Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (1): 65-76.doi: 10.17521/cjpe.2018.0211

• Research Articles • Previous Articles     Next Articles

Reproductive characteristics of Artemisia scoparia and the analysis of the underlying soil drivers in a desert steppe of China

CHEN Lin, WANG Lei, YANG Xin-Guo, SONG Nai-Ping(), LI Yue-Fei, SU Ying, BIAN Ying-Ying, ZHU Zhong-You, MENG Wen-Ting   

  1. Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan 750021, China;and Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China of Ministry of Education, Ningxia University, Yinchuan 750021, China
  • Received:2018-08-25 Accepted:2018-12-14 Online:2019-04-25 Published:2019-01-20
  • Contact: SONG Nai-Ping E-mail:songnp@163.com
  • Supported by:
    Supported by the National Key R&D Program of China(2016YFC0500709);Ningxia University Top-ranking Discipline Construction Funding Project (Ecology)(NXYLXK2017B06);the Natural Science Foundation of Ningxia(2018AAC03037);The Third Batch of Ningxia Youth Talents Supporting Program(TJGC2018068)

Abstract:

Aims Reproduction is an important part of plant life activities, and thus the reproductive characteristics of plants play an important role in explaining the ecological adaptability of plants as well as developing effective management strategy plans. The aims of this study are to explore the reproductive characteristics of Artemisia scoparia and analyze its main soil driving factors in a desert steppe of China.
Methods As a method to extract and summarize the variation in a set of response variables, the redundancy analysis can be explained by a group of explanatory variables. In the present study, we selected the A. scoparia population in a desert steppe, and examined physicochemical properties of different soil types and reproductive characteristics of A. scoparia with the redundancy analysis.
Important findings There were significant differences in water-soluble carbon content (Cws), total nitrogen content (TN), total phosphorus content (TP), total salt content (TS), soil moisture (Ms) and soil hardness (SH) of calcareous soil (SS), aeolian sand soil (ASS) and weathered residual soil (WB). The average mass (Ma), the number (Ni) of average individual head inflorescence, and the average individual size (Sai) of a single plant were the largest in the SS habitat, followed by ASS and WB. No significant difference was observed in reproductive allocation (Ra) of A. scoparia in different soil types. An extremely significant positive correlation was observed between Ra and the quality of single capitate inflorescence (Me), Ni and Ma, respectively, while Ni was negatively correlated with Me. The variation of the reproductive characteristics of A. scoparia was mainly affected by soil water soluble carbon content (Cws), soil hardness (SH), soil moisture (Ms), TP and available phosphorus content (AP) in WB habitat. Ma was mainly affected by Cws, Ms and pH value; Ni was mainly affected by total salt content (TS); Ra and Me were mainly affected by total carbon content (Ct) in the ASS habitat. Ma was positively correlated with Cws, Ms and Co, while the correlation between Ma and Co was not significant; Ni was significantly affected by available nitrogen content (AN) in the SS habitat. A comprehensive analysis of the three soil types showed that the total explanatory amount of soil factors affecting the reproductive characteristics of A. scoparia was 30.74%. Ma and Ni were significantly affected by Cws and Ms. Ra and Me were negatively correlated with Cws and Ms though they are not statistically significant. We conclude that Cws and Ms are the main soil factors affecting the reproductive characteristics of A. scoparia populations in the desert grassland.

Key words: desert steppe, Artemisia scoparia, reproductive characteristic, soil factor, redundancy analysis

Fig. 1

Sampling sites of Artemisia scoparia in the desert steppe of Ningxia."

Table 1

Comparisons of soil properties in three soil types from the different habitats of Artemisia scoparia (mean ± SE)"

土壤特性
Soil property
ASS SS WB ANOVA
F p
Ceo (mg·g-1) 1.022 ± 0.760 1.088 ± 1.065 0.639 ± 0.337 2.192 0.115
Cws (mg·g-1) 0.048 ± 0.178 0.209 ± 0.439 0.297 ± 0.557 7.006 <0.001***
Co (%) 0.449 ± 0.477 0.450 ± 0.187 0.424 ± 0.139 0.042 0.959
Ct (%) 0.541 ± 0.242 0.605 ± 0.401 0.654 ± 0.268 1.594 0.206
AP (mg·kg-1) 2.776 ± 1.875 2.625 ± 1.854 1.755 ± 1.170 2.672 0.072
AK (mg·kg-1) 81.592 ± 37.170 71.040 ± 40.591 70.963 ± 40.242 1.668 0.192
AN (mg·kg-1) 230.668 ± 123.556 191.756 ± 54.719 237.687 ± 285.222 1.787 0.170
TN (%) 0.034 ± 0.013 0.040 ± 0.013 0.027 ± 0.011 9.938 <0.001***
TP (%) 0.029 ± 0.013 0.037 ± 0.010 0.038 ± 0.010 10.480 <0.001***
pH 9.076 ± 0.209 9.092 ± 0.165 9.090 ± 0.288 0.191 0.827
TS (g·kg-1) 0.265 ± 0.045 0.315 ± 0.198 0.317 ± 0.155 3.409 0.035*
Ms. 10 cm (%) 7.591 ± 1.997 10.268 ± 3.757 8.990 ± 2.813 17.556 <0.001***
Ms. 20 cm (%) 7.309 ± 2.588 9.902 ± 4.008 8.768 ± 1.898 13.529 <0.001***
Ms. 0-20 cm (%) 7.489 ± 1.707 10.031 ± 3.274 8.747 ± 1.652 22.330 <0.001***
SH. 5 cm (kPa) 1 003.436 ± 516.201 1 245.283 ± 796.110 1 060.000 ± 560.993 2.824 0.062
SH. 10 cm (kPa) 1 377.634 ± 709.554 1 697.746 ± 1 196.433 1 611.250 ± 870.530 2.058 0.131
SH. 20 cm (kPa) 2 032.554 ± 1303.646 2 465.967 ± 1 338.089 2 281.400 ± 1 124.882 2.140 0.121
SH. 0-20 cm (kPa) 1 471.208 ± 678.777 1 807.194 ± 896.430 1 659.950 ± 726.002 3.714 0.026*

