Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (8): 841-849.doi: 10.17521/cjpe.2018.0043

• Research Articles • Previous Articles     Next Articles

Difference in spatial distribution patterns and population structures of Rhododendron hainanense between both sides of riparian bends

CHEN Yi-Chao,ZHAO Ying,SONG Xi-Qiang(),REN Ming-Xun()   

  1. Research Center for Terrestrial Biodiversity of the South China Sea, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
  • Received:2018-02-20 Online:2018-12-07 Published:2018-08-20
  • Contact: Xi-Qiang SONG,Ming-Xun REN E-mail:strong13637616542@vip.126.com;renmx@hainu.edu.cn
  • Supported by:
    Supported by the Hainan Provincial Innovative Research Team Program(2018CXTD334);the Hainan Provincial Natural Science Foundation(20163060);the National Agro-scientific Research Programs in Public Interest(201303117)

Abstract:

Aims Riparian zone is the intersection of stream and terrestrial ecosystem, which has rich biological diversity. Stream is usually curving because of water flush and topography effect. The flow velocity, sediment properties and plant propagule aggregation are different between inner and outer sides of the bend, which leads to differences in plant population structures and spatial distribution patterns between riparian bends’ both bank. Our aim was to reveal the differences in spatial distribution patterns and population dynamics of Rhododendron hainanense, a shrub endemic to Hainan and Guangxi of China, on each side of a stream.
Methods Three nature reserves on Hainan Island were chosen as studied sites. In each site, two riparian bends were set as transects. The spatial distribution patterns and population dynamics of R. hainanense were compared for the convex versus concave banks by a method of “variance/mean method”.
Important findings (1) Rhododendron hainanense populations were at increasing stage on convex banks, but at declining stage on concave banks. (2) Rhododendron hainanense populations were at growing stage on both upstream and downstream of convex banks, but the ages of the individuals on concave banks were not continuous. (3) The number of individuals of each age-class declined away from the top of bend or river bank. (4) At scale of 2 m × 2 m, the individuals showed an aggregation distribution on convex banks and their downstream, but a random distribution on the upstream of convex banks, and on concave banks and their upstream and downstream. The fast flow and steep slopes may be the main reason for the fewer individuals and declining population on concave banks than on convex banks.

Key words: riparian, Rhododendron hainanense, spatial distribution pattern, population structure

Fig. 1

Transect setting method on stream bends."

Table 1

Characteristics of experimental transects along the riparian bends"

研究地点
Study site
样带
Transect
海拔
Altitude (m)
样带长度
Transect length (m)
弯曲系数
Transect sinuosity
弯顶
Top of bend
河宽
Stream width (m)
郁闭度
Canopy density (%)
黎母山
Mt. Limu
L1 577 50 1.04 20 6.5 90
L2 573 16 1.07 8 10.5 85
吊罗山
Mt. Diaoluo
D1 258 24 1.09 12 6.5 78
D2 595 10 1.20 5 3.8 85
尖峰岭
Mt. Jianfeng
J1 690 20 1.43 10 8 75
J2 665 40 1.21 15 23 75

Table 2

Distribution patterns of Rhododendron hainanense populations on both sides of stream bends at different sampling scales"

