Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (9): 742-752.doi: 10.17521/cjpe.2018.0244

• Research Articles • Previous Articles     Next Articles

Distribution, community structures and species diversity of larch forests in North China

FANG Wen-Jing1,CAI Qiong1,ZHU Jiang-Ling1,JI Cheng-Jun1,YUE Ming2,GUO Wei-Hua3,ZHANG Feng4,GAO Xian-Ming5,TANG Zhi-Yao1,FANG Jing-Yun1,*()   

  1. 1Institute of Ecology, College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
    2Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
    3Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
    4Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
    5State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
  • Received:2018-10-03 Accepted:2018-12-24 Online:2020-01-03 Published:2019-09-20
  • Contact: FANG Jing-Yun E-mail:jyfang@urban.pku.edu.cn
  • Supported by:
    Supported by the National Basic Work of Science and Technology of China(2011FY110300);Supported by the National Basic Work of Science and Technology of China(2015FY210200)

Abstract:

Aims Larch forests are important for timber harvesting and water-soil conservation in North China. To explore the distribution, community structure and species diversity of larch forests is important for the vegetation conservation and sustainable utilization in North China.
Methods We collected species composition and local environment for 215 forest plots dominated by three common larch species, namely, Larix principis-rupprechtii, L. kaempferi and L. chinensis, in North China during 2000-2017. Among these types, L. kaempferi forests are planted, while L. chinensis forests are almost natural, and most of L. principis-rupprechtii forests are natural. Based these data, we used the canonical correspondence analysis (CCA) to explore the relationship between species composition and environment. We also explored the pattern of community structure and species diversity of these three forests in relation to environmental factors.
Important findings Mean annual air temperature (MAT) was the most important factor for the distribution of these larch forests. The proportion of natural forest decreased, while that of planted forest increased, with MAT. Diameter at breast height (DBH) and height distribution of three larch forests were right-skewed, indicating that all of these larch forests are at relatively stable successional stage. Species richness differ remarkably among different larch forests, which was highest in the L. chinensis forests (39.3 ± 17.9), followed by the L. kaempferi forests (37.4 ± 22.4), and lowest in the L. principis-rupprechtii forests (planted forests 27.2 ± 17.7, natural forests 27.5 ± 13.8). Species richness, the maximum DBH and the maximum height decreased with latitudes and longitudes. Species richness, the maximum DBH and the maximum height increased with annual precipitation. However, species richness showed no significant trend, and the maximum height increased, while the maximum DBH decreased, with MAT. The patterns of species richness along geographical and climatic gradients were consistent between the planted, the natural and the overall (including both planted and natural) larch forests. However, the patterns of community structure differed remarkably among planted, natural and overall larch forests. The maximum height of planted forests increased, while that of natural forests decreased, with latitude and longitude. The maximum DBH and height of natural forests decreased, while those of planted forests increased, with MAT and annual precipitation, respectively.

Key words: larch forest, Larix principis-rupprechtii, Larix kaempferi, Larix chinensis, community structure, species composition, species diversity

Table 1

Investigation area of three larch forests in North China"

落叶松林类型 Larch forest type 起源类型 Origination 样方数量 No. of plots 主要调查地点 Main sites
华北落叶松林
Larix principis-rupprechtii forest
人工林 Planted forest 66 山东: 泰山等
Shandong: Mt. Taishan etc.
天然林 Natural forest 84 河北: 雾灵山、小五台山等
Hebei: Mt. Wuling, Mt. Xiaowutai etc.
内蒙古: 大青山
Nei Mongol: Mt. Daqing
山西: 太行山、中条山等
Shanxi: Mt. Taihang, Mt. Zhongtiao etc.
宁夏: 六盘山
Ningxia: Mt. Liupan
日本落叶松林 L. kaempferi forest 人工林 Planted forest 36 山东: 崂山、昆嵛山等
Shandong: Mt. Laoshan, Mt. Kunyu etc.
河南: 玉皇山、龙峪湾林场
Henan: Mt. Yuhuang, Longyuwan Forest Farm
太白红杉林 L. chinensis forest 天然林 Natural forest 29 陕西: 太白山、朱雀森林公园等
Shaanxi: Mt. Taibai, Zhuque Forest Park etc.
总计 Total 215

Fig. 1

Sampling sites of the three larch forests in North China."

