Chin J Plant Ecol ›› 2017, Vol. 41 ›› Issue (5): 519-528.DOI: 10.17521/cjpe.2016.0381
Special Issue: 稳定同位素生态学
• Research Articles • Previous Articles Next Articles
Ya-Fei LI1,2,3,4, Jing-Jie YU1,5,*, Kai LU1,4, Ping WANG1, Yi-Chi ZHANG1, Chao-Yang DU1
Online:
2017-05-10
Published:
2017-06-22
Contact:
Jing-Jie YU
About author:
KANG Jing-yao(1991-), E-mail: Ya-Fei LI, Jing-Jie YU, Kai LU, Ping WANG, Yi-Chi ZHANG, Chao-Yang DU. Water sources of Populus euphratica and Tamarix ramosissima in Ejina Delta, the lower reaches of the Heihe River, China[J]. Chin J Plant Ecol, 2017, 41(5): 519-528.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2016.0381
Fig. 1 Location of the study area and sampling sites. The coordinates of the sites in the figure are as follows: Dongfeng Town Bridge (100.55° E, 41.25° N), E1 (100.33° E, 41.04° N), E2 (100.69° E, 41.44° N), E3 (101.07° E, 41.88° N), E4 (101.12° E, 41.99° N), E5 (101.14° E, 42.00° N), E6 (101.09° E, 42.01° N), GW1 (100.79° E, 41.92° N), GW2 (100.91° E, 41.94° N), Langxinshan Hydrological Station (100.32° E, 41.04° N), W1 (100.44° E, 41.44° N), W2 (100.67° E, 41.92° N).
样点 Sampling site | 土壤埋深 Soil depth (cm) | 土壤质地 Soil texture | 样点 Sampling site | 土壤埋深 Soil depth (cm) | 土壤质地 Soil texture |
---|---|---|---|---|---|
E1 | 0-80 | 砂土 Sand | E5 | 0-50 | 粉壤土 Silt loam |
80-85 | 壤质砂土 Loamy sand | 50-100 | 壤土 Loam | ||
85-90 | 砂土 Sand | 100-130 | 粉壤土 Silt loam | ||
90-100 | 细砂 Fine sand | E6 | 0-30 | 壤质细砂 Loamy fine sand | |
100-130 | 砂土 Sand | 30-90 | 细砂 Fine sand | ||
130-170 | 细砂 Fine sand | 90-120 | 砂黏土 Sandy clay | ||
170-185 | 砂壤土 Sandy loam | 120-160 | 细砂 Fine sand | ||
185-200 | 壤质砂土 Loamy sand | 160-180 | 壤土 Loam | ||
E2 | 0-20 | 壤质细砂 Loamy fine sand | 180-210 | 砂土 Sand | |
20-50 | 细砂壤土 Fine sandy loam | 210-230 | 黏土 Clay | ||
50-70 | 极细砂壤土 Very fine sandy loam | 230-320 | 细砂 Fine sand | ||
70-100 | 粉壤土 Silt loam | W1 | 0-90 | 壤质砂土 Loamy sand | |
100-200 | 砂土 Sand | 90-110 | 壤质粗砂 Loamy coarse sand | ||
E3 | 0-30 | 粉壤土 Silt loam | 110-130 | 砂土 Sand | |
30-80 | 细砂壤土 Very fine sandy loam | 130-160 | 粗砂 Coarse sand | ||
80-105 | 细砂 Fine sand | 160-210 | 砂土 Sand | ||
105-220 | 粗砂 Coarse sand | W2 | 0-60 | 壤质砂土 Loamy sand | |
E4 | 0-15 | 细砂壤土 Fine sandy loam | 60-80 | 砂土 Sand | |
15-60 | 砂壤土 Very fine sandy loam | 80-120 | 粉壤土 Silt loam | ||
60-120 | 粉壤土 Silt loam | 120-200 | 砂土 Sand | ||
120-170 | 砂土 Sand | 200-210 | 粗砂 Coarse sand | ||
210-230 | 壤质砂土 Loamy sand | ||||
230-260 | 粗砂 Coarse sand |
Table 1 Soil textural profiles at each sampling site
样点 Sampling site | 土壤埋深 Soil depth (cm) | 土壤质地 Soil texture | 样点 Sampling site | 土壤埋深 Soil depth (cm) | 土壤质地 Soil texture |
---|---|---|---|---|---|
E1 | 0-80 | 砂土 Sand | E5 | 0-50 | 粉壤土 Silt loam |
80-85 | 壤质砂土 Loamy sand | 50-100 | 壤土 Loam | ||
85-90 | 砂土 Sand | 100-130 | 粉壤土 Silt loam | ||
90-100 | 细砂 Fine sand | E6 | 0-30 | 壤质细砂 Loamy fine sand | |
100-130 | 砂土 Sand | 30-90 | 细砂 Fine sand | ||
130-170 | 细砂 Fine sand | 90-120 | 砂黏土 Sandy clay | ||
170-185 | 砂壤土 Sandy loam | 120-160 | 细砂 Fine sand | ||
185-200 | 壤质砂土 Loamy sand | 160-180 | 壤土 Loam | ||
E2 | 0-20 | 壤质细砂 Loamy fine sand | 180-210 | 砂土 Sand | |
20-50 | 细砂壤土 Fine sandy loam | 210-230 | 黏土 Clay | ||
50-70 | 极细砂壤土 Very fine sandy loam | 230-320 | 细砂 Fine sand | ||
70-100 | 粉壤土 Silt loam | W1 | 0-90 | 壤质砂土 Loamy sand | |
100-200 | 砂土 Sand | 90-110 | 壤质粗砂 Loamy coarse sand | ||
E3 | 0-30 | 粉壤土 Silt loam | 110-130 | 砂土 Sand | |
30-80 | 细砂壤土 Very fine sandy loam | 130-160 | 粗砂 Coarse sand | ||
80-105 | 细砂 Fine sand | 160-210 | 砂土 Sand | ||
105-220 | 粗砂 Coarse sand | W2 | 0-60 | 壤质砂土 Loamy sand | |
E4 | 0-15 | 细砂壤土 Fine sandy loam | 60-80 | 砂土 Sand | |
15-60 | 砂壤土 Very fine sandy loam | 80-120 | 粉壤土 Silt loam | ||
60-120 | 粉壤土 Silt loam | 120-200 | 砂土 Sand | ||
120-170 | 砂土 Sand | 200-210 | 粗砂 Coarse sand | ||
210-230 | 壤质砂土 Loamy sand | ||||
230-260 | 粗砂 Coarse sand |
日期 Date | 样点 Spot | δ18O (‰) | 日期 Date | 样点 Spot | δ18O (‰) |
---|---|---|---|---|---|
2016-5-31 | E1 | -7.39 | 2015-8-16 | E5 | -6.29 |
2015-7-22 | E2 | -5.94 | 2015-9-13 | E5 | -6.69 |
2015-8-16 | E2 | -5.39 | 2015-8-16 | E6 | -5.56 |
2015-9-13 | E2 | -5.60 | 2016-5-29 | E6 | -7.02 |
2016-5-31 | E2 | -6.94 | 2015-7-21 | E6 | -6.47 |
2015-8-16 | E3 | -5.73 | 2015-9-13 | E6 | -6.12 |
2015-9-13 | E3 | -5.57 | 2016-5-31 | GW1 | -9.84 |
2016-5-30 | E3 | -6.96 | 2016-5-31 | GW2 | -9.84 |
2015-7-19 | E4 | -5.77 | 2016-5-31 | W1 | -5.95 |
2015-8-16 | E4 | -7.35 | 2016-5-31 | W2 | -7.08 |
2015-9-13 | E4 | -5.22 |
Table 2 The stable oxygen isotope ratio (δ18O) of groundwater in the study area
日期 Date | 样点 Spot | δ18O (‰) | 日期 Date | 样点 Spot | δ18O (‰) |
---|---|---|---|---|---|
2016-5-31 | E1 | -7.39 | 2015-8-16 | E5 | -6.29 |
2015-7-22 | E2 | -5.94 | 2015-9-13 | E5 | -6.69 |
2015-8-16 | E2 | -5.39 | 2015-8-16 | E6 | -5.56 |
2015-9-13 | E2 | -5.60 | 2016-5-29 | E6 | -7.02 |
2016-5-31 | E2 | -6.94 | 2015-7-21 | E6 | -6.47 |
2015-8-16 | E3 | -5.73 | 2015-9-13 | E6 | -6.12 |
2015-9-13 | E3 | -5.57 | 2016-5-31 | GW1 | -9.84 |
2016-5-30 | E3 | -6.96 | 2016-5-31 | GW2 | -9.84 |
2015-7-19 | E4 | -5.77 | 2016-5-31 | W1 | -5.95 |
2015-8-16 | E4 | -7.35 | 2016-5-31 | W2 | -7.08 |
2015-9-13 | E4 | -5.22 |
Fig. 3 The stable oxygen isotope ratio (δ18O) of soil moisture and plant xylem water at each sampling site. The coordinates of each sampling site are the same as in Fig.1. “VSMOW” is the abbreviation of “Vienna standard mean ocean water”.