样带
Transect
尺度
Scale (m)
岸型
Bank type
样本量
Sample size
扩散系数
C
t检验
t test
Cassie指数
Ca
平均拥挤度
m*
丛生指数
I
聚块性指数
m*/m
负二项指数
K
分布型
Pattern
L1 1 × 1 凹岸 Concave 31 2.362 5.275** 21.969 1.424 1.362 22.969 0.046 C
凸岸 Convex 261 4.464 39.495** 6.636 3.986 3.464 7.636 0.151 C
2 × 2 凹岸 Concave 31 0.694 -1.187 -4.943 -0.244 -0.306 -3.943 -0.202 R
凸岸 Convex 261 1.549 6.258** 1.051 1.071 0.549 2.051 0.951 C
5 × 5 凹岸 Concave 31 0.338 -2.563* -10.675 -0.600 -0.662 -9.675 -0.094 R
凸岸 Convex 261 0.394 -6.912** -1.161 -0.084 -0.606 -0.161 -0.861 R
L2 1 × 1 凹岸 Concave 57 3.735 14.473** 6.046 3.188 2.735 7.046 0.165 C
凸岸 Convex 89 3.019 13.391** 2.541 2.813 2.019 3.541 0.394 C
2 × 2 凹岸 Concave 57 1.645 3.415** 1.812 1.002 0.645 2.812 0.552 C
凸岸 Convex 89 1.982 6.512** 1.412 1.677 0.982 2.412 0.708 C
5 × 5 凹岸 Concave 57 0.803 -1.044 -0.692 0.088 -0.197 0.308 -1.445 R
凸岸 Convex 89 0.988 -0.082 -0.028 0.433 -0.012 0.972 -36.098 R
D1 1 × 1 凸岸 Convex 39 2.697 7.395** 6.264 1.967 1.697 7.264 0.160 C
2 × 2 凸岸 Convex 39 0.704 -1.291 -1.093 -0.025 -0.296 -0.093 -0.915 R
5 × 5 凸岸 Convex 39 0.307 -3.021** -5.332 -0.563 -0.693 -4.332 -0.188 R
D2 1 × 1 凹岸 Concave 6 1.238 0.376 1.984 0.358 0.238 2.984 0.504 C
凸岸 Convex 46 3.320 11.006** 2.522 3.240 2.320 3.522 0.396 C
2 × 2 凹岸 Concave 6 0.265 -1.163 -8.824 -0.652 -0.735 -7.824 -0.113 R
凸岸 Convex 46 1.050 0.237 0.078 0.689 0.050 1.078 12.811 C
5 × 5 凹岸 Concave 6 0.027 -1.539 -8.111 -0.853 -0.973 -7.111 -0.123 R
凸岸 Convex 46 0.170 -3.935** -0.902 0.090 -0.830 0.098 -1.109 R
J1 1 × 1 凸岸 Convex 72 3.880 17.158** 6.400 3.330 2.880 7.400 0.156 C
2 × 2 凸岸 Convex 72 1.768 4.575** 1.706 1.218 0.768 2.706 0.586 C
5 × 5 凸岸 Convex 72 0.678 -1.918 -0.894 0.038 -0.322 0.106 -1.118 R
J2 1 × 1 凸岸 Convex 50 2.482 7.338** 5.930 1.732 1.482 6.930 0.169 C
2 × 2 凸岸 Convex 50 0.936 -0.315 -0.320 0.135 -0.064 0.680 -3.122 R
5 × 5 凸岸 Convex 50 0.173 -4.092** -3.307 -0.577 -0.827 -2.307 -0.302 R

Table 3

Distribution patterns of Rhododendron hainanense on upstream and downstream of stream bends evaluated as the scale of 2 m × 2 m"

样带
Transect
岸型
Bank type
上游/下游
Upstream/downstream
扩散系数
C
t检验
t test
Cassie指数
Ca
平均拥挤度
m*
丛生指数
I
聚块性指数
m*/m
负二项指数
K
分布型
Pattern
L1 凹岸 Concave 上游 Upstream 0.410 -0.590 -39.342 -0.575 -0.590 -38.342 -0.025 R
下游 Downstream 0.702 -1.096 -3.196 -0.205 -0.298 -2.196 -0.313 R
凸岸 Convex 上游 Upstream 1.346 2.656** 0.581 0.941 0.346 1.581 1.721 C
下游 Downstream 1.729 6.124** 1.541 1.203 0.729 2.541 0.649 C
L2 凹岸 Concave 上游 Upstream 0.447 -0.874 -7.368 -0.478 -0.553 -6.368 -0.136 R
下游 Downstream 1.574 2.868** 0.900 1.211 0.574 1.900 1.112 C
凸岸 Convex 上游 Upstream 1.154 0.409 0.659 0.389 0.154 1.659 1.518 C
下游 Downstream 1.837 5.056** 0.724 1.993 0.837 1.724 1.382 C
D1 凸岸 Convex 上游 Upstream 0.493 -1.389 -2.283 -0.285 -0.507 -1.283 -0.438 R
下游 Downstream 0.759 -0.780 -0.788 0.065 -0.241 0.212 -1.270 R
D2 凹岸 Concave 上游 Upstream 0.297 -0.861 -6.328 -0.592 -0.703 -5.328 -0.158 R
下游 Downstream 0.219 -0.552 -14.063 -0.726 -0.781 -13.063 -0.071 R
凸岸 Convex 上游 Upstream 0.730 -0.738 -0.606 0.175 -0.270 0.394 -1.649 R
下游 Downstream 1.219 0.833 0.263 1.052 0.219 1.263 3.810 C
J1 凸岸 Convex 上游 Upstream 0.861 -0.340 -0.853 0.024 -0.139 0.147 -1.172 R
下游 Downstream 1.572 3.028** 0.803 1.285 0.572 1.803 1.245 C
J2 凸岸 Convex 上游 Upstream 0.483 -0.896 -7.091 -0.444 -0.517 -6.091 -0.141 R
下游 Downstream 0.964 -0.164 -0.130 0.240 -0.036 0.870 -7.699 R