Table 2

Reproductive characteristics of Artemisia scoparia"

繁殖特征
Reproductive
characteristic
土壤类型
Soil type
最大值
Max value
最小值
Min value
平均值
Average
标准偏差
Standard deviation
变异系数
Coefficient of variation
Sai ASS 157.89 0.16 7.07 19.75 2.79
SS 138.22 0.25 10.60 25.62 2.42
WB 4.02 0.29 1.28 1.23 0.95
Ra ASS 0.78 0.05 0.54 0.13 0.24
SS 0.73 0.21 0.52 0.11 0.20
WB 0.61 0.33 0.49 0.08 0.14
Ni ASS 108 841.00 107.00 4 700.94 14 557.55 3.07
SS 79 019.00 122.00 7 283.31 17 272.63 2.37
WB 3 414.00 202.00 941.47 988.64 1.05
Me ASS 42.2 1.8 8.1 4.7 5.5
SS 15.0 2.9 7.2 2.3 3.2
WB 7.7 4.7 6.1 1.0 1.6
Ma ASS 71.25 0.06 3.25 9.14 2.79
SS 68.30 0.06 4.82 12.41 2.58
WB 2.13 0.14 0.59 0.63 1.06

Fig. 2

Pearson’s correlation for reproductive characteristics and plant characteristics of Artemisia scoparia. AB, aboveground biomass (g); Cov, coverage (%); CW, crown width (cm2); Hei, average height (cm); Ma, capitulum mass of each individual plant (g); Me, each acptitulum mass (g × 10-4); Ni, capitulum number of each individual plant; Ra, reproductive allocation; RB, reproductive biomass (g); RL, root length (cm); RS, root/shoot ratio; RW, root biomass (g); Sai, total biomass (g); SB, stem biomass (g); SD, stem diameter (mm). * meant the relevant level; *, p < 0.05; **, p < 0.01; ***, p < 0.001."

Fig. 3

Relationship between reproductive characters and soil factors in redundancy analyses. A, aeolian sand soil. B, calcareous soil. C, weathered residual soil. D, comprehensive analysis of three soil types. Ma, capitulum mass of each individual plant (g); Me, each acptitulum mass (g × 10-4); Ni, capitulum number of each individual plant; Ra, reproductive allocation. AK, available potassium content; AN, available nitrogen content; AP, available phosphorus content; Ceo, easily oxidized organic carbon content; Co, organic carbon content; Ct, total carbon content; Cws, water soluble carbon content; Ms. 10 cm, soil water content of 0-10 cm; Ms. 20 cm, soil water content of 10-20 cm; Ms. 0-20 cm, the average soil water content of 0-20 cm; pH, pH value; SH. 5 cm, soil hardness of 0-5 cm; SH. 10 cm, soil hardness of 5-10 cm; SH. 20 cm, soil hardness of 10-20 cm; SH. 0-20 cm, the average soil hardness of 0-20 cm; TN, total nitrogen content; TP, total phosphorus content; TS, total salt content."

Table 3

Variance explained by soil indicators and significance of the test results"

