Chin J Plan Ecolo ›› 2016, Vol. 40 ›› Issue (7): 702-710.DOI: 10.17521/cjpe.2016.0064
Special Issue: 植物功能性状
• Research Articles • Previous Articles Next Articles
Received:
2016-02-14
Accepted:
2016-05-09
Online:
2016-07-10
Published:
2016-07-07
Contact:
Chuan-Kuan WANG
Ying JIN, Chuan-Kuan WANG. Leaf hydraulic traits and their trade-offs for nine Chinese temperate tree species with different wood properties[J]. Chin J Plan Ecolo, 2016, 40(7): 702-710.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2016.0064
材性(代码) Wood property (code) | 树种(代码) Species (code) | 叶习性 Leaf habit | 生境 Habitat | 胸径 DBH (cm) |
---|---|---|---|---|
散孔材 | 白桦 Betula platyphylla (BH) | 落叶阔叶 Deciduous-broadleaved | 山坡中部 Mid slope | 24.46 ± 1.05 |
Diffuse-porous (DP) | 山杨 Populus davidiana (SY) | 落叶阔叶 Deciduous-broadleaved | 山坡上部 Upper slope | 31.15 ± 0.55 |
紫椴 Tilia amurensis (ZD) | 落叶阔叶 Deciduous-broadleaved | 山坡上部 Upper slope | 25.75 ± 1.30 | |
环孔材 | 水曲柳 Fraxinus mandshurica (SQL) | 落叶阔叶 Deciduous-broadleaved | 山坡下部 Toe slope | 34.30 ± 0.45 |
Ring-porous (RP) | 蒙古栎 Quercus mongolica (MGL) | 落叶阔叶 Deciduous-broadleaved | 山坡上部 Upper slope | 27.86 ± 1.19 |
胡桃楸 Juglans mandshurica (HTQ) | 落叶阔叶 Deciduous-broadleaved | 山谷 Valley bottom | 34.60 ± 1.38 | |
无孔材 | 红松 Pinus koraiensis (HS) | 常绿针叶 Evergreen-coniferous | 山坡中部 Mid slope | 28.17 ± 0.91 |
Non-porous (NP) | 云杉 Picea koraiensis (YS) | 常绿针叶 Evergreen-coniferous | 山谷 Valley bottom | 30.05 ± 0.65 |
樟子松 Pinus sylvestris var. mongolica (ZZS) | 常绿针叶 Evergreen-coniferous | 山坡中部 Mid slope | 26.32 ± 1.15 |
Table 1 Basic characteristics of the sampled trees for the nine temperate tree species with different wood properties (mean ± SE, n = 4)
材性(代码) Wood property (code) | 树种(代码) Species (code) | 叶习性 Leaf habit | 生境 Habitat | 胸径 DBH (cm) |
---|---|---|---|---|
散孔材 | 白桦 Betula platyphylla (BH) | 落叶阔叶 Deciduous-broadleaved | 山坡中部 Mid slope | 24.46 ± 1.05 |
Diffuse-porous (DP) | 山杨 Populus davidiana (SY) | 落叶阔叶 Deciduous-broadleaved | 山坡上部 Upper slope | 31.15 ± 0.55 |
紫椴 Tilia amurensis (ZD) | 落叶阔叶 Deciduous-broadleaved | 山坡上部 Upper slope | 25.75 ± 1.30 | |
环孔材 | 水曲柳 Fraxinus mandshurica (SQL) | 落叶阔叶 Deciduous-broadleaved | 山坡下部 Toe slope | 34.30 ± 0.45 |
Ring-porous (RP) | 蒙古栎 Quercus mongolica (MGL) | 落叶阔叶 Deciduous-broadleaved | 山坡上部 Upper slope | 27.86 ± 1.19 |
胡桃楸 Juglans mandshurica (HTQ) | 落叶阔叶 Deciduous-broadleaved | 山谷 Valley bottom | 34.60 ± 1.38 | |
无孔材 | 红松 Pinus koraiensis (HS) | 常绿针叶 Evergreen-coniferous | 山坡中部 Mid slope | 28.17 ± 0.91 |
Non-porous (NP) | 云杉 Picea koraiensis (YS) | 常绿针叶 Evergreen-coniferous | 山谷 Valley bottom | 30.05 ± 0.65 |
樟子松 Pinus sylvestris var. mongolica (ZZS) | 常绿针叶 Evergreen-coniferous | 山坡中部 Mid slope | 26.32 ± 1.15 |
Fig. 1 Comparisons of leaf hydraulic traits among the tree species with different wood properties (mean ± SE). Different uppercase and lowercase letters above columns indicate significant differences among different wood properties and among different tree species with the same wood property, respectively (p < 0.05). Karea and Kmass, leaf hydraulic conductance per leaf area and dry mass, respectively; P50, leaf hydraulic vulnerability. See Table 1 for the codes of tree species and wood properties.