Table 4

Distribution patterns of different age classes of Rhododendron hainanense evaluated at the scale of 2 m × 2 m"

样带
Transect
岸型
Bank type
龄级
Age class
扩散系数
C
t检验
t test
Cassie指数
Ca
平均拥挤度
m*
丛生指数
I
聚块性指数
m*/m
负二项指数
K
分布型
Pattern
L1 凸岸 Convex 1.260 2.142* 0.948 0.534 0.260 1.948 1.055 C
0.705 -1.723 -2.141 -0.157 -0.295 -1.141 -0.467 R
0.480 -2.112* -7.648 -0.452 -0.520 -6.648 -0.131 R
0.498 -1.588 -11.960 -0.460 -0.502 -10.960 -0.084 R
L2 凸岸 Convex 0.670 -1.379 -1.172 -0.048 -0.330 -0.172 -0.853 R
0.928 -0.274 -0.307 0.162 -0.072 0.693 -3.253 R
0.590 -1.004 -4.037 -0.308 -0.410 -3.037 -0.248 R
0.451 -1.228 -6.390 -0.463 -0.549 -5.390 -0.157 R
D1 凸岸 Convex 0.616 -1.486 -1.782 -0.168 -0.384 -0.782 -0.561 R
0.386 -0.971 -14.743 -0.573 -0.614 -13.743 -0.068 R
0.243 -0.535 -54.514 -0.743 -0.757 -53.514 -0.018 R
- - - - - - - -
D2 凸岸 Convex 1.156 0.623 0.283 0.706 0.156 1.283 3.529 C
0.259 -1.386 -5.558 -0.608 -0.741 -4.558 -0.180 R
0.330 -0.820 -10.045 -0.603 -0.670 -9.045 -0.100 R
0.250 - -45.000 -0.733 -0.750 -44.000 -0.022 R
J1 凸岸 Convex 1.643 3.582** 1.634 1.037 0.643 2.634 0.612 C
0.370 -1.261 -11.206 -0.574 -0.630 -10.206 -0.089 R
- - - - - - - -
- - - - - - - -
J2 凸岸 Convex 0.839 -0.646 -1.174 -0.024 -0.161 -0.174 -0.852 R
0.733 -0.706 -4.271 -0.204 -0.267 -3.271 -0.234 R
0.250 - -180.000 -0.746 -0.750 -179.000 -0.006 R
0.250 - -180.000 -0.746 -0.750 -179.000 -0.006 R

Fig. 2

Age structures of the Rhododendron hainanense populations on both sides of stream bends. D1, No. 1 transect of Mt. Diaoluo; D2, No. 2 transect of Mt. Diaoluo; J1, No. 1 transect of Mt. Jianfeng; J2, No. 2 transect of Mt. Jianfeng; L1, No. 1 transect of Mt. Limu; L2, No. 2 transect of Mt. Limu. I, seedling; II, sapling; III, undershrub; IV, large shrub."

Fig. 3

Age structures of the Rhododendron hainanense populations on upstream and downstream of stream bends. D1, No. 1 transect of Mt. Diaoluo; D2, No. 2 transect of Mt. Diaoluo; J1, No. 1 transect of Mt. Jianfeng; J2, No. 2 transect of Mt. Jianfeng; L1, No. 1 transect of Mt. Limu; L2, No. 2 transect of Mt. Limu. I, seedling; II, sapling; III, undershrub; IV, large shrub."

