Chin J Plant Ecol ›› 2014, Vol. 38 ›› Issue (12): 1345-1355.DOI: 10.3724/SP.J.1258.2014.00129
Previous Articles Next Articles
ZHANG Cui-Ping1, MENG Ping2, LI Jian-Zhong3, WAN Xian-Chong1,*()
Received:
2014-04-03
Accepted:
2014-08-18
Online:
2014-04-03
Published:
2015-04-16
Contact:
WAN Xian-Chong
ZHANG Cui-Ping, MENG Ping, LI Jian-Zhong, WAN Xian-Chong. Interactive effects of soil acidification and phosphorus deficiency on photosynthetic characteristics and growth in Juglans regia seedlings[J]. Chin J Plant Ecol, 2014, 38(12): 1345-1355.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2014.00129
营养元素 Nutrition | 缺磷 Phosphorus deficiency | 正常磷 Normal phosphorus |
---|---|---|
KNO3 | 4 | 2 |
K2HPO4 | - | 1 |
NH4NO3 | 1 | 2 |
(NH4)2SO4 | 3 | 3 |
K2SO4 | - | - |
MgSO4 | 2 | 2 |
KH2PO4 | - | - |
Ca(NO3)2 | 2 | 2 |
Table 1 Composition of nutrient solution under different phosphorus treatments (mmol·L-1)
营养元素 Nutrition | 缺磷 Phosphorus deficiency | 正常磷 Normal phosphorus |
---|---|---|
KNO3 | 4 | 2 |
K2HPO4 | - | 1 |
NH4NO3 | 1 | 2 |
(NH4)2SO4 | 3 | 3 |
K2SO4 | - | - |
MgSO4 | 2 | 2 |
KH2PO4 | - | - |
Ca(NO3)2 | 2 | 2 |
Fig. 1 Phosphorus content in soil (mean ± SE). CK, normal phosphorus and pH 6.0; T1, normal phosphorus and pH 3.0; T2, phosphorus deficiency and pH 6.0; T3, phosphorus deficiency and pH 3.0. Different small letters indicate significant differences among treatments (p < 0.05).
土壤 Soil | 根 Root | 叶片 Leaf | 茎 Shoot | 全株 Total plant | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | Sig. | F | Sig. | F | Sig. | F | Sig. | F | Sig. | |||||
Phosphorus (P) | 324.527 | 0.000 | 121.359 | 0.000 | 188.985 | 0.000 | 57.784 | 0.000 | 431.250 | 0.000 | ||||
pH | 0.127 | 0.731 | 33.458 | 0.000 | 129.631 | 0.000 | 28.593 | 0.001 | 202.247 | 0.000 | ||||
P × pH | 5.428 | 0.055 | 2.314 | 0.167 | 56.035 | 0.000 | 6.718 | 0.032 | 24.811 | 0.001 |
Table 2 Two-way ANOVA for testing the effects of phosphorus and pH value on phosphorus content in soil and seedlings
土壤 Soil | 根 Root | 叶片 Leaf | 茎 Shoot | 全株 Total plant | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | Sig. | F | Sig. | F | Sig. | F | Sig. | F | Sig. | |||||
Phosphorus (P) | 324.527 | 0.000 | 121.359 | 0.000 | 188.985 | 0.000 | 57.784 | 0.000 | 431.250 | 0.000 | ||||
pH | 0.127 | 0.731 | 33.458 | 0.000 | 129.631 | 0.000 | 28.593 | 0.001 | 202.247 | 0.000 | ||||
P × pH | 5.428 | 0.055 | 2.314 | 0.167 | 56.035 | 0.000 | 6.718 | 0.032 | 24.811 | 0.001 |
Fig. 2 Phosphorus content in different organs of Juglans regia (mean ± SE). CK, normal phosphorus and pH 6.0; T1, normal phosphorus and pH 3.0; T2, phosphorus deficiency and pH 6.0; T3, phosphorus deficiency and pH 3.0. Different small letters indicate significant differences among treatments (p < 0.05).
生长指标 Growth variable | 处理 Treatment | |||
---|---|---|---|---|
CK | T1 | T2 | T3 | |
根生物量 Root biomass | 109.59b | 102.16c | 121.61a | 89.52d |
茎生物量 Shoot biomass | 33.36a | 29.27b | 26.33b | 22.12c |
叶生物量 Leaf biomass | 16.76a | 15.10a | 14.31a | 9.77a |
地下生物量/地上生物量 Root biomass / Shoot biomass | 2.19b | 2.31b | 3.01a | 2.83a |
高生长 Height increment (cm) | 10.23a | 9.18b | 8.68b | 7.68c |
茎生长 Diameter growth (mm) | 4.76a | 2.61b | 2.09bc | 1.69c |
叶面积 Leaf area (cm2) | 116.96a | 96.43b | 87.43bc | 82.82c |
Table 3 Growth and biomass allocation in Juglans regia seedlings under different treatments
生长指标 Growth variable | 处理 Treatment | |||
---|---|---|---|---|
CK | T1 | T2 | T3 | |
根生物量 Root biomass | 109.59b | 102.16c | 121.61a | 89.52d |
茎生物量 Shoot biomass | 33.36a | 29.27b | 26.33b | 22.12c |
叶生物量 Leaf biomass | 16.76a | 15.10a | 14.31a | 9.77a |
地下生物量/地上生物量 Root biomass / Shoot biomass | 2.19b | 2.31b | 3.01a | 2.83a |
高生长 Height increment (cm) | 10.23a | 9.18b | 8.68b | 7.68c |
茎生长 Diameter growth (mm) | 4.76a | 2.61b | 2.09bc | 1.69c |
叶面积 Leaf area (cm2) | 116.96a | 96.43b | 87.43bc | 82.82c |
根生物量 Root biomass | 茎生物量 Shoot biomass | 叶生物量 Leaf biomass | 地下生物量/地上生物量 Root biomass / Shoot biomass | 高生长 Height increment (cm) | 茎生长 Diameter growth (mm) | 叶面积 Leaf area (cm2) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | Sig. | F | Sig. | F | Sig. | F | Sig. | F | Sig. | F | Sig. | F | Sig. | |||||||
Phosphorus (P) | 0.056 | 0.817 | 38.236 | 0.000 | 0.106 | 0.749 | 46.398 | 0.000 | 13.89 | 0.001 | 87.615 | 0.000 | 30.435 | 0.000 | ||||||
pH | 224.433 | 0.000 | 13.113 | 0.002 | 0.108 | 0.747 | 0.085 | 0.775 | 9.360 | 0.004 | 45.942 | 0.000 | 8.775 | 0.004 | ||||||
P × pH | 87.391 | 0.000 | 0.003 | 0.958 | 0.858 | 0.368 | 2.238 | 0.154 | 0.028 | 0.868 | 23.349 | 0.000 | 3.307 | 0.073 |
Table 4 Two-way ANOVA for testing the effects of phosphorus and pH value on growth and biomass allocation in Juglans regia seedlings
根生物量 Root biomass | 茎生物量 Shoot biomass | 叶生物量 Leaf biomass | 地下生物量/地上生物量 Root biomass / Shoot biomass | 高生长 Height increment (cm) | 茎生长 Diameter growth (mm) | 叶面积 Leaf area (cm2) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | Sig. | F | Sig. | F | Sig. | F | Sig. | F | Sig. | F | Sig. | F | Sig. | |||||||
Phosphorus (P) | 0.056 | 0.817 | 38.236 | 0.000 | 0.106 | 0.749 | 46.398 | 0.000 | 13.89 | 0.001 | 87.615 | 0.000 | 30.435 | 0.000 | ||||||
pH | 224.433 | 0.000 | 13.113 | 0.002 | 0.108 | 0.747 | 0.085 | 0.775 | 9.360 | 0.004 | 45.942 | 0.000 | 8.775 | 0.004 | ||||||
P × pH | 87.391 | 0.000 | 0.003 | 0.958 | 0.858 | 0.368 | 2.238 | 0.154 | 0.028 | 0.868 | 23.349 | 0.000 | 3.307 | 0.073 |
Fig. 3 The relationships between pressure drop and water velocity in Juglans regia roots under different treatments. CK, normal phosphorus and pH 6.0; T1, normal phosphorus and pH 3.0; T2, phosphorus deficiency and pH 6.0; T3, phosphorus deficiency and pH 3.0.
Fig. 4 Root hydraulic conductivity in Juglans regia seedlings under different treatments (mean ± SE). CK, normal phosphorus and pH 6.0; T1, normal phosphorus and pH 3.0; T2, phosphorus deficiency and pH 6.0; T3, phosphorus deficiency and pH 3.0. Different small letters indicate significant differences among treatments (p < 0.05).
Fig. 5 Leaf water potential (WP) in Juglans regia under different treatments (mean ± SE). CK, normal phosphorus and pH 6.0; T1, normal phosphorus and pH 3.0; T2, phosphorus deficiency and pH 6.0; T3, phosphorus deficiency and pH 3.0. Different small letters indicate significant differences among treatments (p < 0.05).
Fig. 6 Hydraulic conductivity and percentage loss of hydraulic conductivity (PLC) in Juglans regia petioles under different treatments (mean ± SE). CK, normal phosphorus and pH 6.0; T1, normal phosphorus and pH 3.0; T2, phosphorus deficiency and pH 6.0; T3, phosphorus deficiency and pH 3.0. Different small letters indicate significant differences among treatments (p < 0.05).
根系导水率 Root hydraulic conductance | 导水损失率 Percentage loss of hydraulic conductance | 导水率 Hydraulic conductivity | 导管密度 Vessel density (No.·mm-2) | 导管直径 Vessel diameter (μm) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | Sig. | F | Sig. | F | Sig. | F | Sig. | F | Sig. | |||||
Phosphorus (P) | 5.132 | 0.043 | 59.903 | 0.000 | 33.211 | 0.000 | 76.056 | 0.000 | 6.285 | 0.017 | ||||
pH | 5.578 | 0.036 | 23.256 | 0.000 | 19.911 | 0.000 | 61.606 | 0.000 | 2.637 | 0.114 | ||||
P × pH | 0.367 | 0.556 | 4.646 | 0.051 | 1.069 | 0.317 | 2.714 | 0.108 | 0.525 | 0.474 |
Table 5 Two-way ANOVA for testing the effects of phosphorus and pH value on root hydraulic conductivity and petiole water transport in Juglans regia seedlings
根系导水率 Root hydraulic conductance | 导水损失率 Percentage loss of hydraulic conductance | 导水率 Hydraulic conductivity | 导管密度 Vessel density (No.·mm-2) | 导管直径 Vessel diameter (μm) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | Sig. | F | Sig. | F | Sig. | F | Sig. | F | Sig. | |||||
Phosphorus (P) | 5.132 | 0.043 | 59.903 | 0.000 | 33.211 | 0.000 | 76.056 | 0.000 | 6.285 | 0.017 | ||||
pH | 5.578 | 0.036 | 23.256 | 0.000 | 19.911 | 0.000 | 61.606 | 0.000 | 2.637 | 0.114 | ||||
P × pH | 0.367 | 0.556 | 4.646 | 0.051 | 1.069 | 0.317 | 2.714 | 0.108 | 0.525 | 0.474 |
Fig. 7 Variations of gas exchanges in Juglans regia seedlings under different treatments (mean ± SE). CK, normal phosphorus and pH 6.0; T1, normal phosphorus and pH 3.0; T2, phosphorous deficiency and pH 6.0; T3, phosphorus deficiency and pH 3.0. Different small letters indicate significant differences among treatments (p < 0.05).
处理 Treatment | CK | T1 | T2 | T3 |
---|---|---|---|---|
导管密度 Vessel density (No.·mm-2) | 318 ± 41.35a | 236 ± 23.30b | 229 ± 20.88b | 175 ± 16.41c |
导管直径 Vessel diameter (μm) | 28.43 ± 3.32a | 27.74 ± 2.04a | 27.0 ± 2.31ab | 24.8 ± 1.84b |
Table 6 Anatomical structure of petiole xylem in Juglans regia seedlings under different treatments (mean ± SE)
处理 Treatment | CK | T1 | T2 | T3 |
---|---|---|---|---|
导管密度 Vessel density (No.·mm-2) | 318 ± 41.35a | 236 ± 23.30b | 229 ± 20.88b | 175 ± 16.41c |
导管直径 Vessel diameter (μm) | 28.43 ± 3.32a | 27.74 ± 2.04a | 27.0 ± 2.31ab | 24.8 ± 1.84b |
Pn | Gs | Tr | Fv/Fm | ΦPSII | qP | NPQ | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | Sig. | F | Sig. | F | Sig. | F | Sig. | F | Sig. | F | Sig. | F | Sig. | |||||||
Phosphorus (P) | 48.676 | 0.000 | 19.368 | 0.000 | 20.750 | 0.000 | 15.241 | 0.001 | 20.073 | 0.000 | 26.746 | 0.000 | 22.131 | 0.000 | ||||||
pH | 17.963 | 0.000 | 7.118 | 0.016 | 29.513 | 0.000 | 7.402 | 0.013 | 11.444 | 0.003 | 7.512 | 0.013 | 17.880 | 0.001 | ||||||
P × pH | 1.447 | 0.245 | 0.247 | 0.626 | 4.459 | 0.052 | 0.013 | 0.910 | 0.066 | 0.800 | 0.748 | 0.398 | 0.184 | 0.674 |
Table 7 Two-way ANOVA for testing the effects of phosphorus and pH value on phosphorus characteristics in Juglans regia seedlings
Pn | Gs | Tr | Fv/Fm | ΦPSII | qP | NPQ | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | Sig. | F | Sig. | F | Sig. | F | Sig. | F | Sig. | F | Sig. | F | Sig. | |||||||
Phosphorus (P) | 48.676 | 0.000 | 19.368 | 0.000 | 20.750 | 0.000 | 15.241 | 0.001 | 20.073 | 0.000 | 26.746 | 0.000 | 22.131 | 0.000 | ||||||
pH | 17.963 | 0.000 | 7.118 | 0.016 | 29.513 | 0.000 | 7.402 | 0.013 | 11.444 | 0.003 | 7.512 | 0.013 | 17.880 | 0.001 | ||||||
P × pH | 1.447 | 0.245 | 0.247 | 0.626 | 4.459 | 0.052 | 0.013 | 0.910 | 0.066 | 0.800 | 0.748 | 0.398 | 0.184 | 0.674 |
Fig. 8 Parameters of chlorophyll fluorescence in Juglans regia seedlings under different treatments (mean ± SE). CK, normal phosphorus and pH 6.0; T1, normal phosphorus and pH 3.0; T2, phosphorus deficiency and pH 6.0; T3, phosphorus deficiency and pH 3.0. ΦPSII, quantum yield of PSII; Fv/Fm, maximum efficiency of PSII; NPQ, non-photochemical quenching; qP, photochemical quenching. Different small letters indicate significant differences among treatments (p < 0.05).
Fig. 9 Microstructure of petiole xylem vessel under different treatments. A, Normal phosphorus and pH 6.0. B, Normal phosphorus and pH 3.0. C, Phosphorus deficiency and pH 6.0. D, Phosphorus deficiency and pH 3.0.