土壤因子
Soil indicator
ASS SS WB 综合分析 Comprehensive analysis
解释量
Variance explained (%)
F p 解释量
Variance explained (%)
F p 解释量
Variance explained (%)
F p 解释量
Variance explained (%)
F p
AK 0.10 < 0.1 0.817 6.02 3.7 0.053 3.10 0.6 0.468 1.45 2.6 0.101
AN 0.66 0.7 0.424 10.04 6.5 0.014 0.20 < 0.1 0.933 <0.01 < 0.1 0.969
AP 0.02 < 0.1 0.973 2.44 1.4 0.227 21.90 5.0 0.035 0.06 0.1 0.803
Ceo 0.28 0.3 0.613 0.33 0.2 0.685 0.30 < 0.1 0.841 0.05 < 0.1 0.807
Co 1.34 1.3 0.247 4.17 2.5 0.112 2.70 0.5 0.487 0.28 0.5 0.468
pH 2.16 2.2 0.132 0.80 0.5 0.494 0.10 < 0.1 0.910 1.18 2.1 0.144
SH 0.25 0.2 0.644 0.55 0.3 0.590 43.60 13.9 0.002 0.17 0.3 0.593
SH. 5 cm 1.57 1.6 0.208 1.93 1.1 0.282 20.90 4.8 0.038 0.27 0.5 0.499
SH. 10 cm 0.36 0.4 0.572 0.12 < 0.1 0.849 29.00 7.3 0.014 0.31 0.6 0.466
SH. 20 cm 0.11 0.1 0.783 5.25 3.2 0.071 37.30 10.7 0.004 0.05 < 0.1 0.820
Ms 6.44 6.8 0.011 47.88 53.3 < 0.001 32.40 8.6 0.007 16.89 36.4 < 0.001
Ms. 10 cm 8.46 9.2 0.003 43.20 44.1 < 0.001 15.40 3.3 0.084 16.62 35.7 < 0.001
Ms. 20 cm 0.68 0.7 0.407 35.26 31.6 < 0.001 18.20 4.0 0.062 8.79 17.3 < 0.001
Ct 2.81 2.9 0.087 0.71 0.4 0.484 3.00 0.6 0.471 0.26 0.5 0.497
TN 0.66 0.7 0.421 0.18 0.1 0.790 16.70 3.6 0.071 0.10 0.2 0.706
TP 0.13 0.1 0.769 0.98 0.6 0.467 55.40 22.3 < 0.001 1.32 2.4 0.122
TS 5.36 5.6 0.018 0.61 0.4 0.486 12.20 2.5 0.121 0.34 0.6 0.435
Cws 6.87 7.3 0.008 22.10 16.5 < 0.001 71.70 45.6 < 0.001 19.90 44.5 < 0.001
[1] Aysajan A ( 2018). Effect of habitat heterogeneity on floral trait differerntiation level in distylous species Primula nivalis. Acta Botanica Boreali-Occidentalia Sinica, 38, 158-165.
[ 艾沙江·阿不都沙拉木 ( 2018). 异质生境对二型花柱植物雪地报春花性状分化的影响. 西北植物学报, 38, 158-165.]
[2] Bao SD ( 2000). Soil Agricultural Chemistry Analysis. 3rd edn. China Agriculture Press, Beijing.
[ 鲍士旦 ( 2000). 土壤农化分析. 第三版. 中国农业出版社, 北京.]
[3] Chen L, Song NP, Wang L, Yang XG, Li XB, Su Y, Li YF ( 2017). A bibliometric appraisal of research on Artemisia from 1986-2016. Acta Prataculturae Sinca, 26, 223-235.
[ 陈林, 宋乃平, 王磊, 杨新国, 李学斌, 苏莹, 李月飞 ( 2017). 基于文献计量分析的蒿属植物研究进展. 草业学报, 26, 223-235.]
[4] Chen T, Wang YF ( 2014). Response of reproductive characteristics of Saussurea maceota Franch. to elevation at eastern Qinhai-Tibetan Plateau. Chinese Journal of Ecology, 33, 3216-3221.
[ 陈亭, 王一峰 ( 2014). 青藏高原东缘大耳叶风毛菊繁殖特征对海拔的响应. 生态学杂志, 33, 3216-3221.]
[5] Chen Y, Wang T, Li PK, Yao CL, Yuan ZL, Ye YZ ( 2016). Community characteristics and spatial distribution of dominant tree species in a deciduous broad-leaved forest of Muzhaling, Henan, China. Chinese Journal of Plant Ecology, 40, 1179-1188.
[ 陈云, 王婷, 李培坤, 姚成亮, 袁志良, 叶永忠 ( 2016). 河南木札岭温带落叶阔叶林群落特征及主要乔木空间分布格局. 植物生态学报, 40, 1179-1188.]
[6] Dong M ( 1996). Plant clonal growth in heterogeneous habitats, risk-spreading. Acta Phytoecologica Sinca, 20, 543-548.
[ 董鸣 ( 1996). 异质性生境中的植物克隆生长, 风险分摊. 植物生态学报, 20, 543-548.]
[7] Du HD, Jiao JY, Kou M, Miao F ( 2016). Adaptability of foliar morphological, anatomical, and physiological characteristics of the pioneer species Artemisia scoparia growing in a hilly-gully Loess Regin at different slope sites. Acta Ecologica Sinica, 36, 2914-2925.
[ 杜华栋, 焦菊英, 寇萌, 苗芳 ( 2016). 黄土高原先锋种猪毛蒿叶片形态解剖与生理特征对立地的适应性. 生态学报, 36, 2914-2925.]
[8] Fang H, Cheng S, Lin E, Yu G, Niu S, Wang Y, Xu M, Dang X, Li L, Wang L ( 2015). Elevated atmospheric carbon dioxide concentration stimulates soil microbial activity and impacts water-extractable organic carbon in an agricultural soil. Biogeochemistry, 122, 253-267.
doi: 10.1007/s10533-014-0039-2