Fig. 2 Relationships between leaf hydraulic efficiency and hydraulic vulnerability (P50) of the trees with wood properties. Karea and Kmass, leaf hydraulic conductance per leaf area and dry mass, respectively. The codes of wood properties are listed in Table 1.
Fig. 3 Relationships between leaf water potential at turgor loss point (TLP) and (A) leaf-mass-based hydraulic conductance (Kmass) or (B) leaf hydraulic vulnerability (P50) of the trees with wood properties. The dash line denotes non-significant (p > 0.05). The codes of wood properties are listed in Table 1.
Fig. 4 The relationships between leaf hydraulics and structural traits of all tree species. Kmass, leaf hydraulic conductance per dry mass; LD, leaf density; LDMC, leaf dry mass content; LMA, leaf mass per unit area; P50, leaf hydraulic vulnerability.
1 | Blackman CJ, Brodribb TJ, Jordan GJ (2010). Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms.New Phytologist, 188, 1113-1123. |
2 | Brodribb TJ, Holbrook NM (2003). Stomatal closure during leaf dehydration, correlation with other leaf physiological traits.Plant Physiology, 132, 2166-2173. |
3 | Brodribb TJ, Holbrook NM, Zwieniecki MA, Palma B (2005). Leaf hydraulic capacity in ferns, conifers and angiosperms: Impacts on photosynthetic maxima.New Phytologist, 165, 839-846. |
4 | Bucci SJ, Scholz FG, Campanello PI, Montti L, Jimenez- Castillo M, Rockwell FA, Manna LL, Guerra P, Bernal PL, Troncoso O, Enricci J, Holbrook MN, Goldstein G (2012). Hydraulic differences along the water transport system of South American Nothofagus species: Do leaves protect the stem functionality?Tree Physiology, 32, 880-893. |
5 | Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Franco AC, Campanello P, Villalobos-Vega R, Bustamante M, Miralles- Wilhelm F (2006). Nutrient availability constrains the hydraulic architecture and water relations of savannah trees.Plant, Cell & Environment, 29, 2153-2167. |
6 | Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Sternberg LDASL (2003). Dynamic changes in hydraulic conductivity in petioles of two savanna tree species: Factors and mechanisms contributing to the refilling of embolized vessels.Plant, Cell & Environment, 26, 1633-1645. |
7 | Carnicer J, Barbeta A, Sperlich D, Coll M, Penuelas J (2013). Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale.Front Plant Science, 4, 409. |
8 | Coll M, Penuelas J, Ninyerola M, Pons X, Carnicer J (2013). Multivariate effect gradients driving forest demographic responses in the Iberian Peninsula.Forest Ecology & Management, 303, 195-209. |
9 | Feild TS, Brodribb TJ (2001). Stem water transport and freeze-thaw xylem embolism in conifers and angiosperms in a Tasmanian treeline heath.Oecologia, 127, 314-320. |
10 | Giordano R, Salleo A, Salleo S, Wanderlingh F (1978). Flow in xylem vessels and Poiseuille’s law.Canadian Journal of Botany, 56, 333-338. |
11 | Gomez-Aparicio L, Garcia VR, Ruiz-Benito P, Zavala MA (2011). Disentangling the relative importance of climate, size and competition on tree growth in Iberian forests: Implications for forest management under global change.Globle Change Biology, 17, 2400-2414. |
12 | Gong R, Gao Q (2015). Research progress in the effects of leaf hydraulic characteristics on plant physiological functions.Chinese Journal of Plant Ecology, 39, 300-308. (in Chinese with English abstract)[龚容, 高琼 (2015). 叶片结构的水力学特性对植物生理功能影响的研究进展. 植物生态学报, 39, 300-308.] |
13 | Hao GY, Hoffmann WA, Scholz FG, Bucci SJ, Meinzer FC, Franco AC, Cao KF, Goldstein G (2008). Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems.Oecologia, 155, 405-415. |
14 | Hoffmann WA, Marchin RM, Abit P, Lau OL (2011). Hydraulic failure and tree dieback are associated with high wood density in a temperate forest under extreme drought.Global Change Biology, 17, 2731-2742. |