1 |
Brodribb TJ, Hill RS (2000). Increases in water potential gradient reduce xylem conductivity in whole plants. Evidence from a low pressure conductivity method. Plant Physiology, 123, 1021-1027.
URL PMID |
2 | Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Franco AC, Campanello PI, Villalobos-Vega R, Bustamante M, Miralles- Wilhelm F (2006). Nutrient availability constrains the hydraulic architecture and water relations of savannah trees. Plant, Cell & Environment, 29, 2153-2167. |
3 | Carvajal M, Cooke DT, Clarkson DT (1996). Responses of wheat plants to nutrient deprivation may involve the regulation of water-channel function. Planta, 199, 372-381. |
4 | Fan WG, Wang LX (2012). Photosynthetic response to different phosphorus levels on young Newhall navel orange trees. Journal of Fruit Science, 29, 166-170.(in Chinese with English abstract) |
[ 樊卫国, 王立新 (2012). 纽荷尔脐橙幼树对不同供磷水平的光合响应. 果树学报, 29, 166-170.] | |
5 |
Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6, 269-279.
DOI URL PMID |
6 | Gallé A, Haldimann P, Feller U (2007). Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. New Phytologist, 174, 799-810. |
7 |
Gulías J, Flexas J, Abadía A, Madrano H (2002). Photosynthetic responses to water deficit in six Mediterranean sclerophyll species: possible factors explaining the declining distribution of Rhamnus ludovici-salvatoris an endemic Balearic species. Tree Physiology, 22, 687-697.
DOI URL PMID |
8 |
Gunsé B, Poschenrieder C, Barcelo J (1997). Water transport properties of roots and root cortical cells in proton- and Al-stressed maize varieties. Plant Physiology, 113, 595-602.
DOI URL PMID |
9 |
Guo SL, Yan XF, Bai B, Yu S (2005). Responses of larch seedling’s photosynthetic characteristics to nitrogen and phosphorus deficiency. Chinese Journal of Applied Ecology, 16, 589-594.(in Chinese with English abstract)
URL PMID |
[ 郭盛磊, 阎秀峰, 白冰, 于爽 (2005). 落叶松幼苗光合特性对氮和磷缺乏的响应. 应用生态学报, 16, 589-594.]
PMID |
|
10 | Hargrave KR, Kolb KJ, Ewers FW, Davis SD (1994). Conduit diameter and drought-induced embolism in Salvia mellifera Greene (Labiatae). New Phytologist, 126, 695-705. |
11 |
Harvey HP, van den Driessche R (1997). Nutrition, xylem cavitation and drought resistance in hybrid poplar. Tree Physiology, 17, 647-654.
DOI URL PMID |
12 |
Horswill P, Sullivan O, PhoenixGK, Lee JA, Leake JR (2008). Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition. Environmental Pollution, 155, 336-349.
DOI URL PMID |
13 |
Kamaluddin M, Zwiazek JJ (2004). Effects of root medium pH on water transport in paper birch (Betula papyrifera) seedlings in relation to root temperature and abscisic acid treatments. Tree Physiology, 24, 1173-1180.
DOI URL PMID |
14 |
Kang SZ, Zhang JH (2004). Controlled alternate partialrootzone irrigation: its physiological consequences andimpact on water use efficiency. Journal of Experimental Botany, 55, 2437-2446.
DOI URL PMID |
15 | Lowther JR (1980). Use of a single sulphuric acid-hydrogen peroxide digest for the analysis of Pinus radiata needles. Communications in Soil Science & Plant Analysis, 11, 175-188. |
16 | Lu RK, Shi ZY, Qian CL (2000). Decline of phosphorus availability with time in soils. Acta Pedologica Sinica, 37, 323-329.(in Chinese with English abstract) |
[ 鲁如坤, 时正元, 钱承梁 (2000). 磷在土壤中有效性的衰减. 土壤学报, 37, 323-329.] | |
17 |
Lu YM, Equiza MA, Deng X, Tyree MT (2010). Recovery of Populus tremuloides seedlings following severe drought causing total leaf mortality and extreme stem embolism. Physiologia Plantarum, 140, 246-257.
URL PMID |
18 |
Mai BR, Zheng YF, Liang J, Liu X, Li L, Zhong YC (2008). Effects of simulated acid rain on leaf photosynthate, growth, and yield of wheat. Chinese Journal of Applied Ecology, 19, 2227-2233.(in Chinese with English abstract)
URL PMID |
[ 麦博儒, 郑有飞, 梁骏, 刘霞, 李璐, 钟燕川 (2008). 模拟酸雨对小麦叶片同化物, 生长和产量的影响. 应用生态学报, 19, 2227-2233.]
PMID |
|
19 | Mao DR ( 1994). Research Methods of Plant Nutrition. Beijing Agricultural University Press, Beijing. |
[ 毛达如(1994). 植物营养研究方法. 北京农业大学出版社, 北京.] | |
20 |
Maxwell K, Johnson GN (2000). Chlorophyll fluorescence―a practical guide. Journal of Experimental Botany, 51, 659-668.
URL PMID |
21 |
Mukherjee SK, Asanuma S (1998). Possible role of cellular phosphate pool and subsequent accumulation of inorganic phosphate on the aluminum tolerance in Bradyrhizobium japonicum. Soil Biology & Biochemistry, 30, 1511-1516.
DOI URL |
22 |
Ögren E (1990). Evaluation of chlorophyll fluorescence for drought stress in willow leaves. Plant Physiology, 93, 1280-1285.
DOI URL PMID |
23 |
Plavcová L, Hacke UG (2012). Phenotypic and developmental plasticity of xylem in hybrid poplar saplings subjected to experimental drought, nitrogen fertilization, and shading. Journal of Experimental Botany, 63, 6481-6491.
DOI URL PMID |
24 | Qiu DL, Liu XH (2000). Effect of simulated acid rain on the chlorophyll a fluorescence characteristic of longan (Dimorcarpus longana) leaves. Acta Horticulturae Sinica, 27, 177-181.(in Chinese with English abstract) |
[ 邱栋梁, 刘星辉 (2000). 模拟酸雨对龙眼叶片叶绿素a荧光特性的影响. 园艺学报, 27, 177-181.] | |
25 | Sant’Anna-Santos BF, da Silva LC, Azevedo AA, de Araújo JM, Alves EF, da Silva EAM, Aguiara R (2006). Effects of simulated acid rain on the foliar micromorphology and anatomy of tree tropical species. Environmental and Experimental Botany, 58, 158-168. |
26 |
Santiago LS, Goldstein G, Meinzer FC, Fisher JB, Machado K, Woodruff D, Jones T (2004). Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia, 140, 543-550.
DOI URL PMID |
27 | Sperry JS, Donnelly JR, Tyree MT (1988). A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell & Environment, 11, 35-40. |
28 | Sperry JS, Hacke UG, Oren R, Comstock JP (2002). Water deficits and hydraulic limits to leaf water supply. Plant, Cell & Environment, 25, 251-263. |
29 | Steudle E (2000). Water uptake by plant roots: an integration of views. Plant and Soil, 226, 45-56. |
30 |
Szabó I, Bergantino E, Giacometti GM (2005). Light and oxygenic photosynthesis: energy dissipation as a protection mechanism against photo-oxidation. EMBO Reports, 6, 629-634.
DOI URL PMID |
31 |
Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, Luu DT, Bligny R, Maurel C (2003). Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature, 425, 393-397.
DOI URL PMID |
32 | Tyree MT, Zimmermann MH (2000). Xylem Structure and the Ascent of Sap. Springer, Berlin. |
33 | Vance CP, Uhde C, Allan DL (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 157, 423-447. |
34 |
Vander W, Sherwin CH, Pammenter NW (2000). Xylem hydraulic characteristics of subtropical trees from contrasting habitats grown under identical environmental conditions. New Phytologist, 145, 51-59.
DOI URL |
35 |
Wan X, Zwiazek JJ (1999). Mercuric chloride effects on root water transport in aspen seedlings. Plant Physiology, 121, 939-946.
DOI URL PMID |
36 | Wang L, Feng JX, Wang SX, Jia CR, Wan XC (2013). The interaction of drought and slope aspect on growth of Quercus variabilis and Platycladus orientalis. Acta Ecologica Sinica, 33, 2425-2433.(in Chinese with English abstract) |
[ 王林, 冯锦霞, 王双霞, 贾长荣, 万贤崇 (2013). 干旱和坡向的互作对栓皮栎和侧柏生长的影响. 生态学报, 33, 2425-2433.] | |
37 | Yang JF, He LY, Zuo XD, Liu YF, Wu ZH, Zhang AQ, Zhao HE, Liu W, Yan C, Men YY (2009). Phosphorous nutritional characteristics of rice in P-deficient soils with different pH values. Plant Nutrition and Fertilizer Science, 15, 62-68.(in Chinese with English abstract) |
[ 杨建峰, 贺立源, 左雪冬, 刘艳飞, 吴照辉, 章爱群, 赵会娥, 刘伟, 严昶, 门玉英 (2009). 不同pH低磷土壤上水稻磷营养特性研究. 植物营养与肥料学报, 15, 62-68.] | |
38 | Yuan J (2013). Study on Adaptive Mechanism of Camellia oleifera to Low-phosphorus Environment. PhD dissertation, Beijing Forestry University, Beijing. |
[ 袁军(2013). 油茶低磷适应机理研究. 博士学位论文, 北京林业大学, 北京.] | |
39 | Zhang H, Yang YK, Xie DT, Wang DY (2007). Effect of acid rain on leaching loss of nitrogen and phosphorus. Journal of Soil and Water Conservation, 21, 22-25.(in Chinese with English abstract) |
[ 张华, 杨永奎, 谢德体, 王定勇 (2007). 酸雨对紫色土氮磷淋失的影响. 水土保持学报, 21, 22-25.] | |
40 | Zhang SR, Gao RF (2000). Ecophysiological characteristics of photosynthesis of hybrid poplar clones under light stress. Acta Phytoecologica Sinica, 28, 528-533. |
[ 张守仁, 高荣孚 (2004). 光胁迫下杂种杨无性系光合生理生态特性的研究. 植物生态学报, 24, 528-533.] | |
41 | Zhang SR, Gao RF, Wang LJ (2004). Response of oxygen evolution activity of photosystem II, photosynthetic pigments and chloroplast ultrastructure of hybrid poplar clones to light stress. Acta Phytoecologica Sinica, 28, 143-149. |
[ 张守仁, 高荣孚, 王连军 (2004). 杂种杨无性系的光系统Ⅱ放氧活性、光合色素及叶绿体超微结构对光胁迫的响应. 植物生态学报, 28, 143-149.] |
[1] | 建 周 Han Wang. A review of forest size structure studies: from statistical description to theoretical deduction [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | SHI Meng-Jiao, LI Bin, YI Li-Ta, LIU Mei-Hua. Sexual divergence of Populus deltoides seedlings growth and ecophysiological response to drought and rewatering [J]. Chin J Plant Ecol, 2023, 47(8): 1159-1170. |
[3] | WU Chen, CHEN Xin-Yi, LIU Yuan-Hao, HUANG Jin-Xue, XIONG De-Cheng. Effects of warming on fine root growth, mortality and turnover: a review [J]. Chin J Plant Ecol, 2023, 47(8): 1043-1054. |
[4] | WU Fan, WU Chen, ZHANG Yu-Hui, YU Heng, WEI Zhi-Hua, ZHENG Wei, LIU Xiao-Fei, CHEN Shi-Dong, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on growth, morphology and physiological metabolism characteristics of fine roots in a mature Cunninghamia lanceolata plantation in different seasons [J]. Chin J Plant Ecol, 2023, 47(6): 856-866. |