样点1) Sampling site1) | 植物主要吸水层位 Dominant soil depths of root water uptake 2) (cm) | ||||||
---|---|---|---|---|---|---|---|
2015-7 | 2015-8 | 2015-9 | 2016-6 | 2016-7 | 2016-8 | 2016-9 | |
E1 | \ | \ | \ | 130-210 | 80-200 | 80-260 | 120-180 |
E2 | 100-175 | 100-200 | 70-200 | 80-140 | 90-140 | 80-180 | 80-130 |
E3 | 30-220 | 80-220 | 50-195 | 5-170 | 25-180 | \ | |
E4 | 60-220 | 60-270 | 60-220 | 100-200 | 110-210 | 110-230 | 100-260 |
E5 | 50-185 | 50-185 | 50-185 | 90-170 | 75-240 | 90-230 | 110-240 |
E6 | 80-330 | 115-330 | 115-330 | 140-370 | 140-280 | 115-255 | 100-235 |
W1 | \ | \ | \ | 100-230 | 110-230 | 90-? | \ |
W2 | \ | \ | \ | 150-260 | 100-185 | 170-210 | 100-150 |
Table 3 Dominant soil depths of root water uptake by Populus euphratica and Tamarix ramosissima at each sampling site
样点1) Sampling site1) | 植物主要吸水层位 Dominant soil depths of root water uptake 2) (cm) | ||||||
---|---|---|---|---|---|---|---|
2015-7 | 2015-8 | 2015-9 | 2016-6 | 2016-7 | 2016-8 | 2016-9 | |
E1 | \ | \ | \ | 130-210 | 80-200 | 80-260 | 120-180 |
E2 | 100-175 | 100-200 | 70-200 | 80-140 | 90-140 | 80-180 | 80-130 |
E3 | 30-220 | 80-220 | 50-195 | 5-170 | 25-180 | \ | |
E4 | 60-220 | 60-270 | 60-220 | 100-200 | 110-210 | 110-230 | 100-260 |
E5 | 50-185 | 50-185 | 50-185 | 90-170 | 75-240 | 90-230 | 110-240 |
E6 | 80-330 | 115-330 | 115-330 | 140-370 | 140-280 | 115-255 | 100-235 |
W1 | \ | \ | \ | 100-230 | 110-230 | 90-? | \ |
W2 | \ | \ | \ | 150-260 | 100-185 | 170-210 | 100-150 |
Fig. 5 Proportional contribution (%) of stream water and groundwater to the water sources of Populus euphratica and Tamarix ramosissima respectively. Bars indicate the minimum and maximum values. The coordinates of each sampling site are the same as in Fig.1.
