Chin J Plan Ecolo ›› 2016, Vol. 40 ›› Issue (1): 48-59.doi: 10.17521/cjpe.2015.0246

• Orginal Article • Previous Articles     Next Articles

Geostatistical analysis of spatial variations in leaf traits of woody plants in Tiantong, Zhejiang Province

XU Ming-Shan1,2, ZHAO Yan-Tao1,2, YANG Xiao-Dong3, SHI Qing-Ru4, ZHOU Liu-Li1,2, ZHANG Qing-Qing1,2, Ali ARSHAD1,2,5, YAN En-Rong1,2,*   

  1. 1School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
    2Tiantong National Forest Ecosystem Observation and Research Station, Ningbo, Zhejiang 315114, China
    3Institute of Resources and Environment Science, Xinjiang University, Ürümqi 830046, China
    4Youth Science and Technology Guide Station of Baoshan District, Shanghai 200904, China
    5Department of Environmental Sciences, Abdul Wali Khan University, Mardan 23200, Pakistan
  • Online:2016-01-28 Published:2016-01-31
  • Contact: En-Rong YAN
  • About author:

    # Co-first authors

Abstract: AimsExploring spatial variations in leaf traits and their relationships with environmental properties is crucial for understanding plant adaptation strategies and community assembly. This study aimed to reveal how leaf traits varied spatially and the role of environmental factors.MethodsThe study was conducted in a 5-hm2 forest plot in Tiantong, Zhejiang Province. Three leaf traits, including individual leaf area (ILA), specific leaf area (SLA), and leaf dry matter content (LDMC) were measured for 20253 individual trees with diameter at breast height (DBH) ≥1 cm. Soil properties measured included contents of soil total nitrogen, soil total phosphorus, soil total carbon, soil pH value, soil volumetric water content, bulk density, and humus depth. Topographic variables measured included elevation, slope and convexity. We used geostatistical analysis to reveal spatial variations of the three leaf traits. Relationships between leaf variability and environmental factors were analyzed using principal component analysis (PCA) and Pearson’s correlation.Important findings Spatial variability followed the order of ILA > SLA > LDMC. Spatial autocorrelation of three leaf traits was weak within a distance of 5.16 m. The optimal model of the semi-variogram function was Gaussian model for ILA, and exponential model for SLA and LDMC. ILA showed the largest variability at the direction of northeast-southwest, and smallest variability at the direction of northwest-southeast. In contrast, SLA and LDMC had the highest variability at the direction of northwest-southeast and least variability at the direction of northeast-southwest. There were significantly negative relationships between ILA and topographic factors (r = -0.12, p < 0.0001), and between SLA and soil nutrients (r = -0.16, p < 0.0001). In contrast, LDMC was positively correlated with soil nutrients (r = 0.13, p < 0.0001). Relative to soil nutrients, topographic factors affected much more variations in ILA, SLA and LDMC at the direction of northeast-southwest. Distinctly, at the direction of northwest-southeast, variability of ILA was affected mainly by topographic factors, while soil nutrients resulted in the most variability of SLA and LDMC. In conclusion, leaf traits varied considerably with spatial direction in the studied forest plot. Associations between leaf traits and topographic factors and soil nutrients indirectly indicated effects of environmental filtering on community assembly.

Key words: leaf traits, spatial variation, soil nutrients, topographic factors, geostatistical analysis

Fig. 1

Topography map of the 5 hm2 study plot in Tiantong, Zhejiang Province."

Table 1

Species list and leaf traits of woody plants in the 5 hm2 plot"

生活型
Life form
物种
Species
多度
Abundance
单叶面积
Individual leaf area
(cm2)
比叶面积
Specific leaf area
(cm2·g-1)
叶片干物质含量
Leaf dry matter content
(mg·g-1)
常绿乔木
Evergreen
trees
薄叶山矾 Symplocos anomala 436 10.70 ± 0.16 133.07 ± 2.06 34.30 ± 0.24
豹皮樟 Litsea coreana 49 12.83 ± 0.54 120.38 ± 3.14 46.05 ± 1.06
赤皮青冈 Cyclobalanopsis gilva 23 17.27 ± 1.07 113.25 ± 3.99 48.03 ± 0.67
刺叶桂樱 Prunus spinulosa 2 10.81 ± 1.18 168.21 ± 12.64 35.07 ± 2.70
大叶冬青 Ilex latifolia 48 58.18 ± 2.74 73.81 ± 3.17 39.39 ± 0.80
冬青 Ilex chinensis 4 16.56 ± 1.52 137.96 ± 19.09 38.21 ± 1.76
杜英 Elaeocarpus decipiens 1 31.07 184.93 31.88
短梗冬青 Ilex buergeri 95 9.56 ± 0.33 128.73 ± 3.91 42.11 ± 0.59
光叶石楠 Photinia glabra 174 14.95 ± 0.33 85.49 ± 2.54 46.95 ± 0.59
光枝刺叶冬青 Ilex hylonoma 4 26.06 ± 3.60 113.88 ± 6.89 35.00 ± 1.51
红楠 Machilus thunbergii 401 18.86 ± 0.37 95.36 ± 1.07 42.93 ± 0.29
虎皮楠 Daphniphyllum oldhamii 139 26.16 ± 0.62 121.71 ± 3.31 35.09 ± 0.58
华东木犀 Osmanthus cooperi 103 21.39 ± 1.20 90.46 ± 4.85 44.88 ± 1.03
华东楠 Machilus leptophylla 408 78.79 ± 1.41 141.74 ± 1.58 33.94 ± 0.33
黄丹木姜子 Litsea elongata 3 161 22.86 ± 0.13 123.33 ± 0.52 45.27 ± 0.10
黄牛奶树 Symplocos cochinchinensis 149 22.08 ± 0.63 141.81 ± 6.36 32.94 ± 0.38
栲树 Castanopsis fargesii 200 17.56 ± 0.44 114.02 ± 2.68 42.89 ± 0.43
苦槠 Castanopsis sclerophylla 14 33.76 ± 3.00 109.86 ± 9.13 44.61 ± 1.28
米槠 Castanopsis carlesii 69 9.97 ± 0.39 143.54 ± 6.41 43.73 ± 0.84
木荷 Schima superba 277 29.74 ± 0.64 99.25 ± 1.78 41.79 ± 0.43
木犀 Osmanthus fragrans 11 33.27 ± 1.84 84.25 ± 2.16 46.94 ± 0.93
披针叶茴香 Illicium lanceolatum 258 16.31 ± 0.42 114.59 ± 3.48 32.18 ± 0.45
朴树 Celtis sinensis 1 9.26 308.8 27.52
青冈 Cyclobalanopsis glauca 19 27.14 ± 2.11 121.83 ± 12.62 42.68 ± 1.92
三尖杉 Cephalotaxus fortunei 2 65.32 ± 40.05 82.90 ± 2.29 28.18 ± 0.36
石栎 Lithocarpus glaber 13 29.05 ± 3.87 95.09 ± 3.70 49.60 ± 2.17
四川山矾 Symplocos setchuensis 173 18.96 ± 0.44 86.32 ± 2.07 39.95 ± 0.57
铁冬青 Ilex rotunda 44 14.38 ± 0.71 161.62 ± 8.80 30.02 ± 0.91
细叶青冈 Cyclobalanopsis gracilis 23 18.34 ± 1.19 119.78 ± 2.666 44.28 ± 0.84
细叶香桂 Cinnamomum subavenium 219 16.41 ± 0.44 98.95 ± 1.66 47.36 ± 0.42
小叶青冈 Cyclobalanopsis myrsinifolia 140 16.58 ± 0.43 116.90 ± 2.48 45.77 ± 0.54
杨梅 Myrica rubra 24 19.67 ± 1.28 141.67 ± 7.86 41.97 ± 1.90
杨梅叶蚊母树 Distylium myricoides 1 394 13.79 ± 0.29 90.37 ± 0.86 43.34 ± 0.17
杨桐 Adinandra millettii 489 20.08 ± 0.32 90.39 ± 1.36 38.98 ± 0.29
云山青冈 Cyclobalanopsis sessilifolia 241 19.74 ± 0.50 102.39 ± 2.38 43.23 ± 0.41
长叶石栎 Lithocarpus henryi 352 56.12 ± 1.22 91.20 ± 1.11 44.19 ± 0.37
浙江新木姜子 Neolitsea aurata 698 14.01 ± 0.21 122.51 ± 1.35 48.84 ± 0.23
中华杜英 Elaeocarpus chinensis 3 16.16 ± 0.92 157.27 ± 19.36 33.63 ± 4.49
皱柄冬青 Ilex kengii 31 10.35 ± 0.41 121.31 ± 4.13 40.39 ± 0.86
紫楠 Phoebe sheareri 12 65.04 ± 10.68 138.24 ± 12.14 40.86 ± 0.97
总状山矾 Symplocos botryantha 34 14.12 ± 0.67 127.06 ± 6.50 34.66 ± 0.83
常绿灌木
Evergreen shrubs
白花苦灯笼 Tarenna mollissima 3 19.02 ± 2.54 276.47 ± 13.12 26.68 ± 4.44
百齿卫矛 Euonymus centidens 3 6.13 ± 0.60 192.55 ± 17.67 32.96 ± 0.26
赤楠 Syzygium buxifolium 120 5.89 ± 0.29 122.34 ± 5.48 39.31 ± 1.04
格药柃 Eurya muricata 127 15.92 ± 0.39 92.56 ± 2.5 38.23 ± 0.61
赤楠 Syzygium buxifolium 120 5.89 ± 0.29 122.34 ± 5.48 39.31 ± 1.04
格药柃 Eurya muricata 127 15.92 ± 0.39 92.56 ±2.5 38.23 ± 0.61
光叶山矾 Symplocos lancifolia 171 9.99 ± 0.29 193.55 ± 3.47 32.78 ± 0.38
红皮树 Stytax suberifolius 2 23.47 ± 3.08 164.01 ± 7.79 31.80 ± 7.92
常绿灌木
Evergreen shrubs
红山茶 Camellia japonica 1 18.16 85.46 32.77
厚皮香 Ternstroemia gymnanthera 24 14.01 ± 2.12 102.90 ± 8.49 35.33 ± 1.26
檵木 Loropetalum chinensis 37 5.83 ± 0.47 187.39 ± 11.97 37.05 ± 1.17
老鼠矢 Symplocos stellaris 27 31.57 ± 2.22 81.81 ± 2.86 34.79 ± 0.63
连蕊茶 Camellia cuspidata 1 782 7.18 ± 0.18 130.68 ± 1.89 37.65 ± 1.22
马银花 Rhododendron ovatum 337 8.95 ± 0.30 135.34 ± 2.71 39.95 ± 0.39
米饭 Vaccinium mandarinorum 45 12.28 ± 0.55 138.91 ± 6.65 4.41 ± 0.66
南天竹 Nandina domestica 1 109.06 152.32 41.87
山矾 Symplocos sumuntia 316 10.71 ± 0.19 113.47 ± 1.68 34.95 ± 0.28
石斑木 Rhaphiolepis indica 20 8.04 ± 0.81 121.99 ± 13.52 43.23 ± 2.36
细枝柃 Eurya loquaiana 5 688 8.74 ± 0.41 153.57 ± 0.52 38.12 ± 0.07
腺点樱 Prunus phaeosticta 203 13.02 ± 0.37 147.94 ± 2.26 39.05 ± 0.35
窄基红褐柃 Eurya rubiginosa 194 13.07 ± 0.33 108.61 ± 2.34 37.45 ± 0.39
落叶乔木
Deciduous trees
灯台树 Cornus controversa 4 42.25 ± 5.89 247.28 ± 26.56 26.45 ± 2.89
红枝柴 Meliosma oldhamii 1 89.44 160.75 29.73
华东野核桃 Juglans cathayensis 7 461.32 ± 114.81 155.39 ± 12.90 32.86 ± 1.99
华东油柿 Diospyros oleifera 7 69.34 ± 8.16 236.62 ± 27.88 31.22 ± 2.20
青皮木 Schoepfia jasminodora 9 21.44 ± 3.85 170.58 ± 13.46 32.27 ± 1.51
山合欢 Albizia kalkora 2 60.92 ± 22.08 112.61 ± 14.73 36.86 ± 0.98
迎春樱 Prunus discoidea 7 22.01 ± 3.74 191.59 ± 38.88 44.36 ± 5.95
浙江柿 Diospyros glaucifolia 12 70.55 ± 8.81 195.19 ± 19.52 32.07 ± 1.92
糙叶树 Aphananthe aspera 11 27.17 ± 5.54 213.89 ± 27.17 37.17 ± 1.50
檫木 Sassafras tzumu 82 71.02 ± 3.27 177.23 ± 5.76 33.86 ± 0.69
臭辣树 Euodia fargesii 1 81.39 152.99 38.97
枫香 Liquidambar formosana 33 43.02 ± 2.78 226.51 ± 13.65 33.13 ± 1.02
杭州榆 Ulmus changii 4 12.72 ± 2.03 197.71 ± 26.37 32.62 ± 0.63
厚壳树 Ehretia acuminata 3 54.95 ± 5.99 228.32 ± 21.04 27.61 ± 2.67
化香 Platycarya strobilacea 5 129.33 ± 12.11 206.12 ± 20.67 34.89 ± 0.77
黄檀 Dalbergia hupeana 11 61.82 ± 6.75 229.09 ± 27.29 32.14 ± 1.62
苦枥木 Fraxinus insularis 41 63.75 ± 5.21 186.60 ± 8.99 34.16 ± 0.98
雷公鹅耳枥 Carpinus viminea 96 20.43 ± 1.97 253.86 ± 9.06 37.70 ± 0.76
毛八角枫 Alangium kurzii 4 53.65 ± 6.56 288.76 ± 27.21 26.22 ± 1.70
毛脉槭 Acer pubinerve 48 41.42 ± 2.81 206.96 ± 8.82 37.91 ± 1.31
南酸枣 Choerospondias axillaris 263 128.98 ± 3.61 160.29 ± 4.74 34.88 ± 0.31
拟赤杨 Alniphyllum fortunei 117 52.20 ± 2.03 263.67 ± 9.78 28.01 ± 0.69
青钱柳 Cyclocarya paliurus 10 87.84 ± 11.97 219.88 ± 18.23 33.35 ± 1.39
锐角槭 Acer acutum 7 127.05 ± 27.05 229.32 ± 37.71 33.54 ± 2.08
山黄皮 Randia cochinchinensis 2 16.67 ± 1.46 137.36 ± 21.11 44.72 ± 0.93
山鸡椒 Litsea cubeba 15 20.01 ± 1.30 298.63 ± 22.63 28.01 ± 1.37
山桐子 Idesia polycarpa 7 71.93 ± 11.57 282.54 ± 35.72 37.51 ± 3.89
无患子 Sapindus saponaria 18 298.93 ± 29.12 233.64 ± 12.56 32.85 ± 1.12
西川朴 Celtis vandervoetiana 16 45.58 ± 4.33 221.86 ± 20.72 37.55 ± 1.76
小果冬青 Ilex micrococca 2 20.53 ± 9.25 133.61 ± 28.22 37.09 ± 3.07
野漆树 Toxicodendron succedaneum 21 147.20 ± 11.24 152.28 ± 6.47 36.37 ± 1.47
油桐 Vernicia fordii 75 238.53 ± 17.24 182.18 ± 7.19 32.94 ± 0.94
紫弹树 Celtis biondii 6 12.86 ± 1.21 201.41 ± 35.63 33.26 ± 1.60
落叶灌木
Deciduous shrubs
豆腐柴 Premna microphylla 4 12.61 ± 2.20 304.82 ± 26.20 24.80 ± 1.87
山胡椒 Lindera glauca 4 10.98 ± 0.64 240.99 ± 46.23 39.09 ± 2.40
乌饭 Vaccinium bracteatum 13 10.58 ± 0.93 150.69 ± 4.60 30.53 ± 0.89
白背叶 Machilus apeltus 24 113.97 ± 12.50 247.95 ± 15.19 30.83 ± 1.15
落叶灌木
Deciduous shrubs
刺毛越橘 Vaccinium trichocladum 14 8.97 ± 0.51 129.16 ± 8.89 32.73 ± 1.37
大青 Clerodendrum cyrtophyllum 60 66.10 ± 4.59 240.95 ± 13.38 28.39 ± 1.01
大叶白纸扇 Mussaenda shikokiana 5 105.86 ± 11.95 361.34 ± 82.37 24.38 ± 3.80
杜鹃花 Rhododendron simsii 4 14.07 ± 3.51 383.14 ± 90.13 26.87 ± 3.22
红脉钓樟 Lindera rubronervia 35 15.76 ± 0.87 307.86 ± 14.30 30.66 ± 0.85
赛山梅 Styrax confusus 90 17.86 ± 0.72 235.73 ± 7.89 29.22 ± 0.48
山油麻 Trema cannabina 3 11.45 ± 3.38 459.79 ± 68.34 27.68 ± 1.30
天仙果 Ficus erecta 2 64.54 ± 29.14 407.11 ± 11.82 23.31 ± 2.03
小叶石楠 Photinia parvifolia 2 11.45 ± 1.26 312.44 ± 70.23 37.82 ± 5.21
宜昌荚蒾 Viburnum erosum 5 15.25 ± 1.68 350.13 ± 30.99 23.78 ± 1.60
枳椇 Hovenia acerba 2 103.89 ± 44.38 170.60 ± 63.22 13.03 ± 9.21

Table 2

Semi-variogram model of plant leaf traits"

叶片性状
Leaf trait
模型
Model
块金值
Nugget
基台值
Still
结构比
Structure
ratio
变程
Range
(m)
决定系数
Determination coefficient
标准均方根预测误差
Root mean square standardized
单叶面积
Individual
leaf area
球型 Spherical model 0.000 1 0.090 0.999 6.07 0.95 1.43
指数 Exponential model 0.000 1 0.090 0.999 4.35 0.95 2.09
高斯 Gaussian model 0.003 2 0.090 0.964 4.80 0.95 1.41
比叶面积
Specific leaf area
球型 Spherical model 0.000 01 0.012 0.999 6.38 0.87 0.86
指数 Exponential model 0.000 6 0.020 0.969 5.16 0.88 0.90
高斯 Gaussian model 0.001 6 0.020 0.918 5.23 0.87 0.76
叶片干物质含量
Leaf dry matter content
球型 Spherical model 0.000 01 0.007 0.999 6.27 0.96 1.29
指数 Exponential model 0.000 3 0.007 0.955 4.92 0.96 1.29
高斯 Gaussian model 0.000 7 0.007 0.899 5.11 0.96 1.32

Fig. 2

Anisotropy function of plant leaf traits."

Table 3

Anisotropy parameters of plant leaf traits"

叶片性状
Leaf traits
东-西 East-West 东北-西南
Northeast-Southwest
南-北 South-North 西北-东南
Northwest-Southeast
D R2 D R2 D R2 D R2
单叶面积 Individual leaf area 1.96 0.95 1.93 0.97 1.98 0.97 1.99 0.51
比叶面积 Specific leaf area 1.99 0.66 1.99 0.54 1.99 0.75 1.98 0.67
叶片干物质含量 Leaf dry matter content 1.99 0.70 1.99 0.26 1.99 0.49 1.98 0.70
21 Villar R, Merino J (2001). Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems.New Phytologist, 151, 213-226.
22 Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional!Oikos, 116, 882-892.
23 Wang GH, Ni J (2005a). Plant traits and environmental conditions along the northeast China transect. Ekológia (Bratislava), 24, 170-185.
24 Wang GH, Ni J (2005b). Responses of plant functional types to an environmental gradient on the northeast China transect.Ecological Research, 20, 563-572.
25 Wang XC, Han SJ, Zou CJ, Zhou XF (2002). Geostatistical analysis of the pattern of Betula ermanii population in Changbai Mountain.Chinese Journal of Applied Ecology, 13, 781-784.
(in Chinese with English abstract) [王晓春, 韩士杰, 邹春静, 周晓峰 (2002). 长白山岳桦种群格局的地统计学分析. 应用生态学报, 13, 781-784.]
26 Weiher E, Keddy PA (1999). Relative abundance and evenness patterns along diversity and biomass gradients.Oikos, 87, 355-361.
27 Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ
28 Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum.Nature, 428, 821-827.
29 Zhang F, Du Q, Ge HL, Liu AX, Fu WJ, Ji BY (2012). Spatial distribution of forest carbon in Zhejiang Province with geostatistics based on CFI sample plots.Acta Ecologica Sinica, 32, 5275-5286.
(in Chinese with English abstract) [张峰, 杜群, 葛宏立, 刘安兴, 傅伟军, 季碧勇 (2012). 基于地统计学和CFI样地的浙江省森林碳空间分布研究. 生态学报, 32, 5275-5286.]
30 Zhang L, Luo TX, Deng KM, Li WH (2008). Vertical variations in specific leaf area and leaf dry matter content with canopy height in Pinus yunnanensis.Journal of Beijing Forestry University, 30(1), 40-44.
(in Chinese with English abstract) [张林, 罗天祥, 邓坤枚, 李文华 (2008). 云南松比叶面积和叶干物质含量随冠层高度的垂直变化规律. 北京林业大学学报, 30(1), 40-44.]
31 Zhang L, Wen ZM, Miao LP (2013). Source of variation of plant functional traits in the Yanhe river watershed: The influence of environment and phylogenetic background.Acta Ecologica Sinica, 33, 6543-6552.
(in Chinese with English abstract) [张莉, 温仲明, 苗连朋 (2013). 延河流域植物功能性状变异来源分析. 生态学报, 33, 6543-6552.]
32 Zhang N, Wang XH, Zheng ZM, Ma ZP, Yang QS, Fang XF, Xie YB (2012). Spatial heterogeneity of soil properties and its relationships with terrain factors in broadleaved forest in Tiantong of Zhejiang Province, East China.Chinese Journal of Applied Ecology, 23, 2361-2369.
(in Chinese with English abstract) [张娜, 王希华, 郑泽梅, 马遵平, 杨庆松, 方晓峰, 谢玉彬 (2012). 浙江天童常绿阔叶林土壤的空间异质性及其与地形的关系. 应用生态学报, 23, 2361-2369.]
33 Zhao B, Cai QH (2000). An application of geostatistical analysis in fresh water ecosystem.Acta Hydrobiologica Sinica, 24, 514-520.
1 Aiba M, Takafumi H, Hiura T (2012). Interspecific differences in determinants of plant species distribution and the relationships with functional traits.Journal of Ecology, 100, 950-957.
2 Bao Y, Liu YH (2009). Comparison of leaf functional traits in different forest communities in Mt. Dongling of Beijing.Acta Ecologica Sinica, 29, 3693-3703. (in Chinese with English abstract)
[宝乐, 刘艳红 (2009). 东灵山地区不同森林群落叶功能性状比较. 生态学报, 29, 3693-3703.]
3 Beaumont S, Burns KC (2009). Vertical gradients in leaf trait diversity in a New Zealand forest.Trees, 23, 339-346.
4 Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide.Australian Journal of Botany, 51, 335-380.
5 Cornwell WK, Schwilk DW, Ackerly DD (2006). A trait-based test for habitat filtering: Convex hull volume.Ecology, 87, 1465-1471.
6 Craine JM, Lee WG (2003). Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand.Oecologia, 134, 471-478.
7 Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, deTorres-Espuny L, Falczuk V, Guerrero- Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004). The plant traits that drive ecosystems: Evidence from three continents.Journal of Vegetation Science, 15, 295-304.
8 Ding J, Wu X, Yan H, Zhang SR (2011). Effects of topographic variations and soil characteristics on plant functional traits in a subtropical evergreen broad-leaved forest.Biodiversity Science, 19, 158-167. (in Chinese with English abstract)
[丁佳, 吴茜, 闫慧, 张守仁 (2011). 地形和土壤特性对亚热带常绿阔叶林内植物功能性状的影响. 生物多样性, 19, 158-167.]
9 Grime JP, Hodgson JG, Hunt R, Thompson K, Hendry GAF, Campbell BD, Jalili A, Hillier SH, Díaz S, Burke MJW (1997). Functional Types: Testing the Concept in Northern England. Cambridge University Press, Cambridge, UK. 122-150.
10 Herben T, Goldberg DE (2014). Community assembly by limiting similarity vs. competitive hierarchies: Testing the consequences of dispersion of individual traits.Journal of Ecology, 102, 156-166.
11 Hölscher D, Schmitt S, Kupfer K (2002). Growth and leaf traits off our broad-leaved tree species along a hillside gradient.Forstwissenschaftliches Centralblatt, 121, 229-239.
12 Liu L, Zeng FP, Song TQ, Peng WX, Wang KL, Qin WG, Tan WN (2010). Spatial heterogeneity of soil nutrients in karst area’s Mulun National Nature Reserve.Chinese Journal of Applied Ecology, 21, 1667-1673.
(in Chinese with English abstract) [刘璐, 曾馥平, 宋同清, 彭晚霞, 王克林, 覃文更, 谭卫宁 (2010). 喀斯特木论自然保护区土壤养分的空间变异特征. 应用生态学报, 21, 1667-1673.]
13 Liu XJ, Swenson NG, Wright SJ, Zhang LW, Song K, Du YJ, Zhang JL, Mi XC, Ren HB, Ma KP (2012). Covariation in plant functional traits and soil fertility within two species- rich forests.PLoS ONE, 7, e34767.
14 Ma FY, Li XR, Zhang JG, Li AX (2006). Spatial heterogeneity of soil moisture in Shapotou sand-fixing artificial vegetation area.Chinese Journal of Applied Ecology, 17, 789-795.
(in Chinese with English abstract) [马风云, 李新荣, 张景光, 李爱霞 (2006). 沙坡头人工固沙植被土壤水分空间异质性. 应用生态学报, 17, 789-795.]
15 Meng TT, Ni J, Wang GH (2007). Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology (Chinese Version), 31, 150-165.
(in Chinese with English abstract) [孟婷婷, 倪健, 王国宏 (2007). 植物功能性状与环境和生态系统功能. 植物生态学报, 31, 150-165.]
16 Milla R, Reich PB (2007). The scaling of leaf area and mass: The cost of light interception increases with leaf size.Proceedings of the Royal Society: Biological Sciences, 274, 2109-2114.
17 Ordoñez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility.Global Ecology and Biogeography, 18, 137-149.
18 Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleskyn J, Westoby M, Walters MB (2003). The evolution of plant functional variation: Traits, spectra, and strategies.International Journal of Plant Sciences, 164, S143-S164.
19 Song YC (2001). Vegetation Ecology. East China Normal University Press, Shanghai. 551-552.
(in Chinese) [宋永昌 (2001). 植被生态学. 华东师范大学出版社, 上海. 551-552.]
20 Song YC, Wang XR (1995). Vegetation and Flora of Tiantong National Forest Park, Zhejiang Province, China. Shanghai Science and Technology Document Publish House, Shanghai.
(in Chinese) [宋永昌, 王祥荣 (1995). 浙江天童国家森林公园的植被和区系. 上海科学技术文献出版社, 上海.]
33 (in Chinese with English abstract) [赵斌, 蔡庆华 (2000). 地统计学分析方法在水生态系统研究中的应用. 水生生物学报, 24, 514-520.]
[1] Yibo Tan,Wenhui Shen,Zi Fu,Wei Zheng,Zhiyang Ou,Zhangqiang Tan,Yuhua Peng,Shilong Pang,Qinfei He,Xiaorong Huang,Feng He. Effect of environmental factors on understory species diversity in Southwest Guangxi Excentrodendron tonkinense forests [J]. Biodiv Sci, 2019, 27(9): 970-983.
[2] LI Qun, ZHAO Cheng-Zhang, WANG Ji-Wei, WEN Jun, LI Zi-Qin, MA Jun-Yi. Morphological and photosynthetic physiological characteristics of Saussurea salsa in response to flooding in salt marshes of Xiao Sugan Lake, Gansu, China [J]. Chin J Plant Ecol, 2019, 43(8): 685-696.
[3] YANG Huan-Ying, SONG Jian-Da, ZHOU Tao, JIN Guang-Ze, JIANG Feng, LIU Zhi-Li. Influences of stand, soil and space factors on spatial heterogeneity of leaf area index in a spruce-fir valley forest in Xiao Hinggan Ling, China [J]. Chin J Plant Ecol, 2019, 43(4): 342-351.
[4] Wei Lu,Jianping Yu,Haibao Ren,Xiangcheng Mi,Jianhua Chen,Keping Ma. Spatial variations in species diversity of mid-subtropical evergreen broad-leaved forest community in Gutianshan National Nature Reserve [J]. Biodiv Sci, 2018, 26(9): 1023-1028.
[5] Juanping Ni,Saisai Cheng,Meixiang Gao,Tingyu Lu,Guangze Jin. Spatial heterogeneities of ground-dwelling Coleoptera adults and their spatial correlations with environmental factors in a typical broad-leaved Korean pine forest in the Fenglin Nature Reserve [J]. Biodiv Sci, 2018, 26(1): 14-26.
[6] GOU Xiao-Lin, ZHOU Qing-Ping, CHEN You-Jun, WEI Xiao-Xing, TU Wei-Guo. Characteristics of nutrients in two dominant plant species and rhizospheric soils in alpine desert of the Qinghai-Xizang Plateau under contrasting climates [J]. Chin J Plan Ecolo, 2018, 42(1): 133-142.
[7] Jie GUO, Qin ZHANG, Cheng-Zhong SUN, Jian WEN, Cai-Xiang XIE. Spatial variations of ginsenosides in Panax ginseng and their impact factors [J]. Chin J Plan Ecolo, 2017, 41(9): 995-1002.
[8] Rui-Yu ZHAO, Zheng-Cai LI, Bin WANG, Xiao-Gai GE, Yun-Xi DAI, Zhi-Xia ZHAO, Yu-Jie ZHANG. Duration of mulching caused variable pools of labile organic carbon in a Phyllostachys edulis plantation [J]. Chin J Plan Ecolo, 2017, 41(4): 418-429.
[9] Zhi-Min LI, Chuan-Kuan WANG, Dan-Dan LUO. Variations and interrelationships of foliar hydraulic and photosynthetic traits for Larix gmelinii [J]. Chin J Plan Ecolo, 2017, 41(11): 1140-1148.
[10] Yili Guo,Bin Wang,Wusheng Xiang,Tao Ding,Shuhua Lu,Fuzhao Huang,Shujun Wen,Dongxing Li,Yunlin He,Xiankun Li. Responses of spatial pattern of woody plants’ basal area to topographic factors in a tropical karst seasonal rainforest in Nonggang, Guangxi, southern China [J]. Biodiv Sci, 2016, 24(1): 30-39.
[11] CUI Gao-Yang,CAO Yang,CHEN Yun-Ming. Characteristics of nitrogen and phosphorus stoichiometry across components of forest ecosystem in Shaanxi Province [J]. Chin J Plan Ecolo, 2015, 39(12): 1146-1155.
[12] LI Yin-Gang, LIU Xin-Hong, MA Jun-Wei, SHI Cong-Guang, ZHU Guang-Quan. Phenotypic variations in populations of Phoebe chekiangensis [J]. Chin J Plan Ecolo, 2014, 38(12): 1315-1324.
[13] DU Yan-Jun and MA Ke-Ping. Temporal and spatial variation of seedfall in a broad-leaved evergreen forest in Gutianshan Nature Reserve of Zhejiang Province, China [J]. Chin J Plan Ecolo, 2012, 36(8): 717-728.
[14] ZHU Jie-Dong, MENG Ting-Ting, NI Jian, SU Hong-Xin, XIE Zong-Qiang, ZHANG Shou-Ren, ZHENG Yuan-Run and XIAO Chun-Wang. Within-leaf allometric relationships of mature forests in different bioclimatic zones vary with plant functional types [J]. Chin J Plan Ecolo, 2011, 35(7): 687-698.
[15] TU Li-Hua, HU Ting-Xing, ZHANG Jian, LI Ren-Hong, DAI Hong-Zhong, LUO Shou-Hua. Response of soil organic carbon and nutrients to simulated nitrogen deposition in Pleioblastus amarus plantation, Rainy Area of West China [J]. Chin J Plan Ecolo, 2011, 35(2): 125-136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Jun;ZHAO Lan-Yong;FENG Zhen;ZHANG Mei-Rong;WU Yin-Feng. Optimization Selection of Genetic Transformation Regeneration System from Leaves of Dendranthema morifolium[J]. Chin Bull Bot, 2004, 21(05): 556 -558 .
[2] Luo Jian-ping and Ja Jing-fen. Structure and Function of Plant Oligosaceaharins[J]. Chin Bull Bot, 1996, 13(04): 28 -33 .
[3] YANG Qi-He SONG Song-Quan YE Wan-HuiYIN Shou-HuaT. Mechanism of Seed Photosensitivity and FactorsInfluencing Seed Photosensitivity[J]. Chin Bull Bot, 2003, 20(02): 238 -247 .
[4] CUI Yue-Hua;WANG Mao and SUN Ke-Lian. Morphological Study of Gutta-containing Cells in Eucommia ulmoides Oliv.[J]. Chin Bull Bot, 1999, 16(04): 439 -443 .
[5] . Advances in Research into Low-Phytic-Acid Mutants in Crops[J]. Chin Bull Bot, 2005, 22(04): 463 -470 .
[6] Cong Ma, Weiwen Kong. Research Progress in Plant Metacaspase[J]. Chin Bull Bot, 2012, 47(5): 543 -549 .
[7] Chang’en Tian, Yuping Zhou. Research Progress in Plant IQ Motif-containing Calmodulin-binding Proteins[J]. Chin Bull Bot, 2013, 48(4): 447 -460 .
[8] Huawei Xu, Dianyun Hou. Research Advances in Protein Transport into Chloroplasts in Plant Cell#br#[J]. Chin Bull Bot, 2018, 53(2): 264 -275 .
[9] Li Jiandong, Zheng Huiying. ?ber die Anwendung der Braun-Blanquet's Methode in der Steppen-Untersuchung[J]. Chin J Plan Ecolo, 1983, 7(3): 186 -203 .
[10] Cheng Changdu. Proposals on Some Problems to Develop the Agriculture, Forestry, Animal Husbandry and Fishery as well as Sideline Culture from the View-point of Ecological Balance[J]. Chin J Plan Ecolo, 1981, 5(1): 65 -71 .