[9] Flessa H, Ludwig B, Heil B, Merbach W ( 2015). The origin of soil organic C, dissolved organic C and respiration in a long-term maize experiment in Halle, Germany, determined by 13C natural abundance . Journal of Plant Nutrition and Soil Science, 163, 157-163.
[10] Gélin U, Wilson ME, Cripps J, Coulson G, Festabianchet M ( 2016). Individual heterogeneity and offspring sex affect the growth-reproduction trade-off in a mammal with indeterminate growth. Oecologia, 180, 1127-1135.
doi: 10.1007/s00442-015-3531-z
[11] Gray AN, Spies TA ( 1997). Microsite controls on tree seedling establishment in conifer forest canopy gaps. Ecology, 78, 2458-2473.
doi: 10.1890/0012-9658(1997)078[2458:MCOTSE]2.0.CO;2
[12] He WM, Zhong ZC ( 1997). The concept and research contents of plant propagation strategy. Journal of Biology, 14, 1-3.
[ 何维明, 钟章成 ( 1997). 植物繁殖对策的概念及其研究内容. 生物学杂志, 14, 1-3.]
[13] He YH, Zhao HL, Liu XP, Zhao XY, Li YL, Zhao W ( 2009). Reproductive allocation and its relationship with the size of corispermum elongatum in different sandy habitats. Arid Zone Research, 26, 59-64.
[ 何玉惠, 赵哈林, 刘新平, 赵学勇, 李玉霖, 赵玮 ( 2009). 不同类型沙地长穗虫实的繁殖分配及其与个体大小的关系. 干旱区研究, 26, 59-64.]
[14] Huang ZH, Lu QF, Chen YZ ( 2017). Comparative study on reproductive success of Corydalis sheareri(Papaveraceae) between alkaline limestone soil and red soil habitats in a karst area. Biodiversity Science, 25, 972-980.
[ 黄至欢, 陆奇丰, 陈颖卓 ( 2017). 地锦苗在石灰岩土壤和红壤生境中的繁殖成功的比较. 生物多样性, 25, 972-980.]
[15] Huo JS, Liu WG, Liu JG, Li HX, Xu Y, Maria N ( 2017). Driving forces of desert plant characteristics in a desert oasis transitional zone in Fukang, Xinjiang, China. Acta Ecologica Sinica, 37, 8304-8313.
[ 霍举颂, 刘卫国, 刘建国, 李宏侠, 徐悦, 玛丽娅·奴尔兰 ( 2017). 影响阜康荒漠-绿洲过渡带荒漠植物数量特征的土壤驱动力分析. 生态学报, 37, 8304-8313.]
[16] Jiao DZ, Jiang QX, Cao R, Yan QY, Yang YF ( 2018). Quantitative characteristics and dynamics of the rhizome of Phragmites australis populations in heterogeneous habitats in the Zhalong Wetland. Acta Ecologica Sinica, 38, 3432-3440.
[ 焦德志, 姜秋旭, 曹瑞, 闫秋月, 杨允菲 ( 2018). 扎龙湿地不同生境芦苇种群根茎数量特征及动态. 生态学报, 38, 3432-3440.]
[17] Jiao JY, Zhang ZG, Jia YF, Wang N, Bai WJ ( 2008). Species camposition and classification of natural vegetation in the abandoned lands of the hilly-gullied region of North Shaanxi Province. Acta Ecologica Snica, 28, 2981-2997.
[ 焦菊英, 张振国, 贾燕锋, 王宁, 白文娟 ( 2008). 陕北丘陵沟壑区撂荒地自然恢复植被的组成结构与数量分类. 生态学报, 28, 2981-2997.]
[18] Johnson BG, Verburg PS, Arnone JA ( 2016). Plant species effects on soil nutrients and chemistry in arid ecological zones. Oecologia, 182, 1-19.
doi: 10.1007/s00442-016-3559-8
[19] Kendall BE, Fox GA, Fujiwara M, Nogeire TM ( 2011). Demographic heterogeneity, cohort selection, and population growth. Ecology, 92, 1985-1993.
doi: 10.1890/11-0079.1
[20] Koltes S ( 2006). Vegetation and fertilization effects on soil water soluble organic carbon. Current Applied Physics, 6, 182.
doi: 10.1016/j.cap.2005.07.036
[21] L'Hérault V, Franke A, Lecomte N, Alogut A, Bêty J ( 2013). Landscape heterogeneity drives intra-population niche variation and reproduction in an arctic top predator. Ecology & Evolution, 3, 2867-2879.
[22] Larson JE, Funk JL ( 2016). Regeneration: An overlooked aspect of trait—Based plant community assembly models. Journal of Ecology, 104, 1284-1298.
doi: 10.1111/1365-2745.12613
[23] Li B, Liu ZJ, Zhao ZG, Hu C, Ren HM, Wu GQ ( 2013). Influence of altitude on reproductive traits and reprodyctive allocation of different colours in Anemone obtusiloba populations. Acta Prataculturae Sinica, 22, 10-19.
[ 李冰, 刘左军, 赵志刚, 胡春, 任红梅, 伍国强 ( 2013). 海拔对钝裂银莲花不同花色居群间繁殖特征及繁殖分配的影响. 草业学报, 22, 10-19.]
[24] Li KC, Guo SJ ( 2012). Main Feed and Poisonous Plants in Ningxia. Sunshine Press, Yinchuan.
[ 李克昌, 郭思加 ( 2012). 宁夏主要饲用及有毒有害植物. 阳光出版社, 银川.]
[25] Liu F, Wang SJ, Luo HB, Liu YS, Liu HY ( 2008). Micro-habitats in karst forest ecosystem and variability of soils. Acta Pedologica Sinica, 45, 1055-1062.
[ 刘方, 王世杰, 罗海波, 刘元生, 刘鸿雁 ( 2008). 喀斯特森林生态系统的小生境及其土壤异质性. 土壤学报, 45, 1055-1062.]
[26] Liu FY, Zhang ZX, Wang XQ, Li K, Sun YY, Zhang CH ( 2011). Effects of habitat heterogeneity on early growth of Quercus franchetii natural regeneration seedlings in the Jinsha River dry-hot valley. Chinese Journal of Applied and Environmental Biology, 17, 338-344.
[ 刘方炎, 张志翔, 王小庆, 李昆, 孙永玉, 张春华 ( 2011). 生境异质性对金沙江干热河谷锥连栎天然更新幼苗早期生长的影响. 应用与环境生物学报, 17, 338-344.]
[27] Liu RJ, Li ZC, Wang B, Wu YC, Cheng CF, Ma SJ, Ge-Ri LT ( 2013). Seasonal dynamics of soil water-soluble organic carbon in secondary forests and Chinese fir plantattions in hilly region of northwest Zhejiang Province, East China. Chinese Journal of Ecology, 32, 1385-1390.
[ 刘荣杰, 李正才, 王斌, 吴亚丛, 程彩芳, 马少杰, 格日乐图 ( 2013). 浙西北丘陵地区次生林与杉木林土壤水溶性有机碳季节动态. 生态学杂志, 32, 1385-1390.]
[28] Liu XD, Zhang KB, Wang LL, Yang XH ( 2015). How enclosure affects communitycharacteristics of the sandy grassland in semi-arid areas of northwestern China. Journal of Beijing Forestry University, 37(2), 48-54.
[ 刘小丹, 张克斌, 王黎黎, 杨晓晖 ( 2015). 封育对半干旱区沙化草地群落特征的影响. 北京林业大学学报, 37(2), 48-54.]
[29] Liu ZJ, Du GZ, Chen JK ( 2002). Size-dependent reproductive allocation of Ligularia virgaurea in different habitats. Acta Phytoecologica Sinica, 26, 44-50.
[ 刘左军, 杜国祯, 陈家宽 ( 2002). 不同生境下黄帚橐吾(Ligularia virgaurea)个体大小依赖的繁殖分配. 植物生态学报, 26, 44-50.]
[30] Liu ZM, Jiang DM, Gao HY, Chang XL ( 2003 a). Relationships between plant reproductive strategy and disturbance. Chinese Journal Apploed Ecology, 14, 418-422.
[ 刘志民, 蒋德明, 高红瑛, 常学礼 ( 2003 a). 植物生活史繁殖对策与干扰关系的研究. 应用生态学报, 14, 418-422.]
[31] Liu ZM, Zhao XY, Fan SX ( 2003 b). Grime’s CSR model and his philosphy of ecological research. Advance in Earth Sciences, 18, 603-608.
[ 刘志民, 赵晓英, 范世香 ( 2003 b). Grime的植物对策思想和生态学研究理念. 地球科学进展, 18, 603-608.]
[32] Ma DZ ( 1986). Flora of Ningxia. Ningxia People’s Press, Yinchuan.
[ 马德滋 ( 1986). 宁夏植物志. 宁夏人民出版社, 银川.]
[33] Mayer C, Adler L, Armbruster WS, Dafni A, Eardley C, Huang S-G, Kevan PG, Ollerton J, Packer L, Ssymank A, Stout JC, Potts SG ( 2011). Pollination ecology in the 21st Century: Key questions for future research. Journal of Pollination Ecology, 3, 8-23.
doi: 10.26786/1920-7603
[34] Olmo M, Lozano AM, Barrón V, Villar R ( 2016). Spatial heterogeneity of soil biochar content affects soil quality and wheat growth and yield. Science of the Total Environment, 562, 690-700.
doi: 10.1016/j.scitotenv.2016.04.089
[35] Palmer MW, Dixon PM ( 2010). Small-scale environmental heterogeneity and the analysis of species distributions along gradients. Journal of Vegetation Science, 1, 57-65.
[36] Quan DJ, Wei Y, Zhou XQ, Yan C ( 2012). Growth dynamics, biommass allocation and ecological adaptation in Ceratocarpus arenarius L. Acta Ecologica Sinca, 32, 3352-3358.
[ 全杜娟, 魏岩, 周晓青, 严成 ( 2012). 角果藜的生长动态及其生殖配置. 生态学报, 32, 3352-3358.]
[37] Ramakrishna RN, Charles DK, Hirofumi H, William MJ, Stephen CP, Compton JT, Ranga BM, Steven WR ( 2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 1560-1563.
doi: 10.1126/science.1082750
[38] Ren MX, Jiang XH, Zhang DY ( 2012). Some important questions in plant reproductive ecology. Biodiversity Science, 20, 241-249.
[ 任明迅, 姜新华, 张大勇 ( 2012). 植物繁殖生态学的若干重要问题. 生物多样性, 20, 241-249.]
[39] Scaglia B, Adani F ( 2009). Biodegradability of soil water soluble organic carbon extracted from seven different soils. Journal of Environmental Sciences, 21, 641-646.
doi: 10.1016/S1001-0742(08)62319-0
[40] Shen YF, Tao WH, Li SQ ( 2011). Effects of fertilization dissolved organic carbon and nitrogen in the ryegrass farmland soil in wind-water erosion crisscross region on the Loess Plateau. Journal of Natural Resources, 26, 1387-1393.
[ 沈玉芳, 陶武辉, 李世清 ( 2011). 黄土高原水蚀风蚀交错区施肥对黑麦草农田土壤水溶性有机碳、氮的影响. 自然资源学报, 26, 1387-1393.]
[41] Singh AK, Rai A, Pandey V, Singh N ( 2017). Contribution of glomalin to dissolve organic carbon under different land uses and seasonality in dry tropics. Journal of Environmental Management, 192, 142-149.
[42] Song G, An N, Ning Z, He Y, Shi P, Zhang J, He N ( 2018). Climate warming impacts on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow. Soil Biology & Biochemistry, 116, 224-236.
[43] Song NP, Wang X, Chen L, Xue Y, Chen J, Sui JM, Wang L, Yang XG ( 2018). Co-existence mechanisms of plant species within “soil islands” habitat of desert steppe. Biodiversity Science, 26, 667-677.
[ 宋乃平, 王兴, 陈林, 薛毅, 陈娟, 随金明, 王磊, 杨新国 ( 2018). 荒漠草原“土岛”生境群落物种共存机制. 生物多样性, 26, 667-677.]
[44] Tang Z, Deng L, An H, Yan W, Shangguan Z ( 2017). The effect of nitrogen addition on community structure and productivity in grasslands: A meta-analysis. Ecological Engineering, 99, 31-38.
doi: 10.1016/j.ecoleng.2016.11.039
[45] Vavrek MC, Mcgraw JB, Yang HS ( 1997). Within-population variation in demography of taraxacum officinale: Season- and size-dependent survival, growth and reproduction. Journal of Ecology, 85, 277-287.
doi: 10.2307/2960501
[46] Wang HJ, Chang SL, Zhang YT, Xie J, He P, Song CC, Sun XJ ( 2016). Density-denpendent effects in Picea schrenkiana forests in Tianshan Mountains. Biodiversity Science, 24, 252-261.
[ 王慧杰, 常顺利, 张毓涛, 谢锦, 何平, 宋成程, 孙雪娇 ( 2016). 天山雪岭云杉森林群落的密度制约效应. 生物多样性, 24, 252-261.]
[47] Wang JC, Shi X, Zhang DY, Yi LK ( 2009). The morphological plasticity of Eremosparton songoricum a long heterogeneous micro-habitats of continuous moisture gradient changes in sand dunes. Acta Ecologica Snica, 29, 3641-3648.
[ 王建成, 施翔, 张道远, 尹林克 ( 2009). 沙丘坡面异质性小生境中准噶尔无叶豆对水分条件变化的响应. 生态学报, 29, 3641-3648.]
[48] Wang X, Yang X, Wang L, Chen L, Song N, Gu J, Xue Y ( 2018). A six-year grazing exclusion changed plant species diversity of a Stipa breviflora desert steppe community, northern China. PeerJ, 6, e4359. DOI: 10.7717/peerj.4359.
[49] Wang XG, Li CS, Yong L, Hua KK, Zhou MH ( 2016). The impact of nitrogen amendment and crop growth on dissolved organic carbon in soil solution. Journal of Mountain Science, 13, 95-103.
doi: 10.1007/s11629-015-3556-0
[50] Wang YY, Shi S, Lin F, Yuan ZQ, Ye J, Wang XG, Hao ZQ ( 2014). Reproductive traits and their correlation among woody plants in a broadleaf-Korean pine (Pinus koraiensis) mixed forest in Northeast China. Chinese Science Bulletin, 59, 2407-2415.
[ 王芸芸, 师帅, 蔺菲, 原作强, 叶吉, 王绪高, 郝占庆 ( 2014). 长白山阔叶红松林木本植物繁殖特征及其关联性. 科学通报, 59, 2407-2415.]
[51] Xiao H, Xu CL, Zhang DG, Chai JL, Pan TT, Yu XJ ( 2018). Effects of simulated trampling and rainfall in sexual reproduction characteristics of Medicago ruthenica var. inschanica on alpine meadow. Chinese Journal of Ecology, 37, 1976-1982.
[ 肖红, 徐长林, 张德罡, 柴锦隆, 潘涛涛, 鱼小军 ( 2018). 模拟践踏和降水对高寒草甸阴山扁蓿豆有性繁殖特征的影响. 生态学杂志, 37, 1976-1982.]
[52] Xiao L, Liu GB, Li P, Xue S ( 2017). Effects of nitrogen addition and elevated CO2 concentration on soil dissolved organic carbon and nitrogen in rhizosphere and non-rhizosphere of Bothriochloa ischaemum. Chinese Journal of Applied Ecology, 28, 64-70.