[5] | WANG Jing-Jing, WANG Jia-Hao, HUANG Zhi-Yun, Vanessa Chiamaka OKECHUKW, HU Die, QI Shan-Shan, DAI Zhi-Cong, DU Dao-Lin. Effects of endophytic nitrogen-fixing bacteria on the growth strategy of an invasive plant Sphagneticola trilobata under different nitrogen levels [J]. Chin J Plant Ecol, 2023, 47(2): 195-205. |
[6] | LIU Mei-Jun, CHEN Qiu-Wen, LÜ Jin-Lin, LI Guo-Qing, DU Sheng. Seasonal dynamics of radial growth and micro-variation in stems of Quercus mongolica var. liaotungensis and Robinia pseudoacacia in loess hilly region [J]. Chin J Plant Ecol, 2023, 47(2): 227-237. |
[7] | AN Fan, LI Bao-Yin, ZHONG Quan-Lin, CHENG Dong-Liang, XU Chao-Bin, ZOU Yu-Xing, ZHANG Xue, DENG Xing-Yu, LIN Qiu-Yan. Nitrogen addition affects growth and functional traits of Machilus pauhoi seedlings from different provenances [J]. Chin J Plant Ecol, 2023, 47(12): 1693-1707. |
[8] | ZHU Ming-Yang, LIN Lin, SHE Yu-Long, XIAO Cheng-Cai, ZHAO Tong-Xing, HU Chun-Xiang, ZHAO Chang-You, WANG Wen-Li. Radial growth and its low-temperature threshold of Abies georgei var. smithii at different altitudes in Jiaozi Mountain, Yunnan, China [J]. Chin J Plant Ecol, 2022, 46(9): 1038-1049. |
[9] | LI Yi-Ding, SANG Qing-Tian, ZHANG Hao, LIU Long-Chang, PAN Qing-Min, WANG Yu, LIU Wei, YUAN Wen-Ping. Effects of air and soil humidification on the growth of young Pinus sylvestris var. mongolica trees in semi-arid area of Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(9): 1077-1085. |
[10] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[11] | LI Xiao, PIALUANG Bounthong, KANG Wen-Hui, JI Xiao-Dong, ZHANG Hai-Jiang, XUE Zhi-Guo, ZHANG Zhi-Qiang. Responses of radial growth to climate change over the past decades in secondary Betula platyphylla forests in the mountains of northwest Hebei, China [J]. Chin J Plant Ecol, 2022, 46(8): 919-931. |
[12] | WEI Long-Xin, GENG Yan, CUI Ke-Da, QIAO Xue-Tao, YUE Qing-Min, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Responses of tree growth to harvesting intensity among forest strata and growth stages in a broadleaved Korean pine forest [J]. Chin J Plant Ecol, 2022, 46(6): 642-655. |
[13] | HUANG Dong-Liu, XIANG Wei, LI Zhong-Guo, ZHU Shi-Dan. Hydraulic architecture and safety margin in ten afforestation species in a lower subtropical region [J]. Chin J Plant Ecol, 2022, 46(5): 602-612. |
[14] | LI Si-Yuan, ZHANG Zhao-Xin, RAO Liang-Yi. Responses of non-structural carbohydrates and growth hormone in Morus alba seedlings to flooding stress [J]. Chin J Plant Ecol, 2022, 46(3): 311-320. |
[15] | XIONG Ying-Jie, YU Guo, WEI Kai-Lu, PENG Juan, GENG Hong-Ru, YANG Dong-Mei, PENG Guo-Quan. Relationships between lamina size, vein density and vein cell wall dry mass per unit vein length of broad-leaved woody species in Tiantong Mountain, southeastern China [J]. Chin J Plant Ecol, 2022, 46(2): 136-147. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 3676
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1469
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn