Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (7): 795-804.doi: 10.17521/cjpe.2017.0009

• Reviews • Previous Articles     Next Articles

Advancement in studies of tree growth and ecophysiology incorporating micro-sampling approach

Xia-Li GUO1,2,3, Bi-Yun YU1,2,3, Han-Xue LIANG1,3, Jian-Guo HUANG1,3,*()   

  1. 1Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Chinese Academy of Sciences, Guangzhou 510650, China

    2University of Chinese Academy of Sciences, Beijing 100049, China
    3Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
  • Received:2017-01-17 Accepted:2017-04-17 Online:2017-08-21 Published:2017-07-10
  • Contact: Jian-Guo HUANG
  • About author:

    KANG Jing-yao(1991-), E-mail:


The recently developed micro-sampling approach has been widely used to extract micro-tree-cores at weekly intervals to monitor the process of stem cambial activity and xylem formation. Compared with the traditional dendrochronology, the micro-sampling approach enables us to better understand the inherent physiological processes in tree growth and their relationships with the environment at a more precise level. This review article aims to: 1) summarize the progresses in the micro-sampling approach-based studies published over recent years and its potential applications, and 2) elucidate the relationships between primary growth and secondary growth and the response mechanisms of radial growth of trees to global change (global warming, drought, and carbon and nitrogen fertilization effects) based on information from literature. It is anticipated that this review will assist with predicting productivity and carbon sink potential of forests, and help policy-makers with sustainable forest management decisions.

Key words: micro-sampling approach, radial growth, xylem, cambium, climate change

Fig. 1


Fig. 2

A section of stem surface after sampling with Trephor."

Fig. 3

Cambial and xylem cells at different development phases in Pinus massoniana in Dinghushan National Nature Reserve. Cz, cambial zone; Ec, enlarging cells; WTc, wall Thickening cells; Mc, mature cells."

[1] Antonova GF, Stasova VV (1993). Effects of environmental factors on wood formation in Scots pine stems.Trees, 7, 214-219.
[2] Antonucci S, Rossi S, Deslauriers A, Lombardi F, Marchetti M, Tognetti R (2015). Synchronisms and correlations of spring phenology between apical and lateral meristems in two boreal conifers.Tree Physiology, 35, 1086-1094.
[3] Bigler C, Gričar J, Bugmann H, Čufar K (2004). Growth patterns as indicators of impending tree death in silver fir.Forest Ecology and Management, 199, 183-190.
[4] Campbell G, Rabelo GR, Cunha MD (2016). Ecological significance of wood anatomy of Alseis pickelii Pilg. Schmale (Rubiaceae) in a tropical dry forest.Acta Botanica Brasilica, 30, 124-130.
[5] Chaves MM, Flexas J, Pinheiro C (2009). Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell.Annals of Botany, 103, 551-560.
[6] Cuny HE, Rathgeber CB, Frank D, Fonti P, Fournier M (2014). Kinetics of tracheid development explain conifer tree-ring structure.New Phytologist, 203, 1231-1241.
[7] Cuny HE, Rathgeber CBK, Frank D, Fonti P, Mäkinen H, Prislan P, Rossi S, del Castillo EM, Campelo F, Vavrčík H, Gričar J, Gryc V, Luis MD, Vieira J, Čufar K, Kirdyanov AV, Oberhuber W, Treml V, Huang JG, Li XX, Swidrak I, Deslauriers A, Liang EY, Nöjd P, Gruber A, Nabais C, Morin H, Krause C, King G, Fournier M (2015). Woody biomass production lags stem-girth increase by over one month in coniferous forests.Nature Plants, 1, 15160. doi: 10.1038/nplants.2015.160.
[8] Cuny HE, Rathgeber CB, Lebourgeois F, Fortin M, Fournier M (2012). Life strategies in intra-annual dynamics of wood formation: Example of three conifer species in a temperate forest in north-east France.Tree Physiology, 32, 612-625.
[9] D’Orangeville L, Houle D, Côté B, Duchesne L, Morin H (2013). Increased soil temperature and atmospheric N deposition have no effect on the N status and growth of a mature balsam fir forest.Biogeosciences, 10, 4627-4639.
[10] Dao MC, Rossi S, Walsh D, Morin H, Houle D (2015). A 6-year-long manipulation with soil warming and canopy nitrogen additions does not affect xylem phenology and cell production of mature black spruce.Frontiers in Plant Science, 6, 877. doi: 10.3389/fpls.2015.00877.
[11] Davi H, Gillmann M, Ibanez T, Cailleret M, Bontemps A, Fady B, Lefèvre F (2011). Diversity of leaf unfolding dynamics among tree species: New insights from a study along an altitudinal gradient.Agricultural and Forest Meteorology, 151, 1504-1513.
[12] del Castillo EM, Longares LA, Gričar J, Prislan P, Gil-Pelegrín E, Čufar K, de Luis M (2016). Living on the edge: Contrasted wood-formation dynamics in Fagus sylvatica and Pinus sylvestris under Mediterranean conditions.Frontiers in Plant Science, 7, 370. doi: 10.3389/fpls.2016.00370.
[13] Deslauriers A, Giovannelli A, Rossi S, Castro G, Fragnelli G, Traversi L (2009). Intra-annual cambial activity and carbon availability in stem of poplar.Tree Physiology, 29, 1223-1235.
[14] Deslauriers A, Huang JG, Balducci L, Beaulieu M, Rossi S (2016). The contribution of carbon and water in modulating wood formation in black spruce saplings.Plant Physiology, 170, 2072-2084.
[15] Deslauriers A, Morin H, Urbinati C, Carrer M (2003). Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Québec (Canada).Trees, 17, 477-484.
[16] Deslauriers A, Rossi S, Anfodillo T, Saracino A (2008). Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy.Tree Physiology, 28, 863-871.
[17] Dong MY, Jiang Y, Yang HC, Wang MC, Zhang WT, Guo YY (2012). Dynamics of stem radial growth of Picea meyeri during the growing season at the treeline of Luya Mountain, China.Chinese Journal of Plant Ecology, 36, 956-964. (in Chinese with English abstract)[董满宇, 江源, 杨浩春, 王明昌, 张文涛, 郭媛媛 (2014). 芦芽山林线白杄生长季径向生长动态. 植物生态学报, 36, 956-964.]
[18] Drew DM, Downes GM (2009). The use of precision dendrometers in research on daily stem size and wood property variation: A review.Dendrochronologia, 27, 159-172.
[19] Dufour B, Morin H (2010). Tracheid production phenology of Picea mariana and its relationship with climatic fluctuations and bud development using multivariate analysis.Tree Physiology, 30, 853-865.
[20] Eilmann B, Zweifel R, Buchmann N, Pannatier EG, Rigling A (2011). Drought alters timing, quantity, and quality of wood formation in Scots pine.Journal of Experimental Botany, 62, 2763-2771.
[21] Fonti P, Tabakova MA, Kirdyanov AV, Bryukhanova MV, von Arx G (2015). Variability of ray anatomy of Larix gmelinii along a forest productivity gradient in Siberia.Trees, 29, 1165-1175.
[22] Fukuda H (2004). Signals that control plant vascular cell differentiation.Nature Reviews Molecular Cell Biology, 5, 379-391.
[23] Gou XH, Deng Y, Chen FH, Yang MX, Fang KY, Gao LL, Yang T, Zhang F (2010). Tree ring based streamflow reconstruction for the Upper Yellow River over the past 1234 years.Chinese Science Bulletin, 55, 4179-4186.
[24] Granier A, Bréda N, Longdoz B, Gross P, Ngao J (2008). Ten years of fluxes and stand growth in a young beech forest at Hesse, North-eastern France.Annals of Forest Science, 64, 704. doi: 10.1051/forest:2008052.
[25] Groover AT (2005). What genes make a tree a tree?Trends in Plant Science, 10, 210-214.
[26] Gruber A, Strobl S, Veit B, Oberhuber W (2010). Impact of drought on the temporal dynamics of wood formation in Pinus sylvestris.Tree Physiology, 30, 490-501.
[27] He MH, Yang B (2014). A research overview in detecting tree radial growth using the microcoring method.Journal of Desert Research, 34, 1133-1142. (in Chinese with English abstract)[贺敏慧, 杨保 (2014). 使用微树芯方法监测树木径向生长变化的研究综述. 中国沙漠, 34, 1133-1142.]
[28] Huang JG, Bergeron Y, Denneler B, Berninger F, Tardif J (2007). Response of forest trees to increased atmospheric CO2.Critical Reviews in Plant Sciences, 26, 265-283.
[29] Huang JG, Bergeron Y, Zhai LH, Denneler B (2011). Variation in intra-annual radial growth (xylem formation) of Picea mariana (Pinaceae) along a latitudinal gradient in western Québec, Canada.American Journal of Botany, 98, 792-800.
[30] Huang JG, Deslauriers A, Rossi S (2014). Xylem formation can be modeled statistically as a function of primary growth and cambium activity.New Phytologist, 203, 831-841.
[31] IPCC (Intergovernmental Panel on Climate Change) (2013). Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge, UK.
[32] Jyske TM, Suuronen JP, Pranovich AV, Laakso T, Watanabe U, Kuroda K, Abe H (2015). Seasonal variation in formation, structure, and chemical properties of phloem in Picea abies as studied by novel microtechniques.Planta, 242, 613-629.
[33] Kostiainen K, Kaakinen S, Saranpää P, Sigurdsson BD, Linder S, Vapaavuori E (2004). Effect of elevated [CO2] on stem wood properties of mature Norway spruce grown at different soil nutrient availability.Global Change Biology, 10, 1526-1538.
[34] Krause C, Rossi S, Thibeault-Martel M, Plourde PY (2010). Relationships of climate and cell features in stems and roots of black spruce and balsam fir.Annals of Forest Science, 67, 402. doi: 10.1051/forest/2009122.
[35] Larson PR (1969). Wood Formation and the Concept of Wood Quality. . Cited: 2017-01-17.
[36] Li XX, Camarero JJ, Case B, Liang EY, Rossi S (2016). The onset of xylogenesis is not related to distance from the crown in Smith fir trees from the southeastern Tibetan Plateau.Canadian Journal of Forest Research, 46, 885-889.
[37] Liang EY, Wang YF, Piao SL, Lu XM, Camarero JJ, Zhu HF, Zhu LP, Ellison AM, Ciais P, Peñuelas J (2016). Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau.Proceedings of the National Academy of Sciences of the United States of America, 113, 4380-4385.
[38] Lugo JB, Deslauriers A, Rossi S (2012). Duration of xylogenesis in black spruce lengthened between 1950 and 2010.Annals of Botany, 110, 1099-1108.
[39] Lupi C, Morin H, Deslauriers A, Rossi S, Houle D (2012). Increasing nitrogen availability and soil temperature: Effects on xylem phenology and anatomy of mature black spruce.Canadian Journal of Forest Research, 42, 1277-1288.
[40] Lupi C, Rossi S, Vieira J, Morin H, Deslauriers A (2014). Assessment of xylem phenology: A first attempt to verify its accuracy and precision. Tree Physiology, 34, 87-93.
[41] Mäkinen H, Nöjd P, Saranpää P (2003). Seasonal changes in stem radius and production of new tracheids in Norway spruce.Tree Physiology, 23, 959-968.
[42] Mäkinen H, Seo JW, Nöjd P, Schmitt U, Jalkanen R (2008). Seasonal dynamics of wood formation: A comparison between pinning, microcoring and dendrometer measurements.European Journal of Forest Research, 127, 235-245.
[43] Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni F (2008). Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia.Proceedings of the National Academy of Sciences of the United States of America, 105, 13252-13257.
[44] Michelot A, Simard S, Rathgeber C, Dufrêne E, Damesin C (2012). Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics.Tree Physiology, 32, 1033-1045.
[45] Morel H, Mangenet T, Beauchêne J, Ruelle J, Nicolini E, Heuret P, Thibaut B (2015). Seasonal variations in phenological traits: Leaf shedding and cambial activity in Parkia nitida Miq. and Parkia velutina Benoist (Fabaceae) in tropical rainforest.Trees, 29, 973-984.
[46] Oribe Y, Funada R, Kubo T (2003). Relationships between cambial activity, cell differentiation and the localization of starch in storage tissues around the cambium in locally heated stems of Abies sachalinensis (Schmidt) Masters.Trees, 17, 185-192.
[47] Pasho E, Camarero JJ, Vicente-Serrano SM (2012). Climatic impacts and drought control of radial growth and seasonal wood formation in Pinus halepensis.Trees, 26, 1875-1886.
[48] Ren P, Rossi S, Gricar J, Liang EY, Cufar K (2015). Is precipitation a trigger for the onset of xylogenesis in Juniperus przewalskii on the north-eastern Tibetan Plateau?Annals of Botany, 115, 629-639.
[49] Roelofs JGM, Kempers AJ, Houdijk AF, Jansen J (1985). The effect of air-borne ammonium sulphate on Pinus nigra var. maritima in the Netherlands.Plant and Soil, 84, 45-56.
[50] Rossi S, Anfodillo T, Čufar K, Cuny HE, Deslauriers A, Fonti P, Frank D, Gričar J, Gruber A, Huang JG, Jyske T, Kašpar J, King G, Krause C, Liang EY, Mäkinen H, Morin H, Nöjd P, Oberhuber W, Prislan P, Rathgeber CBK, Saracino A, Swidrak I, Treml V (2016). Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere.Global Change Biology, 22, 3804-3813.
[51] Rossi S, Anfodillo T, Menardi R (2006). Trephor: A new tool for sampling microcores from tree stems.Iawa Journal, 27, 89-97.
[52] Rossi S, Deslauriers A, Anfodillo T, Carraro V (2007). Evidence of threshold temperatures for xylogenesis in conifers at high altitudes.Oecologia, 152, 1-12.
[53] Rossi S, Isla E, Martínez-García A, Moraleda N, Gili JM, Rosell-Melé A, Arntz WE, Gerdes D (2013). Transfer of seston lipids during a flagellate bloom from the surface to the benthic community in the Weddell Sea.Scientia Marina, 77, 397-407.
[54] Rossi S, Morin H, Deslauriers A, Plourde PY (2011). Predicting xylem phenology in black spruce under climate warming.Global Change Biology, 17, 614-625.
[55] Rossi S, Rathgeber CB, Deslauriers A (2009). Comparing needle and shoot phenology with xylem development on three conifer species in Italy.Annals of Forest Science, 66, 1-8.
[56] Seo JW, Eckstein D, Jalkanen R, Schmitt U (2011). Climatic control of intra- and inter-annual wood-formation dynamics of Scots pine in northern Finland.Environmental and Experimental Botany, 72, 422-431.
[57] Shao XM, Xu Y, Yin ZY, Liang EY, Zhu HF, Wang SZ (2010). Climatic implications of a 3585-year tree-ring width chronology from the northeastern Qinghai-Tibetan Plateau.Quaternary Science Reviews, 29, 2111-2122.
[58] Speer JH (2010). Fundamentals of Tree-Ring Research. University of Arizona Press, Tucson, USA.
[59] Tegel W, Seim A, Hakelberg D, Hoffmann S, Panev M, Westphal T, Büntgen U (2014). A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress.European Journal of Forest Research, 133, 61-71.
[60] Thibeault-Martel M, Krause C, Morin H, Rossi S (2008). Cambial activity and intra-annual xylem formation in roots and stems of Abies balsamea and Picea mariana.Annals of Botany, 102, 667-674.
[61] van der Werf GW, Sass-Klaassen UG, Mohren GMJ (2007). The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia, 25, 103-112.
[62] Vieira J, Campelo F, Rossi S, Carvalho A, Freitas H, Nabais C (2015). Adjustment capacity of maritime pine cambial activity in drought-prone environments.PLOS ONE, 10, e0126223. doi: 10.1371/journal.pone.0126223.
[63] Vitousek PM, Howarth RW (1991). Nitrogen limitation on land and in the sea: How can it occur?Biogeochemistry, 13, 87-115.
[64] Wang SZ, Zhao XH (2013). Re-evaluating the Silk Road’s Qinghai Route using dendrochronology.Dendrochronologia, 31, 34-40.
[65] Wang XC, Song LP, Zhang YD (2011). Climate-tree growth relationships of Pinus sylvestris var. mongolica in the northern Daxing’an Mountains, China. Chinese Journal of Plant Ecology, 35, 294-302. (in Chinese with English abstract)[王晓春, 宋来萍, 张远东 (2011). 大兴安岭北部樟子松树木生长与气候因子的关系. 植物生态学报, 35, 294-302.]
[66] Wolter KE (1968). Notes: A new method for marking xylem growth.Forest Science, 14, 102-104.
[67] Wu XD (1990). Tree Ring and Climate Change. China Meteorological Press, Beijing. (in Chinese)[吴祥定 (1990). 树木年轮与气候变化. 气象出版社, 北京.]
[68] Xiao SC, Xiao HL, Peng XM, Tian QY (2014). Intra-annual stem diameter growth of Tamarix ramosissima and association with hydroclimatic factors in the lower reaches of China’s Heihe River.Journal of Arid Land, 6, 498-510.
[69] Yang B, Qin C, Wang JL, He MH, Melvin TM, Osborn TJ, Briffa KR (2014). A 3,500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau.Proceedings of the National Academy of Sciences of the United States of America, 111, 2903-2908.
[70] Yu J, Xu QQ, Liu WH, Luo CW, Yang JL, Li JQ, Liu QJ (2016). Response of radial growth to climate change for Larix olgensis along an altitudinal gradient on the eastern slope of Changbai Mountain, Northeast China. Chinese Journal of Plant Ecology, 40, 23-35. (in Chinese with English abstract)[于健, 徐倩倩, 刘文慧, 罗春旺, 杨君珑, 李俊清, 刘琪璟 (2016). 长白山东坡不同海拔长白落叶松径向生长对气候变化的响应. 植物生态学报, 40, 23-35.]
[71] Zalamea PC, Sarmiento C, Stevenson PR, Rodriguez M, Nicolini E, Heuret P (2013). Effect of rainfall seasonality on the growth of Cecropia sciadophylla: Intra-annual variation in leaf production and node length.Journal of Tropical Ecology, 29, 361-365.
[72] Zhai LH, Bergeron Y, Huang JG, Berninger F (2012). Variation in intra-annual wood formation, and foliage and shoot development of three major Canadian boreal tree species.American Journal of Botany, 99, 827-837.
[73] Zhang JZ, Gou XH, Zhao ZQ, Liu WH, Zhang F, Cao ZY, Zhou FF (2014). Improved method of obtaining micro- core paraffin sections in dendroecological research.Chinese Journal of Plant Ecology, 37, 972-977. (in Chinese with English abstract)[张军周, 勾晓华, 赵志千, 刘文火, 张芬, 曹宗英, 周非飞 (2014). 树轮生态学研究中微树芯石蜡切片制作的方法探讨. 植物生态学报, 37, 972-977.]
[74] Zhang S, Huang JG, Rossi S, Ma Q, Yu B, Zhai L, Luo D, Guo X, Fu S, Zhang W (2017). Intra-annual dynamics of xylem growth in Pinus massoniana submitted to an experimental nitrogen addition in Central China. Tree Physiology (in Press) doi: 10.1093/treephys/tpx079.
[75] Zhu LJ, Li ZS, Wang XC (2017). Anatomical characteristics of xylem in tree rings and its relationship with environments.Chinese Journal of Plant Ecology, 41, 238-251. (in Chinese with English abstract)[朱良军, 李宗善, 王晓春 (2017). 树轮木质部解剖特征及其与环境变化的关系. 植物生态学报, 41, 238-251.]
[76] Zweifel R, Eugster W, Etzold S, Dobbertin M, Buchmann N, Häsler R (2010). Link between continuous stem radius changes and net ecosystem productivity of a subalpine Norway spruce forest in the Swiss Alps.New Phytologist, 187, 819-830.
[77] Zweifel R, Zimmermann L, Zeugin F, Newbery DM (2006). Intra-annual radial growth and water relations of trees: Implications towards a growth mechanism.Journal of Experimental Botany, 57, 1445-1459.
[1] HUANG Mei, WANG Na, WANG Zhao-Sheng, GONG He. Modeling phosphorus effects on the carbon cycle in terrestrial ecosystems [J]. Chin J Plant Ecol, 2019, 43(6): 471-479.
[2] Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. Influence of future climate change in suitable habitats of tea in different countries [J]. Biodiv Sci, 2019, 27(6): 595-606.
[3] JIAO Liang, WANG Ling-Ling, LI Li, CHEN Xiao-Xia, YAN Xiang-Xiang. Divergent responses of radial growth of Larix sibirica to climate change in Altay Mountains of Xinjiang, China [J]. Chin J Plant Ecol, 2019, 43(4): 320-330.
[4] LIU Xiao-Tong, YUAN Quan, NI Jian. Research advances in modelling plant species distribution in China [J]. Chin J Plant Ecol, 2019, 43(4): 273-283.
[5] ZHANG Fu-Guang, ZENG Biao, YANG Tai-Bao. Spatiotemporal distribution changes in alpine desert belt in Qilian Mountains under climate changes in past 30 years [J]. Chin J Plant Ecol, 2019, 43(4): 305-319.
[6] ZHANG Xi-Jin, SONG Kun, PU Fa-Guang, GAO Zhi-Wen, NI Tian-Pin, CHU Xing-Hang, WANG Ze-Ying, SHANG Kan-Kan, DA Liang-Jun. Study on compositions of parenchyma in twigs of woody saplings in Dabie Mountains, Anhui, China [J]. Chin J Plant Ecol, 2019, 43(3): 238-244.
[7] WEN Xiao-Shi, CHEN Bin-Hang, ZHANG Shu-Bin, XU Kai, YE Xin-Yu, NI Wei-Jie, WANG Xiang-Ping. Relationships of radial growth with climate change in larch plantations of different stand ages and species [J]. Chin J Plant Ecol, 2019, 43(1): 27-36.
[8] Anrong Liu,Teng Yang,Wei Xu,Zijian Shangguan,Jinzhou Wang,Huiying Liu,Yu Shi,Haiyan Chu,Jin-Sheng He. Status, issues and prospects of belowground biodiversity on the Tibetan alpine grassland [J]. Biodiv Sci, 2018, 26(9): 972-987.
[9] Xiuwei Liu, Douglas Chesters, Chunsheng Wu, Qingsong Zhou, Chaodong Zhu. A horizon scan of the impacts of environmental change on wild bees in China [J]. Biodiv Sci, 2018, 26(7): 760-765.
[10] ZHOU Tong,CAO Ru-Yin,WANG Shao-Peng,CHEN Jin,TANG Yan-Hong. Responses of green-up dates of grasslands in China and woody plants in Europe to air temperature and precipitation: Empirical evidences based on survival analysis [J]. Chin J Plan Ecolo, 2018, 42(5): 526-538.
[11] Yuan-Feng SUN, Hong-Wei WAN, Yu-Jin ZHAO, Shi-Ping CHEN, Yong-Fei BAI. Spatial patterns and drivers of root turnover in grassland ecosystems in China [J]. Chin J Plan Ecolo, 2018, 42(3): 337-348.
[12] WU Qi-Qian, WANG Chuan-Kuan. Dynamics in foliar litter decomposition for Pinus koraiensis and Quercus mongolica in a snow-depth manipulation experiment [J]. Chin J Plan Ecolo, 2018, 42(2): 153-163.
[13] Xiaoyu Wu,Shikui Dong,Shiliang Liu,Quanru Liu,Yuhui Han,Xiaolei Zhang,Xukun Su,Haidi Zhao,Jing Feng. Identifying priority areas for grassland endangered plant species in the Sanjiangyuan Nature Reserve based on the MaxEnt model [J]. Biodiv Sci, 2018, 26(2): 138-148.
[14] Huijie Qiao,Xiaoyi Wang,Wei Wang,Zhenhua Luo,Ke Tang,Yan Huang,Shengnan Yang,Weiwei Cao,Xinquan Zhao,Jianping Jiang,Junhua Hu. From nature reserve to national park system pilot: Changes of environmental coverage in the Three-River-Source National Park and implications for amphibian and reptile conservation [J]. Biodiv Sci, 2018, 26(2): 202-209.
[15] Lisha Lü, Hongyu Cai, Yong Yang, Zhiheng Wang, Hui Zeng. Geographic patterns and environmental determinants of gymnosperm species diversity in China [J]. Biodiv Sci, 2018, 26(11): 1133-1146.
Full text



[1] . [J]. Chin Bull Bot, 1994, 11(专辑): 19 .
[2] Xiao Xiao and Cheng Zhen-qi. Chloroplast 4.5 S ribosomol DNA. II Gene and Origin[J]. Chin Bull Bot, 1985, 3(06): 7 -9 .
[3] CAO Cui-LingLI Sheng-Xiu. Effect of Nitrogen Level on the Photosynthetic Rate, NR Activity and the Contents of Nucleic Acid of Wheat Leaf in the Stage of Reproduction[J]. Chin Bull Bot, 2003, 20(03): 319 -324 .
[4] SONG Li-Ying TAN Zheng GAO Feng DENG Shu-Yan. Advances in in vitro Culture of Cucurbitaceae in China[J]. Chin Bull Bot, 2004, 21(03): 360 -366 .
[5] . [J]. Chin Bull Bot, 1994, 11(专辑): 76 .
[6] LI Jun-De YANG Jian WANG Yu-Fei. Aquatic Plants in the Miocene Shanwang Flora[J]. Chin Bull Bot, 2000, 17(专辑): 261 .
[7] XU Jing-Xian WANG Yu-Fei YANG Jian PU Guang-Rong ZHANG Cui-Fen. Advances in the Research of Tertiary Flora and Climate in Yunnan[J]. Chin Bull Bot, 2000, 17(专辑): 84 -94 .
[8] Sun Zhen-xiao Xia Guang-min Chen Hui-min. Karyotype Analysis of Psathyrostachys juncea[J]. Chin Bull Bot, 1995, 12(01): 56 .
[9] . [J]. Chin Bull Bot, 1994, 11(专辑): 8 -9 .
[10] Yunpu Zheng;Jiancheng Zhao * ;Bingchang Zhang;Lin Li;Yuanming Zhang . Advances on Ecological Studies of Algae and Mosses in Biological Soil Crust[J]. Chin Bull Bot, 2009, 44(03): 371 -378 .