[ 肖列, 刘国彬, 李鹏, 薛萐 ( 2017). 氮素添加和CO2浓度升高对白羊草根际和非根际土壤水溶性有机碳、氮的影响. 应用生态学报, 28, 64-70.]
[53] Xu GF, Shen SC, Zhang FD ( 2014). Adaptability and reproductive characteristics of Mikania micrantha H.B.K under different habitats. Ecology and Encironmental Sciences, 23, 1258-1264.
[ 徐高峰, 申时才, 张付斗 ( 2014). 异质环境下入侵植物薇甘菊的适应性与繁殖特性. 生态环境学报, 23, 1258-1264.]
[54] Xu Z ( 1999). Plant development and reproduction: Advances and prospectives. Acta Botanica Sinica, 41, 909-920.
[55] Yu M, Zhou ZY, Kang FF, Ouyang S, Mi XC, Sun JX ( 2013). Gradient analysis and environmental interpretation of understory herb-layer communities in Xiaoshegou of Lingkong Mountain, Shanxi, China. Chinese Journal of Plant Ecology, 37, 373-383.
[ 余敏, 周志勇, 康峰峰, 欧阳帅, 米湘成, 孙建新 ( 2013). 山西灵空山小蛇沟林下草本层植物群落梯度分析及环境解释. 植物生态学报, 37, 373-383.]
[56] Yue YM, Wang KL, Xiong Y ( 2012). Feasibility of monitoring karst standing conditions with vegetation spectra. Spectroscopy and Spectral Anaysis, 32, 1891-1894.
[ 岳跃民, 王克林, 熊鹰 ( 2012). 基于植被光谱监测喀斯特异质性生境可行性研究. 光谱学与光谱分析, 32, 1891-1894.]
[57] Zhang DY ( 2004). Evolution of Plant Life History and Reproductive Ecology. Science Press, Beijing.
[ 张大勇 ( 2004). 植物生活史进化与繁殖生态学. 科学出版社, 北京.]
[58] Zhang DY, Jiang XH ( 2001). Mating system evoluion, resource allocation, and genetic diversity in plans. Acta Phytoecologica Sinica, 25, 130-143.
[ 张大勇, 姜新华 ( 2001). 植物交配系统的进化、资源分配对策与遗传多样性. 植物生态学报, 25, 130-143.]
[59] Zhang ZL, Tuo F, Shang H, Zhang YM ( 2009). Differernce in growth status and ecological adaptability strategy of large-fruit seabuckthom under different site conditions. Journal of Southwest Forestry University (Natural Sciences), 29(5), 12-15.
[ 张治来, 拓飞, 尚华, 张永满 ( 2009). 不同立地类型大果沙棘生长及生态适应对策差异. 西南林业大学学报(自然科学), 29(5), 12-15.]
[60] Zhao LC, Zhao CZ, Wang XP, Wen J ( 2017). Interrelations between environmental factors and distribution of Tamarix gansuensis in Qinwangchuan wetland. Acta Ecologica Sinica, 38, 3422-3431.
[ 赵连春, 赵成章, 王小鹏, 文军 ( 2017). 秦王川湿地柽柳分布与环境因子的关系. 生态学报, 38, 3422-3431.]
[61] Zhao RF, Zhou HR, Qian YB, Zhang JJ ( 2006). Interrelations between plant communities and environmental factors of wetlands and surrounding lands in mid- and lower reaches of Tarim River. Chinese Journal of Applied Ecology, 17, 955-960.
[ 赵锐锋, 周华荣, 钱亦兵, 张建军 ( 2006). 塔里木河中下游湿地及周边植物群落与环境因子的关系初探. 应用生态学报, 17, 955-960.]
[1] Song Naiping, Wang Xing, Chen Lin, Xue Yi, Chen Juan, Sui Jinming, Wang Lei, Yang Xinguo. Co-existence mechanisms of plant species within “soil islands” habitat of desert steppe [J]. Biodiv Sci, 2018, 26(7): 667-677.
[2] YAN Bao-Long, WANG Zhong-Wu, QU Zhi-Qiang, WANG Jing, HAN Guo-Dong. Effects of enclosure on carbon density of plant-soil system in typical steppe and desert steppe in Nei Mongol, China [J]. Chin J Plan Ecolo, 2018, 42(3): 327-336.
[3] JIN Yu-Xi, LIU Fang, ZHANG Jun, HAN Meng-Qi, WANG Zhong-Wu, QU Zhi-Qiang, HAN Guo-Dong. Net ecosystem carbon exchange characteristics in Stipa breviflora desert steppe with different stocking rates [J]. Chin J Plan Ecolo, 2018, 42(3): 361-371.
[4] Ju-Ying HUANG, Hai-Long YU, Li-Li WANG, Kai-Bo MA, Yang-Mei KANG, Ya-Xian DU. Effects of different nitrogen:phosphorus levels on the growth and ecological stoichiometry of Glycyrrhiza uralensis [J]. Chin J Plan Ecolo, 2017, 41(3): 325-336.
[5] Ju-Ying HUANG, Hai-Long YU. Responses of growth of four desert species to different N addition levels [J]. Chin J Plan Ecolo, 2016, 40(2): 165-.
[6] Yong-Qiang LI, Zhi-Guo LI, Zhi DONG, Zhong-Wu WANG, Zhi-Qiang QU, Guo-Dong HAN. Effects of grazing intensity on windblown sediment mass flux and particle size distribution in the desert steppe of Nei Mongol, China [J]. Chin J Plan Ecolo, 2016, 40(10): 1003-1014.
[7] HUANG Chen, ZHANG Yu, WANG Jing, LI Yuan-Heng, WU Shi-Liu, TA Na, ZHAO Meng-Li, HAN Guo-Dong, LANG Bada-Lahu, and ZHAO Yan-Fang. Spatial heterogeneity of vegetation under different grazing intensities in a Stipa breviflora desert steppe [J]. Chin J Plan Ecolo, 2014, 38(11): 1184-1193.
[8] YU Hong-Ying, CHEN Ying-Ting, XU Zhen-Zhu, and ZHOU Guang-Sheng. Analysis of relationships among leaf functional traits and economics spectrum of plant species in the desert steppe of Nei Mongol [J]. Chin J Plan Ecolo, 2014, 38(10): 1029-1040.
[9] WANG Hui, ZHOU Guang-Sheng, JIANG Yan-Ling, SHI Yao-Hui, and XU Zhen-Zhu. Interactive effects of changing precipitation and elevated CO2 concentration on photosynthetic parameters of Stipa breviflora [J]. Chin J Plan Ecolo, 2012, 36(7): 597-606.
[10] LIU Tao, ZHANG Yong-Xian, XU Zhen-Zhu, ZHOU Guang-Sheng, HOU Yan-Hui, and LIN Lin. Effects of short-term warming and increasing precipitation on soil respiration of desert steppe of Inner Mongolia [J]. Chin J Plan Ecolo, 2012, 36(10): 1043-1053.
[11] Fudou Zhang, Tianlin Li, Gaofeng Xu, Di Wu, Yuhua Zhang. Comparative Analysis of Growth Types and Reproductive Characteristics of Mikania micrantha [J]. Chin Bull Bot, 2011, 46(1): 59-66.
[12] DU Feng, LIANG Zong-Suo, SHAN Lun, CHEN Xiao-Yan. INTRASPECFIC AND INTERSPECFIC COMPETITION OF ARTEMISIA SCOPARIA UNDER DIFFERENT SITE CONDITIONS IN THE HILLY REGION OF LOESS PLATEAU [J]. Chin J Plan Ecolo, 2006, 30(4): 601-609.
[13] Zhao Weizhi. A Preliminary Study on the Arenaceous Adaptability of Sophora moorcroftiana [J]. Chin J Plan Ecolo, 1998, 22(4): 379-384.
[14] Huang De-hua and Chen Zuo-zhong. The Characteristics of Nitrogen and Ash Content of 37 Species of Plants on Desert Steppe, Inner Mongolia [J]. Chin Bull Bot, 1989, 6(03): 174-177.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Ki-Oug YOO, Su-Kil JANG. Infrageneric relationships of Korean Viola based on eight chloroplast markers[J]. J Syst Evol, 2010, 48(6): 474 -481 .
[2] Ding Jixiang. Improvement of the Three Tools to Make Field Sampling Investigation of the Plant Community[J]. Chin J Plan Ecolo, 1983, 7(3): 260 -264 .
[3] Liu Yang, Xiaoying Mu, Chao Liu, Jinghui Cai, Ke Shi, Wenjiao Zhu, and Qing Yang. Overexpression of potato miR482e enhanced plant sensitivity to Verticillium dahliae infection[J]. J Integr Plant Biol, 2015, 57(12): 1078 -1088 .
[4] . [J]. Chin J Plan Ecolo, 2013, 37(12): 1173 .
[5] YANG Yong. Ontogeny and Metamorphic Patterns of Female Reproductive Organs of Ephedra sinica Stapf (Ephedraceae)[J]. J Integr Plant Biol, 2001, 43(10): 1011 -1017 .
[6] Jie Liu, Mengjie Li, Qi Zhang, Xin Wei and Xuehui Huang. Exploring the molecular basis of heterosis for plant breeding[J]. J Integr Plant Biol, 0, (): 0 .
[7] Fan Zi-Teng Wu Yu-Ling Wang Xin-Ju Li Tai-Qiang Jiang-Yun GAO. Effects of symbiotic fungi on seed germination of interspecific hybrid progenies in Orchidaceae[J]. , , (): 0 .
[8] Zhu Mu-yuan,Huang Chun-nong, Xu A-bing and Yuan Miao-bao. In vitro Selection of Aluminum-Tolerant Variant of Barley Callus and Its Characterization[J]. J Integr Plant Biol, 1990, 32(10): .
[9] BI Zhi-Ming, WANG Zheng-Tao, XU Luo-Shan. Chemical Constituents of Dendrobium moniliforme[J]. J Integr Plant Biol, 2004, 46(1): 124 -126 .
[10] LI Shan-Jia, ZHANG You-Fu, CHEN Tuo. Relationships between foliar stable carbon isotope composition and environmental factors and leaf element contents of Pinus tabulaeformis in northwestern China[J]. Chin J Plan Ecolo, 2011, 35(6): 596 -604 .