Fig. 2

Canonical correspondence analysis ordinations oflarch forests along geographical (A) and environmental variables (B) in North China. Environmental factors include Aspect, Slope, mean annual air temperature (MAT) and mean annual precipitation (MAP). LCF, L. chinensis forest; LKF, L. kaempferi forest; LPF, Larix principis-rupprechtii forest; NF, natural forest; PF, planted forest."

Table 2

Scores of the canonical correspondence analysis ordinations of larch forests in North China"

地理因素 Geographical factor CCA 1 CCA 2 R2 p
经度 Longitude 0.89 -0.46 0.44 <0.01
纬度 Latitude 0.84 -0.55 0.42 <0.01
海拔 Altitude -0.96 0.27 0.13 <0.01
气候及地形因素
Climatic and topographical factors
CCA 1 CCA 2 R2 p
年降水量 MAP 0.19 -0.98 0.08 <0.01
年平均气温 MAT 0.99 -0.11 0.53 <0.01
坡度 Slope -0.65 0.76 0.15 <0.01
坡向 Aspect -0.75 0.66 0.03 0.1

Table 3

Important value of the main tree species in the canopy of three larch forests in North China"

华北落叶松(人工林)
LPF (PF)
重要值
IV (%)
华北落叶松(天然林)
LPF (NF)
重要值
IV (%)
日本落叶松林(人工林)
LKF (PF)
重要值
IV (%)
太白红杉林(天然林)
LCF (NF)
重要值
IV (%)
华北落叶松
Larix principis-
rupprechtii

油松 Pinus tabuliformis
辽东桤木
Alnus sibirica
蒙古栎
Quercus mongolica
白桦
Betula platyphylla
红桦 B. albosinensis
华山松 Pinus armandii
其他种 Other species
88.7


2.8
1.8

1.5

1.3

0.8
0.5
2.7
华北落叶松
L. principis-rupprechtii
油松 P. tabuliformis
红桦 B. albosinensis
白桦 B. platyphylla
白扦 Picea meyeri
青扦 P. wilsonii
黑桦 B. dahurica
山杨 Populus davidiana
红皮云杉 P. koraiensis
胡桃楸 Juglans mandshurica
辽东栎 Q. wutaishanica
其他种 Other species
74.6
6.0
6.0
3.0
1.5
1.5
1.2
0.9
0.9
0.8
0.5
3.4
日本落叶松 L. kaempferi
水榆花楸 Sorbus alnifolia
白檀 Symplocos paniculata
三桠乌药 Lindera obtusiloba
麻栎 Q. acutissima
Toxicodendron vernicifluum
日本花柏 Chamaecyparis pisifera
赤松 P. densiflora
胡桃楸 Juglans mandshurica
蓝果树 Nyssa sinensis
辽东栎 Q. wutaishanica
椴树 Tilia tuan
水曲柳 Fraxinus mandschurica
华山松 P. armandii
刺槐 Robinia pseudoacacia
其他种 Other species
70.2
5.3
4.2
2.8
2.1
2.0
1.9
0.9
0.8
0.7
0.7
0.6
0.6
0.6
0.6
6.3
太白红杉 L. chinensis
巴山冷杉 Abies fargesii
金背杜鹃
Rhododendron clementinae subsp. aureodorsale
糙皮桦 B. utili
陕甘花楸
Sorbus koehneana
白桦 B. platyphylla
其他种 Other species
81.2
8.1
5.4

2.2
1.5
0.6
1.0

Fig. 3

Species richness of the tree (A), shrub (B) and herb (C) layers in the Larix principis-rupprechtii, L. kaempferi and L. chinensis forests in North China. Different lowercase letters mean the result of multiple comparisons. LCF, L. chinensis forest; LKF, L. kaempferi forest; LPF, L. principis-rupprechtii forest; NF, natural forest; PF, planted forest."

Table 4

Species richness of larch forests in North China"

落叶松林类型
Forest type
乔木层
Tree layer
灌木层
Shrub layer
草本层
Herb layer
总体
Total
华北落叶松(人工林) LPF (PF) 2.5 ± 2.1b (1-9) 4.7 ± 4.1c (0-18) 20.4 ± 15.8b (0-55) 27.2 ± 17.7b (0-63)
华北落叶松(天然林) LPF (NF) 3.1 ± 2.1b (1-11) 5.8 ± 5.0bc (0-29) 11.4 ± 19.1b (0-50) 27.5 ± 13.8b (1-65)
日本落叶松林(人工林) LKF (PF) 5.1 ± 2.9a (1-11) 13.8 ± 9.1a (4-38) 20.4 ± 15.1b (4-56) 37.4 ± 22.4ab (14-81)
太白红杉林(天然林) LCF (NF) 2.2 ± 1.5b (1-6) 7.7 ± 3.6ab (0-22) 29.6 ± 15.8a (12-73) 39.3 ± 17.9a (17-98)
所有天然林 All natural forest 2.9 ± 2.0a (1-11) 6.2 ± 4.7a (0-29) 21.8 ± 13.4a (0-73) 30.5 ± 15.8a (1-98)
所有人工林 All planted forest 3.5 ± 2.7a (1-11) 7.9 ± 7.6a (0-38) 20.4 ± 15.5a (0-56) 30.8 ± 20a (1-81)

Table 5

Diameter at breast height (DBH) and height structure of dominant species in three larch forests in North China"

胸径/树高
DBH/Height
优势种
Dominant species
数量
Number
均值±标准偏差
Mean ± SD
最小值-最大值
Min-Max
偏度系数
Skewness
峰度系数
Kurtosis
胸径 DBH (cm) 华北落叶松(人工林) LPF (PF) 4 251 15.1 ± 6.4d 3.0-36.2 0.2 2.2
华北落叶松(天然林) LPF (NF) 4 464 18.0 ± 7.5c 3.0-75.8 0.7 4.4
日本落叶松(人工林) LKF (PF) 1 463 20.7 ± 8.4a 3.2-56.0 0.8 3.7
太白红杉(天然林) LCF (NF) 1 278 19.5 ± 9.8b 3.0-80.0 0.8 4.5
所有天然林 All natural forest 5 742 18.3 ± 8.1a 3.0-80.0 0.8 4.8
所有人工林All planted forest 5 714 16.5 ± 7.4b 3.0-56.0 0.7 3.8
树高 Height (m) 华北落叶松(人工林) LPF (PF) 4 251 11.3 ± 4.2c 2.2-35.5 0.6 3.6
华北落叶松(天然林) LPF (NF) 4 464 12.3 ± 4.3b 2.0-30.0 0.3 3.2
日本落叶松(人工林) LKF (PF) 1 463 17.6 ± 8.2a 2.3-39.5 0.6 2.8
太白红杉(天然林) LCF (NF) 1 278 9.1 ± 4.8d 2.0-30.0 2.0 8.2
所有天然林 All natural forest 5 742 11.6 ± 4.6b 2.0-30.0 0.6 3.6
所有人工林 All planted forest 5 714 12.9 ± 6.1a 2.2-39.5 1.4 5.6

Fig. 4

Changes in community structure and species richness with latitude, longitude, mean annual temperature (MAT) and precipitation (MAP) for the larch forests in North China. The structure measurements of forests include the maximum diameter at breast height (DBHmax) and height (Heightmax). LCF, L. chinensis forest; LKF, L. kaempferi forest; LPF, L. principis-rupprechtii forest; NF, natural forest; PF, planted forest."