15 | Jacobsen AL, Agenbag L, Esler KJ, Pratt RB, Ewers FW, Davis SD (2007). Xylem density, biomechanics and anatomical traits correlate with water stress in 17 evergreen shrub species of the Mediterranean-type climate region of South Africa.Journal of Ecology, 95, 171-183. |
16 | Jin Y, Wang CK (2015). Trade-offs between plant leaf hydraulic and economic traits.Chinese Journal of Plant Ecology, 39, 1021-1032. (in Chinese with English abstract)[金鹰, 王传宽 (2015). 植物叶片水力与经济性状权衡关系的研究进展. 植物生态学报, 39, 1021-1032.] |
17 | Johnson DM, Mcculloh KA, Woodruff DR, Meinzer FC (2012). Evidence for xylem embolism as a primary factor in dehydration-induced declines in leaf hydraulic conductance.Plant, Cell & Environment, 35, 760-769. |
18 | Kim YX, Steudle E (2007). Light and turgor affect the water permeability (aquaporins) of parenchyma cells in the midrib ofZea mays. Journal of Experimental Botany, 58, 4119-4129. |
19 | Li JY, Zhai HB (2000). Hydraulic architecture and drought resistance of woody plants.Chinese Journal of Applied Ecology, 11, 301-305. (in Chinese with English abstract)[李吉跃, 翟洪波 (2000). 木本植物水力结构与抗旱性. 应用生态学报, 11, 301-305.] |
20 | McCulloh K, Sperry JS, Lachenbruch B, Meinzer FC, Reich PB (2010). Moving water well: Comparing hydraulic efficiency in twigs and trunks of coniferous, ring-porous, and diffuse-porous saplings from temperate and tropical forests.New Phytologist, 186, 439-450. |
21 | Meinzer FC, Johnson DM, Lachenbruch B, McCulloh KA, Woodruff DR (2009). Xylem hydraulic safety margins in woody plants: Coordination of stomatal control of xylem tension with hydraulic capacitance.Functional Ecology, 23, 922-930. |
22 | Nardini A, Battistuzzo M, Savi T (2013). Shoot desiccation and hydraulic failure in temperate woody angiosperms during an extreme summer drought.New Phytologist, 200, 322-329. |
23 | Nardini A, Luglio J (2014). Leaf hydraulic capacity and drought vulnerability: Possible trade-offs and correlations with climate across three major biomes.Functional Ecology, 28, 810-818. |
24 | Nardini A, Pedà G, Rocca NL (2012a). Trade-offs between leaf hydraulic capacity and drought vulnerability: Morpho- anatomical bases, carbon costs and ecological cones- quences.New Phytologist, 196, 788-798. |
25 | Nardini A, Pedà G, Salleo S (2012b). Alternative methods for scaling leaf hydraulic conductance offer new insights into the structure-function relationships of sun and shade leaves.Functional Plant Biology, 39, 394-401. |
26 | Nardini A, Salleo S, Raimondo F (2003). Changes in leaf hydraulic conductance correlate with leaf vein embolism in Cercis siliquastrum L.Trees, 17, 529-534. |
27 | Pan X, Qiu Q, Li JY, Wang JH, He Q, Su Y, Ma JW, Du K (2015). Drought resistance evaluation based on leaf anatomical structures of 25 shrubs on the Tibetan Plateau.Journal of South China Agricultural University, 36, 61-68. (in Chinese with English abstract)[潘听, 邱权, 李吉跃, 王军辉, 何茜, 苏艳, 马建伟, 杜坤 (2015). 基于叶片解剖结构对青藏高原25种灌木的抗旱性评价. 华南农业大学学报, 36, 61-68.] |
28 | Pan YP, Chen YP (2014). Recent advances in leaf hydraulic traits.Chinese Journal of Ecology, 33, 2834-2841. (in Chinese with English abstract)[潘莹萍, 陈亚鹏 (2014). 叶片水力性状研究进展. 生态学杂志, 33, 2834-2841.] |
29 | Sack L, Holbrook NM (2006). Leaf hydraulics.Annual Review of Plant Biology, 57, 361-381. |
30 | Scholz FG, Bucci SJ, Goldstein G (2014). Strong hydraulic segmentation and leaf senescence due to dehydration may trigger die-back in Nothofagus dombeyi under severe droughts: A comparison with the co-occurring Austrocedrus chilensis.Trees, 28, 1475-1487. |