[1] Balke T, Webb EL, van den Elzen E, Galli D, Herman PMJ, Bouma TJ ( 2013). Seedling establishment in a dynamic sedimentary environment: A conceptual framework using mangroves. Journal of Applied Ecology, 50, 740-747.
doi: 10.1111/1365-2664.12067 pmid: 23894211
[2] Bendix J, Hupp CR ( 2000). Hydrological and geomorphic impacts on riparian plant communities. Hydrological Processes, 14, 2977-2990.
doi: 10.1002/(ISSN)1099-1085
[3] Bertoldi W, Drake NA, Gurnell AM ( 2011). Interactions between river flows and colonizing vegetation on a braided river: Exploring spatial and temporal dynamics in riparian vegetation cover using satellite data. Earth Surface Processes and Landforms, 36, 1474-1486.
doi: 10.1002/esp.v36.11
[4] Bhuiyan F, Hey RD, Wormleaton PR ( 2010). Bank-attached vanes for bank erosion control and restoration of river meanders. Journal of Hydraulic Engineering, 136, 583-596.
doi: 10.1061/(ASCE)HY.1943-7900.0000217
[5] Burkart M ( 2001). River corridor plants (Stromtalpflanzen) in Central European lowland: A review of a poorly understood plant distribution pattern. Global Ecology and Biogeography, 10, 449-468.
doi: 10.1046/j.1466-822x.2001.00270.x
[6] Burt T, Pinay G, Sabater S ( 2010). What do we still need to know about the ecohydrology of riparian zones? Ecohydrology, 3, 373-377.
doi: 10.1002/eco.140
[7] Camporeale C, Perucca E, Ridolfi L, Gurnell AM ( 2013). Modeling the interaction between river morphodynamics and riparian vegetation. Reviews of Geophysics, 51, 379-414.
doi: 10.1002/rog.20014
[8] Catford JA, Jansson R ( 2014). Drowned, buried and carried away: Effects of plant traits on the distribution of native and alien species in riparian ecosystems. New Phytologist, 204, 19-36.
doi: 10.1111/nph.12951 pmid: 25130059
[9] Corenblit D, Tabacchi E, Steiger J, Gurnell AM ( 2007). Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: A review of complementary approaches. Earth-Science Reviews, 84, 56-86.
doi: 10.1016/j.earscirev.2007.05.004
[10] Crosato A ( 2008). Analysis and Modelling of River Meandering. IOS Press, Amsterdam.
[11] Curran JC, Hession WC ( 2013). Vegetative impacts on hydraulics and sediment processes across the fluvial system. Journal of Hydrology, 505, 364-376.
doi: 10.1016/j.jhydrol.2013.10.013
[12] Da LJ, Yang YC, Song YC ( 2004). Population structure and regeneration types of dominant species in an evergreen broadleaved forest in Tiantong National Forest Park, Zhejiang Province, eastern China. Acta Phytoecologica Sinica, 28, 376-384.
doi: 10.17521/cjpe.2004.0054
[ 达良俊, 杨永川, 宋永昌 ( 2004). 浙江天童国家森林公园常绿阔叶林主要组成种的种群结构及更新类型. 植物生态学报, 28, 376-384.]
doi: 10.17521/cjpe.2004.0054
[13] Drezner TD, Fall PL, Stromberg JC ( 2001). Plant distribution and dispersal mechanisms at the Hassayampa River Preserve, Arizona, USA. Global Ecology and Biogeography, 10, 205-217.
doi: 10.1046/j.1466-822x.2001.00216.x
[14] Fang MY, Fang RZ, He MY, Hu LZ, Yang HB, Chamberlain DF ( 2005). Flora of China. Vol. 14. Science Press and Missouri Botanical Garden Press, Beijing. 438.
[15] Garssen AG, Baattrup-Pedersen A, Voesenek LACJ, Verhoeven JTA, Soons MB ( 2015). Riparian plant community responses to increased flooding: A meta-analysis. Global Change Biology, 21, 2881-2890.
doi: 10.1111/gcb.12921 pmid: 25752818
[16] Greet J, Webb JA, Cousens RD ( 2011). The importance of seasonal flow timing for riparian vegetation dynamics: A systematic review using causal criteria analysis. Freshwater Biology, 56, 1231-1247.
doi: 10.1111/j.1365-2427.2011.02564.x
[17] Gurnell AM, Bertoldi W, Corenblit D ( 2012). Changing river channels: The roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers. Earth-Science Reviews, 111, 129-141.
doi: 10.1016/j.earscirev.2011.11.005
[18] Han L, Wang HZ, Yu J ( 2013). Research progress and prospects on riparian zone ecology. Chinese Journal of Ecology, 22, 879-886.
[ 韩路, 王海珍, 于军 ( 2013). 河岸带生态学研究进展与展望. 生态环境学报, 22, 879-886.]
[19] He D, Wei XZ, Li LF, Jiang MX, Yang JY, Yu J ( 2009). Population structure and dynamics of Cercidiphyllum japonicum in riparian zones of the Shennongjia Mountainous Region, central China. Chinese Journal of Plant Ecology, 33, 469-481.
doi: 10.3773/j.issn.1005-264x.2009.03.006
[ 何东, 魏新增, 李连发, 江明喜, 杨敬元, 喻杰 ( 2009). 神农架山地河岸带连香树的种群结构与动态. 植物生态学报, 33, 469-481.]
doi: 10.3773/j.issn.1005-264x.2009.03.006
[20] He HB, Zhang HJ, Jia GX ( 2006). Population structure and spatial distribution pattern of Ammopiptanthus mongolicusin in Dengkou County, Inner Mongolia Autonomous Region. Scientia Silvae Sinicae, 42(10), 13-18.
doi: 10.3321/j.issn:1001-7488.2006.10.003
[ 何恒斌, 张惠娟, 贾桂霞 ( 2006). 磴口县沙冬青种群结构和空间分布格局的研究. 林业科学, 42(10), 13-18.]
doi: 10.3321/j.issn:1001-7488.2006.10.003
[21] Horvath TG ( 2004). Retention of particulate matter by macrophytes in a first-order stream. Aquatic Botany, 78, 27-36.
doi: 10.1016/j.aquabot.2003.09.003
[22] Huang XB, Li SF, Su JR, Su L ( 2015). Influences of selective cutting on the structure and spatial distribution patterns of a natural population of Pinus kesiya var. langbianensis. Acta Ecologica Sinica, 35, 8241-8250.
doi: 10.5846/stxb201406051159
[ 黄小波, 李帅锋, 苏建荣, 苏磊 ( 2015). 择伐对思茅松自然种群结构和空间分布格局的影响. 生态学报, 35, 8241-8250.]
doi: 10.5846/stxb201406051159
[23] Kang HJ, Liu P, Chen ZL, Liao CC, Li CH, Chen WX, Lei ZP ( 2007). Size-class structure and distribution pattern of Emmenopterys henryi in different habitats. Scientia Silvae Sinicae, 43(12), 22-27.
doi: 10.3321/j.issn:1001-7488.2007.12.004
[ 康华靖, 刘鹏, 陈子林, 廖承川, 李成惠, 陈卫新, 雷祖培 ( 2007). 不同生境香果树种群的径级结构与分布格局. 林业科学, 43(12), 22-27.]
doi: 10.3321/j.issn:1001-7488.2007.12.004
[24] Li XL, Sun ZY, Li JY, Xu Y, Luo J ( 2013). Population structure and spatial distribution pattern of Camellia azalea in E'huangzhang Nature Reserve of Guangdong, China. Chinese Journal of Applied Ecology, 24, 2115-2121.
[ 李辛雷, 孙振元, 李纪元, 徐翊, 罗建 ( 2013). 广东鹅凰嶂自然保护区杜鹃红山茶种群结构与空间分布格局. 应用生态学报, 24, 2115-2121.]
[25] Liu YQ ( 2003). Development of research on essential characteristics of meandering rivers. Pearl River, ( 2), 1-4.
doi: 10.3969/j.issn.1001-9235.2003.02.001
[ 刘月琴 ( 2003). 弯曲型河流基本特性研究进展. 人民珠江, ( 2), 1-4.]
doi: 10.3969/j.issn.1001-9235.2003.02.001
[26] Merritt DM, Nilsson C, Jansson R ( 2010 a). Consequences of propagule dispersal and river fragmentation for riparian plant community diversity and turnover. Ecological Monographs, 80, 609-626.
doi: 10.1890/09-1533
[27] Merritt DM, Scott ML, LeRoy Poff N, Auble GT, Lytle DA ( 2010 b). Theory, methods and tools for determining environmental flows for riparian vegetation: Riparian vegetation- flow response guilds. Freshwater Biology, 55, 206-225.
doi: 10.1111/j.1365-2427.2009.02206.x
[28] Millar RG ( 2000). Influence of bank vegetation on alluvial channel patterns. Water Resources Research, 36, 1109-1118.
doi: 10.1029/1999WR900346
[29] Naiman RJ, Decamps H ( 1997). The ecology of interfaces: Riparian zones. Annual Review of Ecology and Systematics, 28, 621-658.
doi: 10.1146/annurev.ecolsys.28.1.621
[30] Piégay H, Darby SE, Mosselman E, Surian N ( 2005). A review of techniques available for delimiting the erodible river corridor: A sustainable approach to managing bank erosion. River Research and Applications, 21, 773-789.
doi: 10.1002/rra.881
[31] Richardson DM, Holmes PM, Esler KJ, Galatowitsch SM, Stromberg JC, Kirkman SP, Pysek P, Hobbs RJ ( 2007). Riparian vegetation: Degradation, alien plant invasions, and restoration prospects. Diversity and Distributions, 13, 126-139.
doi: 10.1111/j.1366-9516.2006.00314.x
[32] Shi YH, Li SP, Liang WH, Song XQ, Tan JH ( 2010). Germplasm resourses of Rhododendron in Hainan. Chinese Journal of Tropical Crops, 31, 551-555.
doi: 10.3969/j.issn.1000-2561.2010.04.009
[ 史佑海, 李绍鹏, 梁伟红, 宋希强, 谭金红 ( 2010). 海南野生杜鹃花属植物种质资源调查研究. 热带作物学报, 31, 551-555.]
doi: 10.3969/j.issn.1000-2561.2010.04.009
[33] Solari L, van Oorschot M, Belletti B, Hendriks D, Rinaldi M, Vargas-Luna A ( 2016). Advances on modelling riparian vegetation—Hydromorphology interactions. River Research and Applications, 32, 164-178.
doi: 10.1002/rra.2910
[34] Tal M, Paola C ( 2010). Effects of vegetation on channel morphodynamics: Results and insights from laboratory experiments. Earth Surface Processes and Landforms, 35, 1014-1028.
doi: 10.1002/esp.1908
[35] Tu Y ( 2017). Experimental study of effects of emergent rigid vegetation on flow and sediment movement in the curved flume. PhD dissertation, China Institute of Water Resources & Hydropower Research, Beijing. (in Chinese).
[ 凃洋 ( 2017). 挺水植被对弯道水流和泥沙运动影响试验研究. 博士学位论文, 中国水利水电科学研究院, 北京.]
[36] Wei XZ, Huang HD, Jiang MX, Yang JY ( 2008). Quantitative characteristics and spatial distribution patterns of Euptelea pleiospermum populations in riparian zones of the Shennongjia area, central China. Journal of Plant Ecology (Chinese Version), 32, 825-837.
doi: 10.3773/j.issn.1005-264x.2008.04.011
[ 魏新增, 黄汉东, 江明喜, 杨敬元 ( 2008). 神农架地区河岸带中领春木种群数量特征与空间分布格局. 植物生态学报, 32, 825-837.]
doi: 10.3773/j.issn.1005-264x.2008.04.011
[37] Zhang PJ, Qing H, Zhang L, Xu YD, Mu L, Ye RH, Qiu X, Chang H, Shen HH, Yang J ( 2017). Population structure and spatial pattern of Caragana tibetica communities in Nei Mongol shrub-encroached grassland. Chinese Journal of Plant Ecology, 41, 165-174.
[ 张璞进, 清华, 张雷, 徐延达, 木兰, 晔薷罕, 邱晓, 常虹, 沈海花, 杨劼 ( 2017). 内蒙古灌丛化草原毛刺锦鸡儿种群结构和空间分布格局. 植物生态学报, 41, 165-174.]
[38] Zhang WH, Wang YP, Kang YX, Liu XJ ( 2005). Spatial distribution pattern of Larix chinensis population in Taibai Mt. Chinese Journal of Applied Ecology, 16, 207-212.
[ 张文辉, 王延平, 康永祥, 刘祥君 ( 2005). 太白山太白红杉种群空间分布格局研究. 应用生态学报, 16, 07-212.]
[39] Zhao ZS, Zheng YQ, Liang JY, Han ZJ, Li ZJ ( 2016). Spatial distribution pattern of Populus euphratica and P. pruinosa clonal ramets in Tarim River Basin, China. Chinese Journal of Applied Ecology, 27, 403-411.
doi: 10.13287/j.1001-9332.201602.021
[ 赵正帅, 郑亚琼, 梁继业, 韩占江, 李志军 ( 2016). 塔里木河流域胡杨和灰叶胡杨克隆分株空间分布格局. 应用生态学报, 27, 403-411.]
doi: 10.13287/j.1001-9332.201602.021
[40] Zhen JH, Liu GH ( 2008). Population structure characteristics of Tetraena mongolica in different habitats. Acta Ecologica Sinica, 28, 1829-1841.
[ 甄江红, 刘果厚 ( 2008). 不同生境条件下四合木(Tetraena mongolica Maxim.)种群结构特征. 生态学报, 28, 1829-1841.]
[1] LIANG Shi-Chu, LIU Run-Hong, RONG Chun-Yan, CHANG Bin, JIANG Yong. Variation and correlation of plant functional traits in the riparian zone of the Lijiang River, Guilin, Southwest China [J]. Chin J Plant Ecol, 2019, 43(1): 16-26.
[2] Ya-Fei LI, Jing-Jie YU, Kai LU, Ping WANG, Yi-Chi ZHANG, Chao-Yang DU. Water sources of Populus euphratica and Tamarix ramosissima in Ejina Delta, the lower reaches of the Heihe River, China [J]. Chin J Plan Ecolo, 2017, 41(5): 519-528.
[3] Chengqiang Dang, Huimin Huang, Rong Dong, Miao Chen, Ting Gao, Jianping Tao. Spatial Distribution Pattern of Epilithic Moss Homomallium simlaense Patches in Rocky Desertification Habitats in Zhongliang Mountain, Chongqing, Southwest China [J]. Chin Bull Bot, 2017, 52(5): 598-607.
[4] Pu-Jin ZHANG, Hua QING, Lei ZHANG, Yan-Da XU, Lan MU, Ru-Han YE, Xiao QIU, Hong Chang, Hai-Hua SHEN, Jie YANG. Population structure and spatial pattern of Caragana tibetica communities in Nei Mongol shrub-encroached grassland [J]. Chin J Plan Ecolo, 2017, 41(2): 165-174.
[5] Gong Xuewei, Lü Guanghui. Species diversity and dominant species’ niches of eremophyte communities of the Tugai forest in the Ebinur basin of Xinjiang, China [J]. Biodiv Sci, 2017, 25(1): 34-45.
[6] Yan-Peng LI, Han XU, Yi-De LI, Tu-Shou LUO, De-Xiang CHEN, Zhang ZHOU, Ming-Xian LIN, Huai YANG. Scale-dependent spatial patterns of species diversity in the tropical montane rain forest in Jianfengling, Hainan Island, China [J]. Chin J Plan Ecolo, 2016, 40(9): 861-870.
[7] Kai YUE, Wan-Qin YANG, Yan PENG, Chun-Ping HUANG, Chuan ZHANG, Fu-Zhong WU. Effects of streams on lignin degradation during foliar litter decomposition in an alpine forest [J]. Chin J Plan Ecolo, 2016, 40(9): 893-901.
[8] Yi WU, Wen-Yao LIU, Liang SONG, Xi CHEN, Hua-Zheng LU, Su LI, Xian-Meng SHI. Advances in ecological studies of epiphytes using canopy cranes [J]. Chin J Plan Ecolo, 2016, 40(5): 508-522.
[9] ZHU Xu-Chao, YUAN Guo-Fu, SHAO Ming-An, YI Xiao-Bo, DU Tao. Spatial pattern of riparian vegetation in desert of the lower Tarim River basin [J]. Chin J Plan Ecolo, 2015, 39(11): 1053-1061.
[10] MA Song-Mei, NIE Ying-Bin, GENG Qing-Long, and WANG Rong-Xue. Impact of climate change on suitable distribution range and spatial pattern in Amygdalus mongolica [J]. Chin J Plan Ecolo, 2014, 38(3): 262-269.
[11] ZHAO Guo-Qin, LI Xiao-Yan, WU Hua-Wu, ZHANG Si-Yi, and LI Guang-Yong. Study on plant water use in Myricaria squamosa with stable hydrogen isotope tracer in Qinghai Lake basin [J]. Chin J Plan Ecolo, 2013, 37(12): 1091-1100.
[12] GAO Run-Mei, SHI Xiao-Dong, and GUO Yue-Dong. Community stability evaluation of riparian forest of the upper reaches of Wenyuhe in Shanxi, China [J]. Chin J Plan Ecolo, 2012, 36(6): 491-503.
[13] LI Hai-Dong, SHEN Wei-Shou, FANG Ying, YAN Shou-Guang, ZHANG Hui, and ZHAO Wei. Point pattern analysis of several psammophyte populations in the riparian ecotone in the middle reaches of Yarlung Zangbo River of Tibet, China [J]. Chin J Plan Ecolo, 2011, 35(8): 834-843.
[14] Mo Gao, Renyong Hu, Xianxing Chen, Weicheng Li, Bingyang Ding. Effects of disturbance, topography, and soil conditions on the distribution of invasive plants in Wenzhou [J]. Biodiv Sci, 2011, 19(4): 424-431.
[15] LI Li, CHEN Jian-Hua, REN Hai-Bao, MI Xiang-Cheng, YU Ming-Jian, YANG Bo. Spatial patterns of Castanopsis eyrei and Schima superba in mid-subtropical broadleaved evergreen forest in Gutianshan National Reserve, China [J]. Chin J Plan Ecolo, 2010, 34(3): 241-252.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Fusuo Zhang Zhenling Cui Jiqing Wang Chunjian Li Xinping Chen . Current status of soil and plant nutrient management in China and improvement strategies.[J]. Chin Bull Bot, 2007, 24(06): 687 -694 .
[2] Xu Xinrong and Shao Huaying. The Scanning Electron Microscopic Observation of Pollen Grains of two Species of Pharbitis[J]. Chin Bull Bot, 1983, 1(02): 54 .
[3] Guoqi Song, Xingjun Wang, Aiqin Li, Changsheng Li. Research Progress in Suspensor of Angiosperms[J]. Chin Bull Bot, 2012, 47(2): 188 -195 .
[4] Manlan Zhu, Liangsheng Wang, Huijin Zhang, Yanjun Xu, Xuchen Zheng, Lijin Wang. Relationship Between the Composition of Anthocyanins and Flower Color Variation in Hardy Water Lily (Nymphaea spp.) Cultivars[J]. Chin Bull Bot, 2012, 47(5): 437 -453 .
[5] Mao Xue-wen. A Problem Worth to Discuss - Asexual Reproduction and Vegetative Propagation of Plant[J]. Chin Bull Bot, 1992, 9(04): 56 -58 .
[6] WU Hui, DAI Hai-Fang, ZHANG Ju-Song, JIAO Xiao-Ling, LIU Cui, SHI Jun-Yi, FAN Zhi-Chao, and ALIYAN?Rouzi. Responses of photosynthetic characteristics to low temperature stress and recovery treatment in cotton seedling leaves[J]. Chin J Plan Ecolo, 2014, 38(10): 1124 -1134 .
[7] MA Yu-E, XIANG Wen-Hua, LEI Pi-Feng. STEM RESPIRATION AND ITS CONTROLLING FACTORS IN FOREST ECOSYSTEMS[J]. Chin J Plan Ecolo, 2007, 31(3): 403 -412 .
[8] WU Yun-Na, LI Zheng-Hai. Changing of Landscape Diversity with Time in Xilinguole Steppe[J]. Chin J Plan Ecolo, 2000, 24(1): 58 -63 .
[9] Wang Renzhong. Density-Dependence of Calamagrostis epigejos in Songnen Grassland[J]. Chin J Plan Ecolo, 1998, 22(1): 85 -89 .
[10] ZHANG Liang, XING Fu, YU Li-Li, XU Kun, SUN Zhong-Lin, Lü Xian-Guo. PLANT SPECIES DIVERSITY OF THE ISLAND FOREST IN A MARSH IN THE SANJIANG PLAIN, CHINA[J]. Chin J Plan Ecolo, 2008, 32(3): 582 -590 .