[1] Aiba S, Kitayama K ( 1999). Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecology, 140, 139-157.
[2] Chen DS, Sun XM, Zhang SG ( 2016). Biomass, carbon storage and nutrient characteristics in Larix kaempferi plantations at different stand ages. Chinese Journal of Applied Ecology, 27, 3759-3768.
[ 陈东升, 孙晓梅, 张守攻 ( 2016). 不同年龄日本落叶松人工林生物量、碳储量及养分特征. 应用生态学报, 27, 3759-3768.]
[3] Cheng WC ( 1983). Chinese Dendrology. Vol. 1. China Forestry Publishing House, Beijing.
[ 郑万均 ( 1983). 中国树木志(第1卷). 中国林业出版社, 北京.]
[4] Cheng WC, Fu LK ( 1978). Gymnospermae. In: Editorial Committee of Flora of China, Chinese Academy of Sciences. Flora of China. Science Press, Beijing. 169-196.
[ 郑万均, 傅立国 ( 1978). 裸子植物门. 出自中国科学院中国植物志编辑委员会编著. 中国植物志. 科学出版社, 北京. 169-196.]
[5] Devi N, Hagedorn F, Moiseev P, Bugmann H, Shiyatov S, Mazepa V, Rigling A ( 2008). Expanding forests and changing growth forms of Siberian larch at the Polar Urals treeline during the 20th century. Global Change Biology, 14, 1581-1591.
[6] Duan RY, Wang XA, Huang MY, Wang ZG, Wu GL ( 2010). Ecological characteristics of Larix chinensis population near timberline on Taibai Mountain in China. Acta Ecologica Sinica, 30, 519-526.
[ 段仁燕, 王孝安, 黄敏毅, 王志高, 吴甘霖 ( 2010). 太白山林线附近太白红杉种群的生态特征. 生态学报, 30, 519-526.]
[7] Editorial Committee of Flora of China ( 2004). Flora of China. Science Press, Beijing.
[ 中国植物志编辑委员会 ( 2004). 中国植物志. 科学出版社, 北京.]
[8] Fang JY, Wang XP, Liu YN, Tang ZY, White PS, Sanders NJ ( 2012). Multi-scale patterns of forest structure and species composition in relation to climate in northeast China. Ecography, 35, 1072-1082.
[9] Fang JY, Wang XP, Shen ZH, Tang ZY, He JS, Yu D, Jiang Y, Wang ZH, Zheng CY, Zhu JL, Guo ZD ( 2009). Methods and protocols for plant community inventory. Biodiversity Science, 17, 533-548.
[ 方精云, 王襄平, 沈泽昊, 唐志尧, 贺金生, 于丹, 江源, 王志恒, 郑成洋, 朱江玲, 郭兆迪 ( 2009). 植物群落清查的主要内容、方法和技术规范. 生物多样性, 17, 533-548.]
[10] Gaston KJ ( 2000). Global patterns in biodiversity. Nature, 405, 220-227.
[11] Guo H ( 2004). Studies on Spatial Pattern of Larix chinensis Populations in Qinling Mountain. Master degree dissertation, Shaanxi Normal University, Xi’ an. 20-31.
[ 郭华 ( 2004). 秦岭太白红杉种群空间分布格局研究. 硕士学位论文, 陕西师范大学, 西安. 20-31.]
[12] Guo L, Zhu Q, Zhang BG, Yu J, Lin L, Zhou GX ( 2014). Research on tending thinning of Japanese larch forest in the Sichuan Basin. Journal of Sichuan Forestry Science and Technology, 35(6), 64-68.
[ 郭琳, 朱琴, 张保刚, 余军, 林林, 周桂香 ( 2014). 四川盆地日本落叶松林抚育间伐研究. 四川林业科技, 35(6), 64-68.]
[13] Han YY ( 2006). Study on Effect of the Climatic Factors on the Increment of Larix leptolepis in Funiu Mountain in Western Henan. Master degree dissertation, Henan Agricultural University, Zhengzhou. 20-40.
[ 韩艳英 ( 2006). 气象因子对豫西伏牛山区日本落叶松生长量影响研究. 硕士学位论文, 河南农业大学, 郑州. 20-40.]
[14] Ji WJ, Cheng XQ, Han HR, Kang FF, Yang J, Zhu J, Zhao J, Bai YC, Ma JY ( 2016). The biomass and nutrient distribution in Larix principis-ruppechtii Magyr plantations at different forest age. Chinese Journal of Applied and Environmental Biology, 22, 277-284.
[ 纪文婧, 程小琴, 韩海荣, 康峰峰, 杨杰, 朱江, 赵敬, 白英辰, 马俊勇 ( 2016). 不同林龄华北落叶松人工林生物量及营养元素分布特征. 应用与环境生物学报, 22, 277-284.]
[15] Kong LW, Chen XW, Lu SW, Li SN, Chen B, Gao C, Shi Y, Yang XY ( 2014). Relationships among growth Larix principis-‌rupprechtii, herbaceous plants diversity and landform. Bulletin of Soil and Water Conservation, 34, 60-66.
[ 孔令伟, 陈祥伟, 鲁绍伟, 李少宁, 陈波, 高琛, 石媛, 杨小燕 ( 2014). 华北落叶松林木生长、草本植物多样性及地形因子之间的关系. 水土保持通报, 34, 60-66.]
[16] Kuang X, Xing DL, Zhang ZC, Song HJ, Wang YY, Fang S, Yuan ZQ, Ye J, Lin F, Wang XG, Hao ZQ ( 2014). Species composition and community structure of a spruce-fir forest and a larch forest on the northern slope of Changbai Mountains, Northeast China. Chinese Journal of Applied Ecology, 25, 2149-2157.
[ 匡旭, 邢丁亮, 张昭臣, 宋厚娟, 王芸芸, 房帅, 原作强, 叶吉, 蔺菲, 王绪高, 郝占庆 ( 2014). 长白山北坡云冷杉林和落叶松林物种组成与群落结构. 应用生态学报, 25, 2149-2157.]
[17] Lei MD ( 1999). Vegetation of Shaanxi Province. Science Press, Beijing.
[ 雷明德 ( 1999). 陕西植被. 科学出版社, 北京.]
[18] Li GL, Liu Y, Lü RH, Yu HQ, Li RS ( 2009). Responses of understory vegetation development to regulation of tree density in Larix principis-rupprechtii plantations. Journal of Beijing Forestry University, 31(1), 19-24.
[ 李国雷, 刘勇, 吕瑞恒, 于海群, 李瑞生 ( 2009). 华北落叶松人工林密度调控对林下植被发育的作用过程. 北京林业大学学报, 31(1), 19-24.]
[19] Li N ( 1995). Studies on the geographic distribution, origin and dispersal of the Family Pinaceae Lindl. Acta Phytotaxonomica Sinica, 33, 105-130.
[ 李楠 ( 1995). 论松科植物的地理分布、起源和扩散. 植物分类学报, 33, 105-130.]
[20] Li SH, Liang F, Guo JP ( 2012). Thinning effects on under-‌crown vegetation of Larix principis-rupprechtii plantation in Guandishan Mountain. Journal of Shanxi Agricultural University (Natural Science Edition), 32, 256-260.
[ 李淑辉, 梁芳, 郭晋平 ( 2012). 关帝山林区华北落叶松人工林抚育间伐对林下植被的影响. 山西农业大学学报(自然科学版), 32, 256-260.]
[21] Liu HY, Tang ZY, Dai JH, Tang YX, Cui HT ( 2002). Larch timberline and its development in North China. Mountain Research and Development, 22, 359-367.
[22] Liu L ( 1996). Vegetation of Hebei Province. Science Press, Beijing.
[ 刘濂 ( 1996). 河北植被. 科学出版社, 北京.]
[23] Liu XN ( 2001). The investigation on the impact of human activity on Larix chinensis. Shaanxi Forest Science and Technology, ( 3), 23-24.
[ 刘香妮 ( 2001). 人为活动对太白红杉林的影响调查. 陕西林业科技, ( 3), 23-24.]
[24] Liu ZL, Fang JY, Piao SL ( 2002). Geographical distribution of species genera Abies, Picea and Larix in China. Acta Geographica Sinica, 57, 577-586.
[ 刘增力, 方精云, 朴世龙 ( 2002). 中国冷杉、云杉和落叶松属植物的地理分布. 地理学报, 57, 577-586.]
[25] Luo YJ, Zhang XQ, Wang XK, Zhu JH, Zhang ZJ, Sun GS, Gao F ( 2009). Biomass and its distribution patterns of Larix principis-rupprechtii plantations in northern China. Journal of Beijing Forestry University, 31(1), 13-18.
[ 罗云建, 张小全, 王效科, 朱建华, 张治军, 孙贵生, 高峰 ( 2009). 华北落叶松人工林生物量及其分配模式. 北京林业大学学报, 31(1), 13-18.]
[26] Ma FF, Zhang CM, Li YZ ( 2016). Density and distribution of organic carbon of Larix kaempferi plantation ecosystem in subtropics. Journal of Central South University of Forestry & Technology, 36(1), 94-100.
[ 马丰丰, 张灿明, 李有志 ( 2016). 亚热带日本落叶松人工林生态系统碳密度及其分配特征. 中南林业科技大学学报, 36(1), 94-100.]
[27] Ma YP ( 2007). Study on Stand Structure of Larix kaempferi Forests and Its Increment Prediction—Taking Changlinggang Forest Farm as an Example. PhD dissertation, Beijing Forestry University, Beijing. 71-117.
[ 马友平 ( 2007). 日本落叶松人工林林分结构与生长量预测研究——以长岭岗林场为例. 博士学位论文, 北京林业大学, 北京. 71-117.]
[28] Mölder A, Streit M, Schmidt W ( 2014). When beech strikes back: How strict nature conservation reduces herb-layer diversity and productivity in Central European deciduous forests. Forest Ecology and Management, 319, 51-61.
[29] Moles AT, Warton DI, Warman L, Swenson NG, Laffan SW, Zanne AE, Pitman A, Hemmings FA, Leishman MR ( 2009). Global patterns in plant height. Journal of Ecology, 97, 923-932.
[30] Su YM ( 1995). Study on biomass and productivity of Larix kaempferi plantation. Journal of Sichuan Forestry Science and Technology, 16(3), 36-42.
[ 宿以明 ( 1995). 日本落叶松人工林生物量和生产力的研究. 四川林业科技, 16(3), 36-42.]
[31] Tao SL, Guo QH, Li C, Wang ZH, Fang JY ( 2016). Global patterns and determinants of forest canopy height. Ecology, 97, 3265-3270.
[32] Tu YB ( 2008). Study on the Effect of Larix chinensis Forest Gap Characteristics on the Community Regeneration. Master degree dissertation, Shaanxi Normal University, Xi’an. 14-35.
[ 涂云博 ( 2008). 太白红杉林林窗特征及其对群落更新的影响研究. 硕士学位论文, 陕西师范大学, 西安. 14-35.]
[33] Tyrrell LE, Crow TR ( 1994). Structural characteristics of old-growth hemlock-hardwood forests in relation to age. Ecology, 75, 370-386.
[34] Wang XP, Fang JY, Sanders NJ, White PS, Tang ZY ( 2009). Relative importance of climate vs local factors in shaping the regional patterns of forest plant richness across northeast China. Ecography, 32, 133-142.
[35] Wang ZH, Rahbek C, Fang JY ( 2012). Effects of geographical extent on the determinants of woody plant diversity. Ecography, 35, 1160-1167.
[36] Wu XJ, Chang JG, Yu JX, An Y, Guo JR ( 2010). Spatial distribution of Larix principis-rupprechtii-Picea spp. secondary forests along elevation gradients on north facing slope of Luya Mountain, Shanxi. Journal of Northeast Forestry University, 38(11), 10-14.
[ 武秀娟, 常建国, 于吉祥, 安雁, 郭建荣 ( 2010). 芦芽山阴坡华北落叶松-云杉天然次生林群落特征的海拔梯度格局. 东北林业大学学报, 38(11), 10-14.]
[37] Wu ZY ( 1980). Vegetation of China. Science Press, Beijing.
[ 吴征镒 ( 1980). 中国植被. 科学出版社, 北京.]
[38] Xu LJ, Peng H, Chen CG ( 2005 a). Size-class and age-class structures of Larix chinensis forests. Acta Botanica Boreali-‌Occidentalia Sinica, 25, 460-465.
[ 许林军, 彭鸿, 陈存根 ( 2005 a). 太白红杉林径级和龄级结构的研究. 西北植物学报, 25, 460-465.]
[39] Xu LJ, Peng H, Chen CG, Tang HL, Yang YJ ( 2005 b). Quantitative analysis of the Larix chinensis forest’s distribution at Qinling Mountains and the character of the alpine timberline at Taibai Mountain. Acta Botanica Boreali-‌ Occidentalia Sinica, 25, 968-972.
[ 许林军, 彭鸿, 陈存根, 唐红亮, 杨亚娟 ( 2005 b). 秦岭太白红杉林分布及太白山高山林线特征的定量分析. 西北植物学报, 25, 968-972.]
[40] Yan GQ, Zhao GF, Hu ZH ( 2001). The study on Larix chinensis community characteristics and species diversity in Mts Qinling. Acta Botanica Boreali-Occidentalia Sinica, 21, 497-506.
[ 阎桂琴, 赵桂仿, 胡正海 ( 2001). 秦岭太白红杉群落特征及其物种多样性的研究. 西北植物学报, 21, 497-506.]
[41] Yan HB, Han YZ, Yang XQ, Wang LY, Xiang XY ( 2010). Spatial distribution patterns and associations of tree species in typical natural secondary mountain forest communities of Northern China. Acta Ecologica Sinica, 30, 2311-2321.
[ 闫海冰, 韩有志, 杨秀清, 王丽艳, 项小英 ( 2010). 华北山地典型天然次生林群落的树种空间分布格局及其关联性. 生态学报, 30, 2311-2321.]
[42] Yan JH, Zhou GY, Zhang DQ, Tang XL, Wang X ( 2006). Different patterns of changes in the dry season diameter at breast height of dominant and evergreen tree species in a mature subtropical forest in South China. Journal of Integrative Plant Biology, 48, 906-913.
[43] Ying JS, Chen ML ( 2011). Chinese Plant Geography. Shanghai Science and Technology Press, Shanghai.
[ 应俊生, 陈梦玲 ( 2011). 中国植物地理. 上海科学技术出版社, 上海.]
[44] Zhang JL, Zhou Y, Zhou GS, Xiao CW ( 2013). Structure and composition of natural gmelin larch ( Larix gmelinii var. gmelinii) forests in response to spatial climatic changes. PLOS ONE, 8, e66668. DOI: 10.1371/journal.‌pone.‌0066668.
[45] Zhang QD, Zhang JT, Zhang B, Cheng JJ, Tian SG, Suriguga ( 2010). Pattern of Larix principis-rupprechtii plantation and its environmental interpretation in Dongling Mountain. Journal of Wuhan Botanical Research, 28, 577-582.
[ 张钦弟, 张金屯, 张斌, 程佳佳, 田世广, 苏日古嘎 ( 2010). 东灵山华北落叶松人工林的分布格局及环境解释. 武汉植物学研究, 28, 577-582.]
[46] Zhao TS, Guang ZY, Zhao YM, Liu GW ( 1999). Study on biomass and productivity of Larix kaempferi plantation. Acta Agriculturae Universitatis Henanensis, 33, 350-353.
[ 赵体顺, 光增云, 赵义民, 刘国伟 ( 1999). 日本落叶松人工林生物量及生产力的研究. 河南农业大学学报, 33, 350-353.]
[47] Zhao WZ ( 1997). Study on the artificial Larix principis- rupprechtii forests in Bashang, Hebei Province. Journal of Desert Research, 17, 243-249.
[ 赵文智 ( 1997). 河北坝上半干旱/半湿润过渡带华北落叶松人工林研究. 中国沙漠, 17, 243-249.]
[1] Zhixia Zhao,Changming Zhao,Shuyu Deng,Guozhen Shen,Zongqiang Xie,Gaoming Xiong,Junqing Li. Community structure and dynamics of a remnant forest dominated by Thuja sutchuenensis after deforestation [J]. Biodiv Sci, 2020, 28(3): 333-339.
[2] Sun Beibei, Yu Cungen, Liu Hui, Yan Wenchao, Zhang Wenjun, Dai Dongxu. Spring and autumn shrimp and crab biodiversity in the east Nanji Islands [J]. Biodiv Sci, 2019, 27(7): 787-795.
[3] Xing Yuan, Wu Xiaoping, Ouyang Shan, Zhang Junqian, Xu Jing, Yin Senlu, Xie Zhicai. Assessment of macrobenthos biodiversity and potential human-induced stressors in the Ganjiang River system [J]. Biodiv Sci, 2019, 27(6): 648-657.
[4] Xie Fenglin, Zhou Quan, Shi Hang, Shu Xiao, Zhang Kerong, Li Tao, Feng Shuiyuan, Zhang Quanfa, Dang Haishan. Species composition and community characteristics of a 25 ha forest dynamics plot in deciduous broad-leaved forest, Qinling Mountains, north-central China [J]. Biodiv Sci, 2019, 27(4): 439-448.
[5] Yang Lufei, Chen Linlin, Li Xiaojing, Zhou Zhengquan, Liu Bo, Song Bo, Li Bingjun, Li Baoquan. Effect of seasonal hypoxia on macrobenthic communities in the Muping Marine Ranch, Yantai, China [J]. Biodiv Sci, 2019, 27(2): 200-210.
[6] Shuoran Liu,Daode Yang,Xianfu Li,Lu Tan,Jun Sun,Xiaoyang He,Wenshu Yang,Guopeng Ren,Davide Fornacca,Qinghua Cai,Wen Xiao. Diversity in benthic and environmental characteristics on alpine micro-waterbodies and stream ecosystems in northwest Yunnan [J]. Biodiv Sci, 2019, 27(12): 1298-1308.
[7] Zhou Xiping, Li Zhen, Wu Peifang, Wu Xi, Chen Yixin, Liu Kangge, Liu Dongyan, Wang Yujue, Wang Yueqi. The structure of macrobenthic community in Pearl River Estuary [J]. Biodiv Sci, 2019, 27(10): 1112-1121.
[8] WEN Xiao-Shi, CHEN Bin-Hang, ZHANG Shu-Bin, XU Kai, YE Xin-Yu, NI Wei-Jie, WANG Xiang-Ping. Relationships of radial growth with climate change in larch plantations of different stand ages and species [J]. Chin J Plant Ecol, 2019, 43(1): 27-36.
[9] Yunzhi Qin,Jiaxin Zhang,Jianming Liu,Mengting Liu,Dan Wan,Hao Wu,Yang Zhou,Hongjie Meng,Zhiqiang Xiao,Handong Huang,Yaozhan Xu,Zhijun Lu,Xiujuan Qiao,Mingxi Jiang. Community composition and spatial structure in the Badagongshan 25 ha Forest Dynamics Plot in Hunan Province [J]. Biodiv Sci, 2018, 26(9): 1016-1022.
[10] Wei Mo,Zhiliang Wang,You Li,Jianjun Guo,Runzhi Zhang. Faunal communities of deep soil layers in suburban Beijing [J]. Biodiv Sci, 2018, 26(3): 248-257.
[11] Yuhang Li, Wandong Chen, Houcai Cai, Zhongmin Sun, Kuidong Xu. Spatio-temporal variation of benthic diatom diversity and community structure in a sandy intertidal zone of the Nanji Islands, China [J]. Biodiv Sci, 2017, 25(9): 981-989.
[12] Ling-Zhao TAN, Chun-Yu FAN, Xiu-Hua FAN. Relationships between species diversity or community structure and productivity of woody-plants in a broad-leaved Korean pine forest in Jiaohe, Jilin, China [J]. Chin J Plan Ecolo, 2017, 41(11): 1149-1156.
[13] Hongying Zhou, Xuemei Yao, Li Li, Taonian Geng, Ying Zhang. Scleractinian coral community structure and distribution in the coastal waters surrounding Hainan Island [J]. Biodiv Sci, 2017, 25(10): 1123-1130.
[14] Quan FANG, Yi-Zhen LIU, Gang GE. Characteristics of plant communities containing rare conifers in Poyang Lake Basin, China [J]. Chin J Plan Ecolo, 2016, 40(9): 952-957.
[15] Hongyan Liu,Chaojie Yang,Peidong Zhang,Wentao Li,Xiaolong Yang,Xiumei Zhang. Demersal nekton community structure of artificial reef zones in Laoshan Bay, Qingdao [J]. Biodiv Sci, 2016, 24(8): 896-906.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yu Feng-lan;Wang Jing-ping;Li Jing-min and Shan Xue-qin. The Isolation and Identification of Sterols and Other Constituents from Seed Fat of Sapium sebiferum[J]. Chin Bull Bot, 1989, 6(02): 121 -123 .
[2] LI Al-Fen;CHEN Min amd ZHOU Bai-Cheng. Advances and Problems in Studies of Photosynthetic Pigment-Protein Complexes of Brown Algae[J]. Chin Bull Bot, 1999, 16(04): 365 -371 .
[3] CHEN Xiao-Mei and GUO Shun-Xing. Research Advances in Plant Disease Resistive Material[J]. Chin Bull Bot, 1999, 16(06): 658 -664 .
[4] LI Ji-Quan JIN You-Ju SHEN Ying-Bai HONG Rong. The Effect of Environmental Factors on Emission of Volatile Organic Compounds from Plants[J]. Chin Bull Bot, 2001, 18(06): 649 -656 .
[5] . [J]. Chin Bull Bot, 2005, 22(增刊): 157 .
[6] Jianxia Li, Chulan Zhang, Xiaofei Xia, Liangcheng Zhao. Cryo-sectioning Conditions and Histochemistry Comparison with Paraffin Sectioning[J]. Chin Bull Bot, 2013, 48(6): 643 -650 .
[7] JIANG Yang-Ming, CUI Wei-Hong, and DONG Qian-Lin. Comprehensive evaluation and analysis of tobacco planting environment based on space technology[J]. Chin J Plan Ecolo, 2012, 36(1): 47 -54 .
[8] Hu Cheng-biao, Zhu Hong-guang, Wei Yuan-lian. A Study on Microorganism and Biochemical Activity of Chinese-fir Plantation on Different Ecological Area in Guangxi[J]. Chin J Plan Ecolo, 1991, 15(4): 303 -311 .
[9] Hong-Xin SU Fan BAI Guang-Qi LI. Seasonal dynamics in leaf area index in three typical temperate montane forests of China: a comparison of multi-observation methods[J]. Chin J Plan Ecolo, 2012, 36(3): 231 -242 .
[10] AN Ran, GONG Ji-Rui, YOU Xin, GE Zhi-Wei, DUAN Qing-Wei, YAN Xin. Seasonal dynamics of soil microorganisms and soil nutrients in fast-growing Populus plantation forests of different ages in Yili, Xinjiang, China[J]. Chin J Plan Ecolo, 2011, 35(4): 389 -401 .