Chin J Plan Ecolo ›› 2016, Vol. 40 ›› Issue (7): 702-710.DOI: 10.17521/cjpe.2016.0064

• Research Articles • Previous Articles     Next Articles

Leaf hydraulic traits and their trade-offs for nine Chinese temperate tree species with different wood properties

Ying JIN, Chuan-Kuan WANG*()   

  1. Center for Ecological Research, Northeast Forestry University, Harbin 150040, China
  • Received:2016-02-14 Accepted:2016-05-09 Online:2016-07-10 Published:2016-07-07
  • Contact: Chuan-Kuan WANG


Aims Trees with different wood properties display variations in xylem anatomy and leaf vein structure, which may influence tree water transport efficiency and water-use strategy, and consequently constrain tree survival, growth and distribution. However, the effects of wood properties on leaf hydraulic conductance and vulnerability and their potential trade-offs at leaf level are not well understood. Our aims were to examine variations in leaf hydraulic traits of trees with different wood properties and explore potential trade-offs between leaf hydraulic efficiency and safety.
Methods Nine tree species with different wood properties were selected for measuring the leaf hydraulic traits, including three diffuse-porous species (Populus davidiana, Tilia amurensis, Betula platyphylla), three ring-porous species (Quercus mongolica, Fraxinus mandshurica, Juglans mandshurica), and three non-porous species (Picea koraiensis, Pinus sylvestris var. mongolica, Pinus koraiensis). Four dominant and healthy trees per species were randomly selected. The hydraulic traits measured included leaf hydraulic conductance on leaf area (Karea) and dry mass (Kmass) basis, leaf hydraulic vulnerability (P50), and leaf water potential at turgor loss point (TLP), while the leaf structural traits were leaf dry mass content (LDMC), leaf density (LD) and leaf mass per unit area (LMA).
Important findings The Karea, Kmass, and P50 differed significantly among the tree species with different woody properties (p < 0.05). Both Karea and Kmass were the lowest for the non-porous trees, and did not differ significantly between the diffuse-porous and ring-porous trees. The ring-porous trees had the highest P50 values, while the diffuse-porous and non-porous trees showed no significant differences in P50. Both Karea and Kmass were negatively correlated with P50 (p < 0.05) for all the trees, and the relationships for the diffuse-porous, ring-porous, and non-porous trees were fitted into linear, power, exponential functions, respectively. This indicates that significant trade-offs exist between leaf hydraulic efficiency and safety. The Kmass was correlated (p < 0.01) with TLP in a negative linear function for the diffuse- and ring-porous trees and in a negative exponential function for the non-porous trees. The P50 increased with increasing TLP. These results suggest that apoplastic and symplastic drought resistance are strictly coordinated in order to protect living cells from approaching their critical water status under water stresses. The Kmass was negatively correlated (p < 0.01) with LDMC, LD, or LMA, while the P50 was positively correlated with LDMC and LD; this suggests that variations in Kmass and P50 are driven by similar changes in structural traits regardless of wood traits. We conclude that the tree tolerance to hydraulic dysfunction increases with increasing carbon investment in the leaf hydraulic system.

Key words: leaf hydraulic trait, leaf hydraulic conductance, leaf hydraulic vulnerability, trade-off, diffuse- porous, ring-porous, non-porous