[1] | Chen XL, Chen YN, Chen YP (2014). Relationship among water use of different plants in Heihe River riparian forests.Chinese Journal of Eco-Agriculture, 22, 972-979. (in Chinese with English abstract)[陈小丽, 陈亚宁, 陈亚鹏 (2014). 黑河下游荒漠河岸林植物水分利用关系研究. 中国生态农业学报, 22, 972-979.] |
[2] | Chu JM (2007). Studies on Selective Utilization of Water by Plants in Aridland Region. PhD dissertation, Chinese Academy of Forestry, Beijing. (in Chinese with English abstract)[褚建民 (2007). 干旱区植物的水分选择性利用研究. 博士学位论文, 中国林业科学研究院, 北京.] |
[3] | Du CY (2016). Simulation for Coupled Water-Vapor-Air-Heat Flow Transport in Vadose Zone and Estimation of Groundwater Evaporation in Arid Region—A Case Study of Ejina Delta. PhD dissertation, University of Chinese Academy of Sciences, Beijing. (in Chinese with English abstract)[杜朝阳 (2016). 干旱区包气带水-汽-气热耦合模拟及潜水蒸发估算——以额济纳三角洲为例. 博士学位论文, 中国科学院大学, 北京.] |
[4] | Ehleringer J, Dawson T (1992). Water uptake by plants: Perspectives from stable isotope composition.Plant, Cell & Environment, 15, 1073-1082. |
[5] | Ehleringer JR, Phillips SL, Schuster WS, Sandquist DR (1991). Differential utilization of summer rains by desert plants.Oecologia, 88, 430-434. |
[6] | Gong GL, Chen H, Duan DY (2011). Comparison of the methods using stable hydrogen and oxygen isotope to distinguish the water source ofNitraria tangutorum. Acta Ecologica Sinica, 31, 7533-7541. (in Chinese with English abstract)[巩国丽, 陈辉, 段德玉 (2011). 利用稳定氢氧同位素定量区分白刺水分来源的方法比较. 生态学报, 31, 7533-7541.] |
[7] | Huxman TE, Smith MD, Fay PA, Knapp AK, Shaw MR, Loik ME, Smith SD, Tissue DT, Zak JC, Weltzin JF (2004). Convergence across biomes to a common rain-use efficiency.Nature, 429, 651-654. |
[8] | Li X, Cheng G, Liu S, Xiao Q, Ma M, Jin R, Che T, Liu Q, Wang W, Qi Y (2013). Heihe watershed allied telemetry experimental research (HiWATER): Scientific objectives and experimental design.Bulletin of the American Meteorological Society, 94, 1145-1160. |
[9] | Liu SM, Xu ZW, Wang WZ, Jia ZZ, Zhu MJ, Bai J, Wang JM (2011). A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem.Hydrology and Earth System Sciences, 15, 1291-1306. |
[10] | Meng XJ, Wen XF, Zhang XY, Han JJ, Sun XM, Li XB (2012). Potential impacts of organic contaminant onδ18O and δD in leaf and xylem water detected by isotope ratio infrared spectroscopy. Chinese Journal of Eco-Agriculture, 20, 1359-1365. (in Chinese with English abstract)[孟宪菁, 温学发, 张心昱, 韩佳音, 孙晓敏, 李晓波 (2012). 有机物对红外光谱技术测定植物叶片和茎秆水δ18O和δD的影响. 中国生态农业学报, 20, 1359-1365.] |
[11] | Peng XM, Xiao SC, Cheng GD, Xiao HL, Tian QY, Zhang QB (2015). Human activity impacts on the stem radial growth ofPopulus euphratica riparian forests in China’s Ejina Oasis, using tree-ring analysis. Trees, 31, 379-392. |
[12] | Qian YP, Lin XU, Qin DJ, Wang L (2005). Study on groundwater of the Ejina Basin at the lower reaches of the Heihe River using isotopes.Arid Land Geography, 28, 574-580. (in Chinese with English abstract)[钱云平, 林学钰, 秦大军, 王玲 (2005). 应用同位素研究黑河下游额济纳盆地地下水. 干旱区地理, 2005, 28, 574-580.] |
[13] | Schachtschneider K, February EC (2010). The relationship between fog, floods, groundwater and tree growth along the lower Kuiseb River in the hyperarid Namib.Journal of Arid Environments, 74, 1632-1637. |