31 | Scoffoni C, McKown AD, Rawls M, Sack L (2012). Dynamics of leaf hydraulic conductance with water status: Quantification and analysis of species differences under steady state. Journal of Experimental Botany, 63, 643-658. |
32 | Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011). Decline of leaf hydraulic conductance with dehydration: Relationship to leaf size and venation architecture.Plant Physiology, 156, 832-843. |
33 | Simonin KA, Limm EB, Dawson TE (2012). Hydraulic conductance of leaves correlates with leaf lifespan: Implications for lifetime carbon gain.New Phytologist, 193, 939-947. |
34 | Sperry JS, Hacke UG, Pittermann J (2006). Size and function in conifer tracheids and angiosperm vessels.American Journal of Botany, 93, 1490-1500. |
35 | Sperry JS, Meinzer FC, McCulloh KA (2008). Safety and efficiency conflicts in hydraulic architecture: Scaling from tissues to trees.Plant, Cell & Environment, 31, 632-645. |
36 | Tyree MT, Hammel HT (1972). The measurement of the turgor pressure and the water relations of plants by the pressure- bomb technique.Journal of Experimental Botany, 23, 267-282. |
37 | Vilagrosaa A, Morales F, Abadía A, Bellot J, Cochardd H, Gil-Pelegrine E (2010). Are symplast tolerance to intense drought conditions and xylem vulnerability to cavitation coordinated? An integrated analysis of photosynthetic, hydraulic and leaf level processes in two Mediterranean drought-resistant species.Environmental & Experimental Botany, 69, 233-242. |
38 | Villagra M, Campanello PI, Bucci SJ, Goldstein G (2013). Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species.Tree Physiology, 33, 1308-1318. |
39 | Wang CK, Han Yi, Chen JQ, Wang XC, Zhang QZ, Bond- Lamberty B (2013). Seasonality of soil CO2 efflux in a temperate forest: Biophysical effects of snowpack and spring freeze-thaw cycles.Agricultural & Forest Meteorology, 177, 83-92. |
40 | Wikberg J, Ögren E (2004). Interrelationships between water use and growth traits in biomass-producing willows.Trees, 18, 70-76. |
41 | Zhang HY, Wang CK, Wang XC (2014). Spatial variations in non-structural carbohydrates in stems of twelve temperate tree species.Trees, 28, 77-89. |
42 | Zhang SB, Zhang JL, Cao KF (2016). Effects of seasonal drought on water status, leaf spectral traits and fluorescence parameters in Tarenna depauperata Hutchins, a Chinese savanna evergreen species.Plant Science Journal, 34, 117-126. (in Chinese with English abstract)[张树斌, 张教林, 曹坤芳 (2016). 季节性干旱对白皮乌口树(Tarenna depauperata Hutchins)水分状况、叶片光谱特征和荧光参数的影响. 植物科学学报, 34, 117-126.] |
43 | Zhang YJ, Cao KF, Sack L, Li N, Wei XM, Goldstein G (2015). Extending the generality of leaf economic design principles in the cycads, an ancient lineage.New Phytologist, 206, 817-829. |
44 | Zhang ZL, Liu GD, Zhang FC, Zheng CX, Kang YH (2014). Research progress of plant leaf hydraulic conductivity.Chinese Journal of Ecology, 33, 1663-1670. (in Chinese with English abstract)[张志亮, 刘国东, 张富仓, 郑彩霞, 康银红 (2014). 植物叶片导水率的研究进展. 生态学杂志, 33, 1663-1670.] |
45 | Zhuo LX, Li JH, Li YY, Zhao LM (2012). Comparison of hydraulic traits in branches and leaves of diffuse- and ring- porous species.Acta Ecological Sinica, 32, 5087-5094. (in Chinese with English Abstract)[左力翔, 李俊辉, 李秧秧, 赵丽敏 (2012). 散孔材与环孔材树种枝干, 叶水力学特性的比较研究. 生态学报, 32, 5087-5094.] |
46 | Zhu SD, Chen YJ, Cao KF, Ye Q (2015). Interspecific variation in branch and leaf traits among three Syzygium tree species from different successional tropical forests.Functional Plant Biology, 42, 423-432. |
47 | Zwieniecki MA, Brodribb TJ, Holbrook NM (2007). Hydraulic design of leaves: Insights from rehydration kinetics.Plant, Cell & Environment, 30, 910-921. |
[1] | SUN Jia-Hui, SHI Hai-Lan, CHEN Ke-Yu, JI Bao-Ming, ZHANG Jing. Research advances on trade-off relationships of plant fine root functional traits [J]. Chin J Plant Ecol, 2023, 47(8): 1055-1070. |
[2] | LI Yao-Qi, WANG Zhi-Heng. Functional biogeography of plants: research progresses and challenges [J]. Chin J Plant Ecol, 2023, 47(2): 145-169. |
[3] | HE Lu-Lu, ZHANG Xuan, ZHANG Yu-Wen, WANG Xiao-Xia, LIU Ya-Dong, LIU Yan, FAN Zi-Ying, HE Yuan-Yang, XI Ben-Ye, DUAN Jie. Crown characteristics and its relationship with tree growth on different slope aspects for Larix olgensis var. changbaiensis plantation in eastern Liaoning mountainous area, China [J]. Chin J Plant Ecol, 2023, 47(11): 1523-1539. |
[4] | ZHAI Jiang-Wei, LIN Xin-Hui, WU Rui-Zhe, XU Yi-Xin, JIN Hao-Hao, JIN Guang-Ze, LIU Zhi-Li. Trade-offs between petiole and lamina of different functional plants in Xiao Hinggan Mountains, China [J]. Chin J Plant Ecol, 2022, 46(6): 700-711. |
[5] | CHENG Si-Qi, JIANG Feng, JIN Guang-Ze. Leaf economics spectrum of broadleaved seedlings and its relationship with defense traits in a temperate forest [J]. Chin J Plant Ecol, 2022, 46(6): 678-686. |
[6] | HAN Xu-Li, ZHAO Ming-Shui, WANG Zhong-Yuan, YE Lin-Feng, LU Shi-Tong, CHEN Sen, LI Yan, XIE Jiang-Bo. Adaptation of xylem structure and function of three gymnosperms to different habitats [J]. Chin J Plant Ecol, 2022, 46(4): 440-450. |
[7] | QIN Hui-Jun, JIAO Liang, ZHOU Yi, XUE Ru-Hong, QI Chang-Liang, DU Da-Shi. Effects of altitudes on non-structural carbohydrate allocation in different dominate trees in Qilian Mountains, China [J]. Chin J Plant Ecol, 2022, 46(2): 208-219. |
[8] | DAI Yuan-Meng, LI Man-Le, XU Ming-Ze, TIAN Yun, ZHAO Hong-Xian, GAO Sheng-Jie, HAO Shao-Rong, LIU Peng, JIA Xin, ZHA Tian-Shan. Leaf traits of Artemisia ordosica at different dune fixation stages in Mau Us Sandy Land [J]. Chin J Plant Ecol, 2022, 46(11): 1376-1387. |
[9] | REN Jin-Pei, LI Jun-Peng, WANG Wei-Feng, DAI Yong-Xin, WANG Lin. Responses of leaf hydraulic traits to water conditions in eight tree species and the driving factors [J]. Chin J Plant Ecol, 2021, 45(9): 942-951. |
[10] | FANG Jing, YE Lin-Feng, CHEN Sen, LU Shi-Tong, PAN Tian-Tian, XIE Jiang-Bo, LI Yan, WANG Zhong-Yuan. Differences in anatomical structure and hydraulic function of xylem in branches of angiosperms in field and garden habitats [J]. Chin J Plant Ecol, 2021, 45(6): 650-658. |
[11] | NI Ming-Yuan, ARITSARA Amy Ny Aina, WANG Yong-Qiang, HUANG Dong-Liu, XIANG Wei, WAN Chun-Yan, ZHU Shi-Dan. Analysis of xylem anatomy and function of representative tree species in a mixed evergreen and deciduous broad-leaved forest of mid-subtropical karst region [J]. Chin J Plant Ecol, 2021, 45(4): 394-403. |
[12] | WANG Zhao-Ying, CHEN Xiao-Ping, CHENG Ying, WANG Man-Tang, ZHONG Quan-Lin, LI Man, CHENG Dong-Liang. Leaf and fine root economics spectrum across 49 woody plant species in Wuyi Mountains [J]. Chin J Plant Ecol, 2021, 45(3): 242-252. |
[13] | TAN Yi-Bo, TIAN Hong-Deng, ZENG Chun-Yang, SHEN Hao, SHEN Wen-Hui, YE Jian-Ping, GAN Guo-Juan. Canopy mechanical abrasion between adjacent plants influences twig and leaf traits of Tsuga chinensis assemblage in the Mao’er Mountain [J]. Chin J Plant Ecol, 2021, 45(12): 1281-1291. |
[14] | LI Hao, MA Ru-Yu, QIANG Bo, HE Cong, HAN Lu, WANG Hai-Zhen. Effect of current-year twig stem configuration on the leaf display efficiency of Populus euphratica [J]. Chin J Plant Ecol, 2021, 45(11): 1251-1262. |
[15] | WANG Yu-Xian, HOU Meng, XIE Yan-Yan, LIU Zuo-Jun, ZHAO Zhi-Gang, LU Ning-Na. Relationships of flower longevity with attractiveness traits and their effects on female fitness of alpine meadow plants on the Qinghai-Xizang Plateau, China [J]. Chin J Plant Ecol, 2020, 44(9): 905-915. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn