Chin J Plan Ecolo ›› 2016, Vol. 40 ›› Issue (5): 458-468.doi: 10.17521/cjpe.2015.0313

• Research Articles • Previous Articles     Next Articles

Characteristics of stump stock and decomposition in Pinus massoniana plantation

Qin WANG1, Wan-Qin YANG1,2,*, Fu-Zhong WU1,2, Jian ZHANG1,2, Bo TAN1,2, Xi-Tao ZHANG1   

  1. 1Sichuan Agricultural University Institute of Forestry & Ecology, Sichuan Provincial Key Laboratory of Forestry Ecological Engineering in the Upper Reaches of Yangtze River, Chengdu 611130, China

    2Collaborative Innovation Center of Ecological Security in the Upper Reaches of Yangtze River, Chengdu 611130
  • Online:2016-05-25 Published:2016-05-10
  • Contact: Wan-Qin YANG

Abstract: <i>Aims</i>

Stump plays crucial roles in maintaining soil fertility, sequestering carbon, nursing biodiversity, and conserving soil and water in plantation ecosystems. However, little is known about the decay of stump and the related roots in Pinus massoniana plantations. This study aims to explore the characteristics of stump stock and decomposition in the P. massoniana plantation.

<i>Methods</i>

Based on log file records of P. massoniana plantation from Laifu Forestry Management Institute in Yibin City of Sichuan Province, we established a chronosequence of decaying P. massoniana stumps from 1999 to 2013. We then investigated the stock and density of stump wood (SW), bark (B), stomp root (SR), and linked roots with different diameters (R1: 0 mm < diameter ≤10 mm; R2: 10 mm < diameter ≤25 mm; R3: 25 mm < diameter ≤100 mm; R4: diameter > 100 mm).

<i>Important findings</i>

In the investigated P. massoniana plantations, the stump stocks ranged from 5 to 58 t·hm-2, stocks in stump wood was the largest, in stump root as the second, and in bark was the smallest, which decreased with the decomposing time. Correspondingly, stump density decreased with decomposing time, while the changes in density varied with stump wood, stump root and roots with different diameters. The decomposition constants of stump wood, bark and stump root were estimated at 0.061, 0.027 and 0.036, respectively. The decomposition constants of roots were estimated to be 0.079 for R1, 0.042 for R2, 0.047 for R3 and 0.119 for R4, respectively. In conclusion, the P. massoniana plantation has a high stock, but decomposes slowly and the decomposition constant varies greatly with stump components in the P. massoniana plantation, which provides certain theoretical basis for the sustainable management of P. massoniana plantation in the region.

Key words: Pinus massoniana plantation, stump, decomposition sequence, stock, decomposition characteristics

Table 1

The basic information of sampling plots"

样地
Sampling plot
坡向/坡度
Aspect/Slope (°)
伐桩密度
Stump density
(株·hm-2)
根桩直径(平均值±标准误差)
Stump diameter (mean ± SE)
(cm)
土壤pH值
pH value
土壤容重
Soil bulk density
(g·cm-3 )
土壤有机质含量
Soil organic matter content (g·kg-1)
S1 NW/21 2 050 16.4 ± 0.48 4.16 1.42 29.92
S2 NW/18 2 315 15.9 ± 0.65 4.14 1.39 28.96
S3 NW/20 2 100 17.2 ± 0.53 4.17 1.46 27.64
S4 NW/21 2 070 16.6 ± 0.44 4.14 1.40 27.44
S5 NW/17 2 405 15.6 ± 0.56 4.15 1.44 28.35
S7 NW/20 2 150 16.2 ± 0.39 4.16 1.41 27.43
S8 NW/19 2 190 16.4 ± 0.41 4.16 1.43 27.49
S9 NW/20 2 130 16.3 ± 0.47 4.18 1.45 27.64
S10 NW/18 2 350 15.9 ± 0.62 4.16 1.42 28.23
S11 NW/19 2 200 16.1 ± 0.32 4.15 1.44 28.06
S12 NW/20 2 085 17.1 ± 0.54 4.15 1.43 28.62
S13 NW/21 2 070 16.7 ± 0.29 4.16 1.39 29.26
S14 NW/20 2 125 16.8 ± 0.51 4.15 1.42 30.46
S15 NW/17 2 380 15.8 ± 0.48 4.15 1.40 31.45

Fig. 1

Changes in stump stocks of Pinus massoniana plantations across a decomposition series (mean ± SE, n = 3). Different lowercase letters mean the level of significant differences among different decomposition years (p < 0.05)."

Fig. 2

Changes in stump wood, bark and stump root stocks with stump decomposition in the Pinus massoniana plantations (mean ± SE, n = 3). Different lowercase letters mean the level of significant differences among different decomposition years (p < 0.05), and different uppercase letters indicate the level of significant differences among different stump parts (p < 0.05). B, bark; SR, stump root; SW, stump wood."

Fig. 3

Changes in the relative ratios among stump wood, stump bark and stump root with stump decomposition in the Pinus massoniana plantations (mean ± SE). B, bark; SR, stump root; SW, stump wood."

Fig. 4

Changes in stump root stocks with stump decomposition in the Pinus massoniana plantations (mean ± SE, n = 3). Different lowercase letters mean the level of significant differences among different decomposition years (p < 0.05)."

Fig. 5

Changes in different class root decomposition stocks with stump decomposition in the Pinus massoniana plantations (mean ± SE, n = 3). Different lowercase letters mean the level of significant differences among different decomposition years (p < 0.05), and different uppercase letters indicate the level of significant differences among different stump parts (p < 0.05). R1, 0 mm < diameter ≤10 mm; R2, 10 mm < diameter ≤25 mm; R3, 25 mm < diameter ≤100 mm; R4, diameter >100 mm."

Fig. 6

Changes in stump wood, bark and stump root density with stump decomposition in the Pinus massoniana plantations (mean ± SE, n = 3). B, bark; SR, stump root; SW, stump wood."

Fig. 7

Changes in different class root decomposition density with stump decomposition in the Pinus massoniana plantations (mean ± SE, n = 3). R1, 0 mm < diameter ≤10 mm; R2, 10 mm < diameter ≤25 mm; R3, 25 mm < diameter ≤100 mm; R4, diameter > 100 mm."

Table 2

The density (Y) of different components and the logarithmic function equation of time (t) in stump decomposition process"

树桩的部位
Parts of the stump
对数函数方程
Logarithmic function equation
r
树皮 Barks Y = -0.0051ln(t) + 0.4778 0.001 3
木桩 Stump wood Y = -0.1989ln(t) + 0.8153 0.567 9
根桩 Stump root Y = -0.1444ln(t) + 0.6522 0.237 9
0 mm <径级 Diameter ≤10 mm Y = -0.1470ln(t) + 0.6937 0.271 4
10 mm <径级 Diameter ≤25 mm Y = -0.0352ln(t) + 0.5470 0.016 1
25 mm <径级 Diameter ≤100 mm) Y = -0.1043ln(t) + 0.5951 0.241 5
径级 Diameter > 100 mm) Y = -0.4042ln(t) + 1.2127 0.724 1

Fig. 8

Changes in stump wood, bark and stump root decomposition rate with stump decomposition in the Pinus massoniana plantations (mean ± SE, n = 3). B, bark; SR, stump root; SW, stump wood."

Fig. 9

Changes in different class root decomposition rate with stump decomposition in the Pinus massoniana plantations (mean ± SE, n = 3). R1, 0 mm < diameter ≤10 mm; R2, 10 mm < diameter ≤25 mm; R3, 25 mm < diameter ≤100 mm; R4, diameter > 100 mm."

1 Blumfield TJ, Xu ZH, Mathers NJ, Saffigna PG (2004). Decomposition of nitrogen.Soil Science Society of America Journal, 68, 1751-1761.
2 Chang CH, Wu FZ, Yang WQ, Tan B, Xiao S, Li J, Gou XL (2015). Changes in log quality at different decay stages in an alpine forest.Chinese Journal of Plant Ecology, 39, 14-22. (in Chinese with English abstract)[常晨晖, 吴福忠, 杨万勤, 谭波, 肖洒, 李俊, 苟小林 (2015). 高寒森林倒木在不同分解阶段的质量变化. 植物生态学报, 39, 14-22.]
doi: 10.17521/cjpe.2015.0002
3 Chen H, Harmon ME, Griffiths RP (2001). Decomposition and nitrogen release from decomposing woody roots in coniferous forests of the Pacific Northwest: A chronosequence approach.Canadian Journal of Forest Research, 31, 246-260.
4 Cleary MR, Arhipova N, Morrison DJ, Thomsen IM, Sturrock RN, Vasaitis R, Gaitnieks T, Stenlid J (2013). Stump removal to control root disease in Canada and Scandinavia: A synthesis of results from long-term trials.Forest Ecology and Management, 290, 5-14.
doi: 10.1016/j.foreco.2012.05.040
5 Harmon ME, Franklin JF, Swanson FJ, Sollins P, Gregory SV, Lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, Lienkaemper GW, Cromack K Jr, Cummins KW (1986). Ecology of coarse woody debris in temperate ecosystems.Advance in Ecological Research, 15, 133-302.
doi: 10.1016/S0065-2504(03)34002-4
6 He F, Wang DX, Zhang SZ, Liu WZ, Shen YZ, Hu YN (2011). Reserves of litter and woody debris of two main forests in the Xiaolong Mountains, Gansu, China.Chinese Journal of Applied and Environmental Biology, 17, 46-50. (in Chinese with English abstract)[何帆, 王得祥, 张宋智, 刘文桢, 沈亚洲, 胡有宁 (2011). 小陇山林区主要森林群落凋落物及死木质残体储量. 应用与环境生物学报, 17, 46-50.]
doi: 10.3724/sp.j.1145.2011.00046
7 Hood IA, Beets PN, Kimberley MO, Gardner JF, Oliver GR, Pearce S (2004). Colonisation of podocarp coarse woody debris by decomposer basidiomycete fungi in an indigenous forest in the central North Island of New Zealand.Forest Ecology and Management, 196, 311-325.
doi: 10.1016/S0378-1127(04)00220-8
8 Hou P, Pan CD (2001). Coarse woody debris and its function in forest ecosystem.Chinese Journal of Applied Ecology, 12, 309-314. (in Chinese with English abstract)[侯平, 潘存德 (2001). 森林生态系统中的粗死木质残体及其功能. 应用生态学报, 12, 309-314.]
doi: 10.1007/s11769-001-0027-z
9 Huang ZQ, Xu ZH, Boyd S, Williams D (2005). Chemical composition trend in Cunninghamia lancelata (Lamb.) Hook. stump decomposition process.Chinese Science Bulletin, 50, 2365-2369. (in Chinese)[黄志群, 徐志红, Sue Boyd, David Williams (2005). 连栽杉木(Cunningh- amia lancelata (Lamb.) Hook.)林中树桩分解过程中的化学组分变化趋势. 科学通报, 50, 2365-2369.]
10 Justine MF, Yang WQ, Wu FZ, Tan B, Muhammad NK, Zhao YY (2015). Biomass stock and carbon sequestration in a chronosequence of Pinus massoniana plantations in the upper reaches of the Yangtze River.Forests, 6, 3665-3682.
doi: 10.3390/f6103665
11 Kang B, Liu SR, Cai DX, Lu LH (2009). Effects of Pinus massoniana plantation stand density on understory vegetation and soil properties.Chinese Journal of Applied Ecology, 20, 2321-2331. (in Chinese with English abstract)[康冰, 刘世荣, 蔡道雄, 卢立华 (2009). 马尾松人工林林分密度对林下植被及土壤性质的影响. 应用生态学报, 20, 2321-2331.]
12 Li LH, Dang GD, Wang TJ, Zhao LG (1998). Coarse woody debris in an Abies fargesii forest in the Qinling Mountains.Acta Phytoecologica Sinica, 22, 434-440. (in Chinese with English abstract)[李凌浩, 党高弟, 汪铁军, 赵雷刚 (1998). 秦岭巴山冷杉林粗死木质残体研究. 植物生态学报, 22, 434-440.]
13 Li LH, Xing XR, Huang DM, Liu CD, He JY (1996). Storage and dynamics of coarse woody debris in Castanopsis eyrei forest of Wuyi Mountain, with some considerations for its ecological effects.Acta Phytoecologica Sinica, 20, 132-143. (in Chinese with English abstract)[李凌浩, 邢雪荣, 黄大明, 刘出钿, 何建源 (1996). 武夷山甜槠林粗死木质残体的贮量、动态及其功能评述. 植物生态学报, 20, 132-143.]
14 Mo JM, Brown S, Peng SL, Kong GH, Zhang DQ, Zhang YC (2002). Role of understory plants on nutrient cycling of a restoring degraded pine forests in a MAB reserve of subtropical China.Acta Ecologica Sinica, 22, 1407-1413. (in Chinese with English abstract)[莫江明, Sandra Brown, 彭少麟, 孔国辉, 张德强, 张佑昌 (2002). 林下层植物在退化马尾松林恢复初期养分循环中的作用. 生态学报, 22, 1407-1413.]
15 Ols C, Victorsson J, Jonsell M (2013). Saproxylic insect fauna in stump on wet and dry soil: Implications for stump harvest.Forest Ecology and Management, 290, 15-21.
doi: 10.1016/j.foreco.2012.08.040
16 Olson JS (1963). Energy storage and the balance of producers and decomposers in ecological systems.Ecology, 2, 322-331.
doi: 10.2307/1932179
17 Persson T (2013). Environmental consequences of tree-stump harvesting.Forest Ecology and Management, 290, 1-4.
doi: 10.1016/j.foreco.2012.09.024
18 Persson T, Lenoir L, Vegerfors B (2013). Which macroarthropods prefer tree stumps over soil and litter substrates.Forest Ecology and Management, 290, 30-39.
doi: 10.1016/j.foreco.2012.09.009
19 Saksa T (2013). Regeneration after stump harvesting in southern Finland.Forest Ecology and Management, 290, 79-82.
20 Song ZW, Tang JW (2008). Coarse woody debris mass and its nutrients stock in tropical seasonal rain forest in Xishuangbanna, Southwest China.Chinese Journal of Ecology, 27, 2033-2041. (in Chinese with English abstract)[宋泽伟, 唐建维 (2008). 西双版纳热带季节雨林的粗死木质残体及其养分元素. 生态学杂志, 27, 2033-2041.]
21 Stohlgren TJ (1988). Litter dynamics in two Sierran mixed conifer forests. II. Nutrient release in decomposing leaf litter.Canadian Journal of Forest Research, 9, 1136-1144.
doi: 10.1139/x88-175
22 Stromgren M, Egnell G, Olsson BA (2013). Carbon stocks in four forest stands in Sweden 25 years after harvesting of slash and stumps.Forest Ecology and Management, 290, 59-66.
doi: 10.1016/j.foreco.2012.06.052
23 Tan B, Wu FZ, Yang WQ, Zhang J, Xu ZF, Liu Y, Gou XL (2013). Population structure of soil arthropod in different age Pinus massoniana plantations.Chinese Journal of Applied Ecology, 24, 1118-1124. (in Chinese with English abstract)[谭波, 吴福忠, 杨万勤, 张健, 徐振锋, 刘洋, 苟小林 (2013). 不同林龄马尾松人工林土壤节肢动物群落结构. 应用生态学报, 24, 1118-1124.]
24 Tang XL, Zhou GL, Zhou X, Wen DZ, Zhang QM, Yin GC (2003). Coarse woody debris in a monsoon evergreen broad-leaved forests of Dinghushan Nature Reserve.Acta Phytoecologica Sinica, 27, 484-489. (in Chinese with English abstract)[唐旭利, 周国逸, 周霞, 温达志, 张倩媚, 尹光彩 (2003). 鼎湖山季风常绿阔叶林粗死木质残体的研究. 植物生态学报, 27, 484-489.]
25 Tian DL, Xiang WH, Yan WD (2004). Comparison of biomass dynamic and nutrient cycling between Pinus massoniana plantation and Pinus elliottii plantation.Acta Ecologica Sinica, 24, 2207-2210. (in Chinese with English abstract)[田大伦, 项文化, 闫文德 (2004). 马尾松与湿地松人工林生物量动态及养分循环特征. 生态学报, 24, 2207-2210.]
26 Wang W, Zhang XY, Tao N, Ao D, Zeng WJ, Qian YQ, Zeng H (2014). Effects of litter types, microsite and root diameters on litter decomposition in Pinus sylvestris plantations of northern China.Plant and Soil, 374, 677-688.
doi: 10.1007/s11104-013-1902-y
27 Wen LH, Liang HW, Wen YG, Liang JS, Huang M (2010). Preliminary study on storage of coarse woody debris in evergreen broad-leaved forests of Damingshan Mountain Nature Reserve.Guangxi Forestry Science, 39, 197-200. (in Chinese with English abstract)[温琳华, 梁宏温, 温远光, 梁家善, 黄棉 (2010). 大明山常绿阔叶林粗死木质残体贮量的初步研究. 广西林业科学, 39, 197-200.]
doi: 10.3969/j.issn.1006-1126.2010.04.006
28 Xiang WH, Tian DL (2002). Nutrient cycling in Pinus massoniana stands of different age classes.Acta Phytoecologica Sinica, 26, 89-95. (in Chinese with English abstract)[项文化, 田大伦 (2002). 不同年龄阶段马尾松人工林养分循环的研究. 植物生态学报, 26, 89-95.]
29 Xiao S, Wu FZ, Yang WQ, Chang CH, Li J, Wang B, Cao Y (2014). Understory biomass and its characteristics as affected by forest gap in the alpine forest ecosystem in West Sichuan.Ecology and Environmental Sciences, 23, 1515-1519. (in Chinese with English abstract)[肖洒, 吴福忠, 杨万勤, 常晨晖, 李俊, 王滨, 曹艺 (2014). 川西高山森林生态系统林下生物量及其随林窗的变化特征. 生态环境学报, 23, 1515-1519.]
doi: 10.3969/j.issn.1674-5906.2014.09.018
30 Yan ER, Wang XH, Huang JJ (2005). Concept and classification of coarse woody debris in forest ecosystems.Acta Ecologica Sinica, 25, 158-167. (in Chinese with English abstract)[阎恩荣, 王希华, 黄建军 (2005). 森林粗死木质残体的概念及其分类. 生态学报, 25, 158-167.]
31 Yang FF, Li YL, Liu XZ (2009). Decomposition of coarse woody debris in Schima superba of Dinghushan.Journal of Mountain Science, 4, 442-448. (in Chinese with English abstract)[杨方方, 李跃林, 刘兴诏 (2009). 鼎湖山木荷(Schima superba)粗死木质残体的分解研究. 山地学报, 4, 442-448.]
32 Yang HX, Wang SL, Fan B, Zhang WD, Wei CE (2010). Dynamics of nutrients in an age sequence of Pinus massoniana plantation.Chinese Journal of Applied Ecology, 21, 1907-1914. (in Chinese with English abstract)[杨会侠, 汪思龙, 范冰, 张伟东, 韦翠娥 (2010). 马尾松人工林发育过程中的养分动态. 应用生态学报, 21, 1907-1914.]
33 Yang LY, Dai LM, Zhang YJ (2002). Storage and decomposition of fallen wood in dark coniferous forest on the north slope of Changbai Mountain.Chinese Journal of Applied Ecology, 13, 1069-1071. (in Chinese with English abstract)[杨丽韫, 代力民, 张扬建 (2002). 长白山北坡暗针叶林倒木贮量和分解的研究. 应用生态学报, 13, 1069-1071.]
doi: 10.3321/j.issn:1000-0933.2002.02.007
34 Yang YS, Lin P, Guo JF, Lin RY, Chen GS, He ZM, Xie JS (2003). Litter production, nutrient return and leaf-litter decomposition in natural and monoculture plantation forests of Castanopsis kawakamii in subtropical China.Acta Ecologica Sinica, 23, 1278-1289. (in Chinese with English abstract)[杨玉盛, 林鹏, 郭剑芬, 林瑞余, 陈光水, 何宗明, 谢锦升 (2003). 格氏栲天然林与人工林凋落物数量, 养分归还及凋落叶分解. 生态学报, 23, 1278-1289.]
35 Yuan J, Cai J, Hou L, Zhang SX (2012). Storage and decomposition of fallen wood in a Pinus tabulaeformis secondary forest at Huoditang forest region in the Qinling Mountain.Scientia Silvae Sinicae, 48(6), 141-146. (in Chinese with English abstract)[袁杰, 蔡靖, 侯琳, 张硕新 (2012). 秦岭火地塘天然次生油松林倒木储量与分解. 林业科学, 48(6), 141-146.]
doi: 10.11707/j.1001-7488.20120621
36 Zhang KR, Liu YD, Zhu XW, Zhang QF, Tan SD (2011). Community types and species diversity of Pinus massoniana forests of Yuelu Mountain, Changsha.Scientia Silvae Sinicae, 47(4), 86-94. (in Chinese with English abstract)[张克荣, 刘应迪, 朱晓文, 张全发, 谭淑端 (2011). 长沙岳麓山马尾松林的群落类型划分及物种多样性分析. 林业科学, 47(4), 86-94.]
doi: 10.11707/j.1001-7488.20110414
37 Zhang XY, Guan DS, Zhang HD (2009). Characteristics of storage and decomposition of coarse woody debris (CWD) under three forests in Guangzhou.Acta Ecologica Sinica, 10, 5227-5236. (in Chinese with English abstract)[张修玉, 管东生, 张海东 (2009). 广州三种森林粗死木质残体(CWD)的储量与分解特征. 生态学报, 10, 5227-5236.]
[1] TANG Li-Tao, LIU Dan, LUO Xue-Ping, HU Lei, WANG Chang-Ting. Forest soil phosphorus stocks and distribution patterns in Qinghai, China [J]. Chin J Plant Ecol, 2019, 43(12): 1091-1103.
[2] ZHOU Xu-Li, CAI Qiong, XIONG Xin-Yu, FANGWen-Jing, ZHU Jian-Xiao, ZHU Jiang-Ling, FANG Jing-Yun, JI Cheng-Jun. Ecosystem carbon stock and within-system distribution in successional Fagus lucida forests in Mt. Yueliang, Guizhou, China [J]. Chin J Plan Ecolo, 2018, 42(7): 703-712.
[3] JIN Yu-Xi, LIU Fang, ZHANG Jun, HAN Meng-Qi, WANG Zhong-Wu, QU Zhi-Qiang, HAN Guo-Dong. Net ecosystem carbon exchange characteristics in Stipa breviflora desert steppe with different stocking rates [J]. Chin J Plan Ecolo, 2018, 42(3): 361-371.
[4] Shuhua Guo, Yongjiang Sun, Yanjie Niu, Ning Han, Heng Zhai, Yuanpeng Du. Effect of Alkaline Salt Stress on Photosystem Activity of Grape F1 Generation Hybrids [J]. Chin Bull Bot, 2018, 53(2): 196-202.
[5] Shuhua Guo, Heng Zhai, Ning Han, Yuanpeng Du. Evaluation on Alkaline Salt Tolerance of Grape F1 Generation Hybrids [J]. Chin Bull Bot, 2018, 53(1): 51-58.
[6] Fu Qingqing, Sun Lulong, Zhai Heng, Du Yuanpeng. Salt Tolerant Evaluation of F1-generation Hybrids in Grape [J]. Chin Bull Bot, 2017, 52(6): 733-742.
[7] Yu-He JI, Ke GUO, Jian NI, Xiao-Niu XU, Zhi-Gao WANG, Shu-Dong WANG. Current forest carbon stocks and carbon sequestration potential in Anhui Province, China [J]. Chin J Plan Ecolo, 2016, 40(4): 395-404.
[8] Fei Xiong,Hongyan Liu,Xinbin Duan,Shaoping Liu,Daqing Chen. Estimating population abundance and utilization of Rhinogobio ventralis, an endemic fish species in the upper Yangtze River [J]. Biodiv Sci, 2016, 24(3): 304-312.
[9] Bei-Bei ZHANG, Fang LIU, Jin-Zhi DING, Kai FANG, Gui-Biao YANG, Li LIU, Yong-Liang CHEN, Fei LI, Yuan-He YANG. Soil inorganic carbon stock in alpine grasslands on the Qinghai-Xizang Plateau: An updated evaluation using deep cores [J]. Chin J Plan Ecolo, 2016, 40(2): 93-101.
[10] Xingguang Dong, Yufen Cao, Kun Wang, Luming Tian, Ying Zhang, Dan Qi. Comparison of the Characters and Distribution of Vessel Elements in Xylem Among Three Main Pear Rootstocks in China [J]. Chin Bull Bot, 2015, 50(2): 227-233.
[11] PING Xiao-Yan, WANG Tie-Mei, and LU Xin-Shi. Review of advances in carbon sequestration potential of agroforestry [J]. Chin J Plan Ecolo, 2013, 37(1): 80-92.
[12] Rui Xue, Shuxia Zheng, Yongfei Bai. Impacts of grazing intensity and management regimes on aboveground primary productivity and compensatory growth of grassland ecosystems in Inner Mongolia [J]. Biodiv Sci, 2010, 18(3): 300-311.
[13] JIANG Ye, BI Xiao-Li, HUANG Jian-Hui, BAI Yong-Fei. Patterns and drivers of vegetation degradation in Xilin River Basin, Inner Mongolia, China [J]. Chin J Plan Ecolo, 2010, 34(10): 1132-1141.
[14] Qinghua Luo, Ying Liu, Liyun Zhang. Effectiveness of releasing artificially-bred Chinese giant salamander (Andrias davidianus) into the wild in Zhangjiajie, Hunan [J]. Biodiv Sci, 2009, 17(3): 310-317.
[15] XIAN Jun-Ren, ZHANG Yuan-Bin, WANG Kai-Yun, HU Ting-Xing, YANG Hua. CARBON STOCK AND ITS ALLOCATION IN FIVE FOREST ECOSYSTEMS IN THE SUBALPINE CONIFEROUS FOREST ZONE OF WESTERN SICHUAN PROVINCE, SOUTHWEST CHINA [J]. Chin J Plan Ecolo, 2009, 33(2): 283-290.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Liu Ying-di. The Role of Ultrastructure in Algal Systematics[J]. Chin Bull Bot, 1990, 7(04): 18 -23 .
[2] Fan Guo-qiang and Jiang Jian-ping. Study on the Methods of Extraction of Protein from Paulownia Leaves[J]. Chin Bull Bot, 1997, 14(03): 61 -64 .
[3] Tong Zhe and Lian Han-ping. Cryptochrome[J]. Chin Bull Bot, 1985, 3(02): 6 -9 .
[4] Huang Ju-fu and Luo Ai-ling. The Advances of the Studies on Extraction of FeMoco from Nitrogenase Molybdenum-Iron Protein[J]. Chin Bull Bot, 1991, 8(03): 19 -25 .
[5] Hsu Rong-jiang Gu Wen-mao Gao Jing-cheng and Peng Chang-ming. Inhibitory Effect of High CO2 and Low O2 Tension on Ethylene Evolution in Apples[J]. Chin Bull Bot, 1984, 2(01): 29 -31 .
[6] Zou Shu-hua;Zhao Shu-wen and Xu Bao. Electropheresis Profiles of Esterase Isozymes in Different Types of Soybean[J]. Chin Bull Bot, 1985, 3(06): 18 -20 .
[7] . [J]. Chin Bull Bot, 1999, 16(增刊): 49 -52 .
[8] Chi Tingfei;Shi Xiaofang;Huang Ruzhu;Zheng Xiangyun;Yuan Xiangning and Wu Dangjian. A Preliminary Study on the Chemical Constituents of the Leave Oil in prunus zippeliana Mig[J]. Chin Bull Bot, 1986, 4(12): 44 -45 .
[9] Houqing Zeng, Yaxian Zhang, Shang Wang, Xiajun Zhang, Huizhong Wang, Liqun Du. Calcium/calmodulin-mediated Signal Transduction System in Plants[J]. Chin Bull Bot, 2016, 51(5): 705 -723 .
[10] Zhu Zhi-qing. Abbreviations for some Commonly Used Terms in Ultrastructures of Plant Cells[J]. Chin Bull Bot, 1984, 2(04): 57 -58 .