEN Jia and WANG Xue-Chen. Plant Aquaporins and their Regulation[J]. Chin Bull Bot, 1999, 16(01): 44 -50 .
[5] JIAO Yu WANG Shi-Jun. The Leaf Epidermal Structures of Three Species ofBotrychiaceae from China[J]. Chin Bull Bot, 2000, 17(04): 352 -359 .
[6] WANG Qing-Mei YANG Shu-De CHEN Jia. Triose Phosphate Translocator in the Inner Membrane of Chloroplast[J]. Chin Bull Bot, 2001, 18(01): 11 -15 .
[7] Xie Gong-wen Wang Hong-yan Lai Xiao-rong Tan Ce-ming Nong Zhi-lin. Diversity and Conservation of Chinese Endemic Genera of the Flora in Jiouling-mufu Mountain[J]. Chin Bull Bot, 1995, 12(专辑2): 90 -95 .
[8] Lin Jian;Zheng Guang-hua and Cheng Hong-yan. Studies on Ultradry Storage of Eucommia Seeds[J]. Chin Bull Bot, 1996, 13(增刊): 58 -62 .
[9] Xu Ke-zhang;Zhao Ran;Liu Bao and Cong Yu-sheng. A Simple Method for the Measurement of the Volume of the Mesophyll Air Space[J]. Chin Bull Bot, 1985, 3(06): 57 -59 .
[10] Xu Ping and Zhang Pi-fang. Advances of the Studies of Microfilament Cytoskeleton[J]. Chin Bull Bot, 1995, 12(增刊): 37 -41 .