[14] | Si JH, Feng Q, Xi HY, Yu TF, Li W (2013). Determination of critical period and requirement of ecological water demanded in the Ejina Oasis in lower reaches of the Heihe River.Journal of Desert Research, 33, 560-567. (in Chinese with English abstract)[司建华, 冯起, 席海洋, 鱼腾飞, 李炜 (2013). 黑河下游额济纳绿洲生态需水关键期及需水量. 中国沙漠, 33, 560-567.] |
[15] | Snyder KA, Williams DG (2000). Water sources used by riparian trees varies among stream types on the San Pedro River, Arizona.Agricultural and Forest Meteorology, 105, 227-240. |
[16] | Wang P, Yu J, Zhang Y, Fu G, Min L, Ao F (2011). Impacts of environmental flow controls on the water table and groundwater chemistry in the Ejina Delta, northwestern China.Environmental Earth Sciences, 64, 15-24. |
[17] | Wang P, Yu J, Zhang Y, Liu C (2013). Groundwater recharge and hydrogeochemical evolution in the Ejina Basin, northwest China.Journal of Hydrology, 476, 72-86. |
[18] | Wei Y, Fang J, Zhao X, Zhang R, Li S (2012). Isotopic model estimate of relative contribution of potential water pools to water uptake ofPinus sylvestris var. mongolica in Horqin Sandy Land. Journal of Resources and Ecology, 3, 308-315. |
[19] | Xing X, Chen H, Zhu JJ, Chen TT (2014). Water sources of five dominant desert plant species in Nuomuhong area of Qaidam Basin.Acta Ecologica Sinica, 34, 6277-6286. (in Chinese with English abstract)[邢星, 陈辉, 朱建佳, 陈同同 (2014). 柴达木盆地诺木洪地区5种优势荒漠物水分来源. 生态学报, 34, 6277-6286.] |
[20] | Yin L, Zhao LJ, Ruan YF, Xiao HL, Cheng GD, Zhou MX, Wang F, Li CZ (2012). Study of the replenishment sources of typical ecosystems water and dominant plant water in the lower reaches of the Heihe, China.Journal of Glaciology & Geocryology, 34, 1478-1486. (in Chinese with English abstract)[尹力, 赵良菊, 阮云峰, 肖洪浪, 程国栋, 周茅先, 王芳, 李彩芝 (2012). 黑河下游典型生态系统水分补给源及优势植物水分来源研究. 冰川冻土, 34, 1478-1486.] |
[21] | Zhang YC, Yu JJ, Qiao MY, Yang HW (2011). Effects of eco-water transfer on changes of vegetation in the lower Heihe River Basin.Journal of Hydraulic Engineering, 42, 757-765. (in Chinese with English abstract)[张一驰, 于静洁, 乔茂云, 杨宏伟 (2011). 黑河流域生态输水对下游植被变化影响研究. 水利学报, 42, 757-765.] |
[22] | Zhang YH, Wu YQ (2007). Variation ofδ18O in water in Heihe River Basin. Advances in Water Science, 18, 864-870. (in Chinese with English abstract)[张应华, 仵彦卿 (2007). 黑河流域不同水体中δ18O的变化. 水科学进展, 18, 864-870.] |
[23] | Zhao LJ, Xiao HL, Cheng GD, Song YX, Zhao L, Li CZ, Yang Q (2008). A preliminary study of water sources of riparian plants in the lower reaches of the Heihe Basin. Acta Geoscientica Sinica, 29, 709-718. (in Chinese with English abstract)[赵良菊, 肖洪浪, 程国栋, 宋耀选, 赵亮, 李彩芝, 杨秋 (2008). 黑河下游河岸林植物水分来源初步研究. 地球学报, 29, 709-718.] |
[24] | Zhu JT, Yu JJ, Wang P, Wang ZY (2011). Quantitative classification and analysis of relationships between plant communities and their groundwater environment in the Ejina Desert Oasis of China.Chinese Journal of Plant Ecology, 35, 480-489. (in Chinese with English abstract)[朱军涛, 于静洁, 王平, 王志勇 (2011). 额济纳荒漠绿洲植物群落的数量分类及其与地下水环境的关系分析. 植物生态学报, 35, 480-489.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn