Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (11): 929-945.doi: 10.17521/cjpe.2019.0155

• Review •     Next Articles

Community assembly processes in fragmented forests and its testing methods

LIU Jin-Liang1,2,YU Ming-Jian2,*()   

  1. 1College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China
    2College of Life Sciences, Zhejiang University, Hangzhou 310058, China
  • Received:2019-06-22 Accepted:2019-11-08 Online:2020-03-26 Published:2019-11-20
  • Contact: YU Ming-Jian ORCID:0000-0001-8060-8427
  • Supported by:
    Supported by the National Natural Science Foundation of China(31870401);Supported by the National Natural Science Foundation of China(31901104);Supported by the National Natural Science Foundation of China(31570524);the Natural Science Foundation of Zhejiang Province(LD19C030001);the National Key R&D Program(2018YFE0112800)


Nowadays, almost all forests in the world are fragmented, and thus, it is necessary to understand how forest fragmentation influence assembly of forest communities. This review summarized the main community assembly processes in the field of community ecology, namely ecological drift, dispersal, selection and speciation, and summarized the relative roles of these community assembly processes in fragmented forests. Due to differences in formation trajectory of different forests in fragmented region, the relative effects of the above four ecological processes are different for different types of forest communities: reassembled community (i.e., forest communities re-assembled through secondary succession in fragmented habitats) and disassembled community (i.e., continuous forest disassembled into fragmented forests). The effects of ecological processes can be effectively tested by analyzing short-term observed species distribution pattern within and among communities (e.g., species abundance distribution analyses, null model combined with beta diversity analyses, and convergence and divergence of functional trait distribution, etc.), controlled experiments, and long-term community monitoring (e.g., community dynamics analysis). Yet, it is insufficient to assess ecological processes undergoing habitat fragmentation by controlled experiments. In the future, studies should focus on developing and testing theoretical models, designing controlled experiments to investigate varied ecological processes undergoing habitat fragmentation, and combining ecological theory with practical biodiversity conservation.

Key words: community assembly, habitat fragmentation, dispersal limitation, neutral theory, niche theory

Fig. 1

Timeline of key events in fragmentation theory, landscape experiments, and discourse on application for conservation. Figure was redrawn from Resasco et al., (2017). Major experiments and projects and the corresponding references are as following: Biological Dynamics of Forest Fragments Project (BDFFP; Brazil)(Laurance et al., 2011); Kansas Fragmentation Experiment (USA)(Holt et al., 1995); Wog-Wog Habitat Fragmentation Experiment (Wog-Wog; Australia)(Margules, 1992); Savannah River Site Corridor Experiment (SRS Corridor Experiment; USA)(Haddad & Baum, 1999; Tewksbury et al., 2002); Moss Fragmentation Experiments (UK: Gonzalez et al. 1998; Canada: Lindo et al., 2012); The Thousand Island Lake Experiments (China)(Yu et al., 2012; Liu et al., 2020); The Stability of Altered Forest Ecosystems (SAFE) Project (Malaysia)(Ewers et al., 2011); Metatron experiment (France)(Legrand et al., 2012)."

Fig. 2

Conceptual cartoon illustrating processes in forest community assembly in fragmented habitats. Redrawn from HilleRisLambers et al. (2012) and Vellend (2016). Different letters denote different species; circles of different sizes denote different size patches; different fan-shaped areas in circles denote the relative abundance of each species in one community."

Fig. 3

Relative effects of ecological processes affecting disassembly and reassembly communities in fragmented habitats."

[1] Ackerly DD, Cornwell WK ( 2007). A trait-based approach to community assembly: Partitioning of species trait values into within- and among-community components. Ecology Letters, 10, 135-145.
[2] Alexander HM, Foster BL, Ford Ballantyne IV, Collins CD, Antonovics J, Holt RD ( 2012). Metapopulations and metacommunities: Combining spatial and temporal perspectives in plant ecology. Journal of Ecology, 100, 88-103.
[3] Altermatt F, Fronhofer EA, Garnier A, Giometto A, Hammes F, Klecka J, Legrand D, Mächler E, Massie TM, Pennekamp F, Plebani M, Pontarp M, Schtickzelle N, Thuillier V, Petchey OL ( 2015). Big answers from small worlds: A userʼs guide for protist microcosms as a model system in ecology and evolution. Methods in Ecology and Evolution, 6, 218-231.
[4] Bai B, Li N, Lu CH ( 2011). Influence of habitat fragmentation on frugivores and their seed dispersal. Chinese Journal of Ecology, 30, 2613-2620.
[ 白冰, 李宁, 鲁长虎 ( 2011). 生境破碎化对食果动物及种子传播的影响. 生态学杂志, 30, 2613-2620.]
[5] Baldeck CA, Kembel SW, Harms KE, Yavitt JB, John R, Turner BL, Madawala S, Gunatilleke N, Gunatilleke S, Bunyavejchewin S, Kiratiprayoon S, Yaacob A, Supardi MNN, Valencia R, Navarrete H, Davies SJ, Chuyong GB, Kenfack D, Thomas DW, Dalling JW ( 2016). Phylogenetic turnover along local environmental gradients in tropical forest communities. Oecologia, 182, 547-557.
[6] Baynes J, Herbohn J, Chazdon RL, Nguyen H, Firn J, Gregorio N, Lamb D ( 2016). Effects of fragmentation and landscape variation on tree diversity in post-logging regrowth forests of the Southern Philippines. Biodiversity and Conservation, 25, 923-941.
[7] Benchimol M, Peres CA ( 2015). Edge-mediated compositional and functional decay of tree assemblages in Amazonian forest islands after 26 years of isolation. Journal of Ecology, 103, 408-420.
[8] Chase JM, Leibold MA ( 2003). Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago Press, Chicago.
[9] Chase JM, Myers JA ( 2011). Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2351-2363.
[10] Chen L, Mi XC, Ma KP ( 2014). Niche differentiation and its consequence on biodiversity maintenance in forest communities. Chinese Bulletin of Life Sciences, 26, 112-117.
[ 陈磊, 米湘成, 马克平 ( 2014). 生态位分化与森林群落物种多样性维持研究展望. 生命科学, 26, 112-117.]
[11] Chesson P ( 2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343-366.
[12] Chesson P ( 2018). Updates on mechanisms of maintenance of species diversity. Journal of Ecology, 106, 1773-1794.
[13] Chesson PL, Warner RR ( 1981). Environmental variability promotes coexistence in lottery competitive systems. The American Naturalist, 117, 923-943.
[14] Cirtwill AR, Stouffer DB ( 2016). Knowledge of predator-prey interactions improves predictions of immigration and extinction in island biogeography. Global Ecology and Biogeography, 25, 900-911.
[15] Collins CD, Banks-Leite C, Brudvig LA, Foster BL, Cook WM, Damschen EI, Andrade A, Austin M, Camargo JL, Driscoll DA, Holt RD, Laurance WF, Nicholls AO, Orrock JL ( 2017). Fragmentation affects plant community composition over time. Ecography, 40, 119-130.
[16] Connell JH, Tracey JG, Webb LJ ( 1984). Compensatory recruitment, growth, and mortality as factors maintaining rain forest tree diversity. Ecological Monographs‌, 54, 141-164.
[17] Cottenie K ( 2005). Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters, 8, 1175-1182.
[18] Damschen EI, Brudvig LA, Burt MA, Fletcher Jr RJ, Haddad NM, Levey DJ, Orrock JL, Resasco J, Tewksbury JJ ( 2019). Ongoing accumulation of plant diversity through habitat connectivity in an 18-year experiment. Science, 365, 1478-1480.
[19] Das AA, John R, Anand M ( 2017). Does structural connectivity influence tree species distributions and abundance in a naturally discontinuous tropical forest formation? Journal of Vegetation Science, 28, 7-18.
[20] Davies KF, Holyoak M, Preston KA, Offeman VA, Lum Q ( 2009). Factors controlling community structure in heterogeneous metacommunities. Journal of Animal Ecology, 78, 937-944.
[21] Debinski DM, Holt RD ( 2000). A survey and overview of habitat fragmentation experiments. Conservation Biology, 14, 342-355.
[22] Delavaux CS, Weigelt P, Dawson W, Duchicela J, Essl F, van Kleunen M, König C, Pergl J, Pyšek P, Stein A, Winter M, Schultz P, Kreft H, Bever JD ( 2019). Mycorrhizal fungi influence global plant biogeography. Nature Ecology & Evolution, 3, 424-429.
[23] Diamond JM ( 1975). Ecology and Evolution of Communites. The Belknap Press of Harvard University Press, Cambridge, USA.
[24] Diamond JM ( 1976). Island biogeography and conservation: Strategy and limitations. Science, 193, 1027-1029.
[25] Didham RK ( 2010). Ecological Consequences of Habitat Fragmentation. John Wiley & Sons, Oxford.
[26] Emer C, Galetti M, Pizo MA, Guimarães Jr PR, Moraes S, Piratelli A, Jordano P ( 2018). Seed-dispersal interactions in fragmented landscapes—A metanetwork approach. Ecology Letters, 21, 484-493.
[27] Ernest SKM, Brown JH, Thibault KM, White EP, Goheen JR ( 2008). Zero sum, the niche, and metacommunities: Long-term dynamics of community assembly. The American Naturalist, 172, E257-E269. DOI: 10.1086/592402.
[28] Ewers RM, Andrade A, Laurance SG, Camargo JL, Lovejoy TE, Laurance WF ( 2017). Predicted trajectories of tree community change in Amazonian rainforest fragments. Ecography, 40, 26-35.
[29] Ewers RM, Didham RK, Fahrig L, Ferraz G, Hector A, Holt RD, Kapos V, Reynolds G, Sinun W, Snaddon JL, Turner EC ( 2011). A large-scale forest fragmentation experiment: The stability of altered forest ecosystems project. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 3292-3302.
[30] Fahrig L ( 2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34, 487-515.
[31] Fahrig L ( 2013). Rethinking patch size and isolation effects: The habitat amount hypothesis. Journal of Biogeography, 40, 1649-1663.
[32] Fahrig L ( 2017). Ecological responses to habitat fragmentation per se. Annual Review of Ecology, Evolution, and Systematics, 48, 1-23.
[33] Fahrig L ( 2019). Habitat fragmentation: A long and tangled tale. Global Ecology and Biogeography, 28, 33-41.
[34] Fattorini S, Rigal F, Cardoso P, Borges PAV ( 2016). Using species abundance distribution models and diversity indices for biogeographical analyses. Acta Oecologica, 70, 21-28.
[35] Favre-Bac L, Lamberti-Raverot B, Puijalon S, Ernoult A, Burel F, Guillard L, Mony C ( 2017). Plant dispersal traits determine hydrochorous species tolerance to connectivity loss at the landscape scale. Journal of Vegetation Science, 28, 605-615.
[36] Fukami T ( 2010). Community assembly dynamics in space. In: Verhoef HA, Morin PJ eds. Community Ecology: Processes, Models, and Applications. Oxford University Press, Oxford, USA. 45-54.
[37] Fukami T ( 2015). Historical contingency in community assembly: Integrating niches, species pools, and priority effects. Annual Review of Ecology, Evolution, and Systematics, 46, 1-23.
[38] Gaston KJ, Blackburn TM ( 2008). Pattern and Process in Macroecology. John Wiley & Sons, Oxford.
[39] Genua L, Start D, Gilbert B ( 2017). Fragment size affects plant herbivory via predator loss. Oikos, 126, 1357-1365.
[40] Gonzalez A, Lawton JH, Gilbert FS, Blackburn TM, Evans-‌Freke I ( 1998). Metapopulation dynamics, abundance, and distribution in a microecosystem. Science, 281, 2045-2047.
[41] Gravel D, Massol F, Canard E, Mouillot D, Mouquet N ( 2011). Trophic theory of island biogeography. Ecology Letters, 14, 1010-1016.
[42] Haddad NM, Baum KA ( 1999). An experimental test of corridor effects on butterfly densities. Ecological Applications, 9, 623-633.
[43] Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song DX, Townshend JR ( 2015). Habitat fragmentation and its lasting impact on Earthʼs ecosystems. Science Advances, 1, e1500052. DOI: 10.1126/sciadv.1500052.
[44] Hanski I ( 1994). A practical model of metapopulation dynamics. Journal of Animal Ecology, 63, 151-162.
[45] Harrison S, Bruna E ( 1999). Habitat fragmentation and largescale conservation: What do we know for sure? Ecography, 22, 225-232.
[46] HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM ( 2012). Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics, 43, 227-248.
[47] Holt RD, Robinson GR, Gaines MS ( 1995). Vegetation dynamics in an experimentally fragmented landscape. Ecology, 76, 1610-1624.
[48] Holyoak M, Leibold MA, Holt RD ( 2005). Metacommunities: Spatial Dynamics and Ecological Communities. University of Chicago Press, Chicago.
[49] Hubbell SP ( 2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton.
[50] Hubbell SP, Condit R, Foster RB, Grubb P, Thomas C ( 1990). Presence and absence of density dependence in a neotropical tree community. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 330, 269-281.
[51] Hyatt LA, Rosenberg MS, Howard TG, Bole G, Fang W, Anastasia J, Brown K, Grella R, Hinman K, Kurdziel JP, Gurevitch J ( 2003). The distance dependence prediction of the Janzen-Connell hypothesis: A meta-analysis. Oikos, 103, 590-602.
[52] Jacquet C, Mouillot D, Kulbicki M, Gravel D ( 2017). Extensions of Island Biogeography Theory predict the scaling of functional trait composition with habitat area and isolation. Ecology Letters, 20, 135-146.
[53] Janzen DH ( 1970). Herbivores and the number of tree species in tropical forests. The American Naturalist, 104, 501-528.
[54] Jiang F, Xun YH, Cai HY, Jin GZ ( 2018). Functional traits can improve our understanding of niche- and dispersal-based processes. Oecologia, 186, 783-792.
[55] Jiang L, Patel SN ( 2008). Community assembly in the presence of disturbance: A microcosm experiment. Ecology, 89, 1931-1940.
[56] Kadmon R, Pulliam HR ( 1995). Effects of isolation, logging and dispersal on woody-species richness of islands. Vegetatio, 116, 63-68.
[57] Kenkel NC ( 1988). Pattern of self-thinning in jack pine: Testing the random mortality hypothesis. Ecology, 69, 1017-1024.
[58] Kozak J, Ziółkowska E, Vogt P, Dobosz M, Kaim D, Kolecka N, Ostafin K ( 2018). Forest-cover increase does not trigger forest-fragmentation decrease: Case study from the Polish carpathians. Sustainability, 10, 1472. DOI: 10.3390/su10051472.
[59] Kraft NJB, Ackerly DD ( 2010). Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs, 80, 401-422.
[60] Kraft NJB, Comita LS, Chase JM, Sanders NJ, Swenson NG, Crist TO, Stegen JC, Vellend M, Boyle B, Anderson MJ, Cornell HV, Davies KF, Freestone AL, Inouye BD, Harrison SP, Myers JA ( 2011). Disentangling the drivers of diversity along latitudinal and elevational gradients. Science, 333, 1755-1758.
[61] Kraft NJB, Valencia R, Ackerly DD ( 2008). Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580-582.
[62] Krishnadas M, Bagchi R, Sridhara S, Comita LS ( 2018). Weaker plant-enemy interactions decrease tree seedling diversity with edge-effects in a fragmented tropical forest. Nature Communications, 9, 4523.
[63] LaManna JA, Mangan SA, Alonso A, Bourg NA, Brockelman WY, Bunyavejchewin S, Chang LW, Chiang JM, Chuyong GB, Clay K, Condit R, Cordell S, Davies SJ, Furniss TJ, Giardina CP, Gunatilleke IAUN, Gunatilleke CVS, He F, Howe RW, Hubbell SP, Hsieh CF, Inman-Narahari FM, Janík D, Johnson DJ, Kenfack D, Korte L, Král K, Larson AJ, Lutz JA, McMahon SM, McShea WJ, Memiaghe HR, Nathalang A, Novotny V, Ong PS, Orwig DA, Ostertag R, Parker GG, Phillips RP, Sack L, Sun IF, Tello JS, Thomas DW, Turner BL, Vela Díaz DM, Vrška T, Weiblen GD, Wolf A, Yap S, Myers JA ( 2017). Plant diversity increases with the strength of negative density dependence at the global scale. Science, 356, 1389-1392.
[64] Larios L, Pearson DE, Maron JL ( 2017). Incorporating the effects of generalist seed predators into plant community theory. Functional Ecology, 31, 1856-1867.
[65] Lasky JR, Keitt TH ( 2013). Reserve size and fragmentation alter community assembly, diversity, and dynamics. The American Naturalist, 182, E142-E160. DOI: 10.1086/673205.
[66] Laurance WF ( 2008). Theory meets reality: How habitat fragmentation research has transcended island biogeographic theory. Biological Conservation, 141, 1731-1744.
[67] Laurance WF, Andrade AS, Magrach A, Camargo JLC, Campbell M, Fearnside PM, Edwards W, Valsko JJ, Lovejoy TE, Laurance SG ( 2014). Apparent environmental synergism drives the dynamics of Amazonian forest fragments. Ecology, 95, 3018-3026.
[68] Laurance WF, Camargo JLC, Luizão RCC, Laurance SG, Pimm SL, Bruna EM, Stouffer PC, Bruce Williamson G, Benítez-Malvido J, Vasconcelos HL, Van Houtan KS, Zartman CE, Boyle SA, Didham RK, Andrade A, Lovejoy TE ( 2011). The fate of Amazonian forest fragments: A 32-year investigation. Biological Conservation, 144, 56-67.
[69] Laurance WF, Delamônica P, Laurance SG, Vasconcelos HL, Lovejoy TE ( 2000). Rainforest fragmentation kills big trees. Nature, 404, 836.
[70] Laurance WF, Nascimento HEM, Laurance SG, Andrade A, Ribeiro JELS, Giraldo JP, Lovejoy TE, Condit R, Chave J, Harms KE, D’Angelo S ( 2006). Rapid decay of tree-community composition in Amazonian forest fragments. Proceedings of the National Academy of Sciences of the United States of America, 103, 19010-19014.
[71] Legendre P, de Cáceres M ( 2013). Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecology Letters, 16, 951-963.
[72] Legendre P, Mi XC, Ren HB, Ma KP, Yu MJ, Sun IF, He FL ( 2009). Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology, 90, 663-674.
[73] Legrand D, Guillaume O, Baguette M, Cote J, Trochet A, Calvez O, Zajitschek S, Zajitschek F, Lecomte J, Bénard Q, Le Galliard JF, Clobert J ( 2012). The Metatron: An experimental system to study dispersal and metaecosystems for terrestrial organisms. Nature Methods, 9, 828-833.
[74] Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A ( 2004). The metacommunity concept: A framework for multi-scale community ecology. Ecology Letters, 7, 601-613.
[75] Letten AD, Ke PJ, Fukami T ( 2017). Linking modern coexistence theory and contemporary niche theory. Ecological Monographs, 87, 161-177.
[76] Levins R ( 1969). Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of the Entomological Society of America, 15, 237-240.
[77] Lindo Z, Whiteley J, Gonzalez A ( 2012). Traits explain community disassembly and trophic contraction following experimental environmental change. Global Change Biology, 18, 2448-2457.
[78] Liu JJ, Coomes DA, Gibson L, Hu G, Liu JL, Luo YQ, Wu CP, Yu MJ ( 2019a). Forest fragmentation in China and its effect on biodiversity. Biological Reviews, 94, 1636-1657.
[79] Liu JJ, Coomes DA, Hu G, Liu JL, Yu JJ, Luo YQ, Yu MJ ( 2019b). Larger fragments have more late-successional species of woody plants than smaller fragments after 50 years of secondary succession. Journal of Ecology, 107, 582-594.
[80] Liu JJ, Slik F, Coomes DA, Corlett RT, Wang YP, Wilson M, Hu G, Ding P, Yu MJ ( 2019c). The distribution of plants and seed dispersers in response to habitat fragmentation in an artificial island archipelago. Journal of Biogeography, 46, 1152-1162.
[81] Liu JJ, Slik JWF ( 2014). Forest fragment spatial distribution matters for tropical tree conservation. Biological Conservation, 171, 99-106.
[82] Liu JL, Matthews TJ, Zhong L, Liu JJ, Wu DH, Yu MJ ( 2020). Environmental filtering underpins the island species-area relationship in a subtropical anthropogenic archipelago. Journal of Ecology, 108, 424-432.
[83] Liu JL, Qian H, Jin Y, Wu CP, Chen JH, Yu SQ, Wei XL, Jin XF, Liu JJ, Yu MJ ( 2016). Disentangling the drivers of taxonomic and phylogenetic beta diversities in disturbed and undisturbed subtropical forests. Scientific Reports, 6, 35926. DOI: 10.1038/srep35926.
[84] Liu JL, Vellend M, Wang ZH, Yu MJ ( 2018). High beta diversity among small islands is due to environmental heterogeneity rather than ecological drift. Journal of Biogeography, 45, 2252-2261.
[85] Liu XY, Zhao CL, Xu S, Liang QM, Zhu XT, Li L, Yan ER ( 2019). Beta diversity of vascular plants and its drivers in sea-islands of eastern China. Biodiversity Science, 27, 380-387.
[ 刘翔宇, 赵慈良, 许山, 梁启明, 朱晓彤, 李亮, 阎恩荣 ( 2019). 中国东部海岛维管植物的beta多样性及其驱动因素. 生物多样性, 27, 380-387.]
[86] Lopez BE, Burgio KR, Carlucci MB, Palmquist KA, Parada A, Weinberger VP, Hurlbert AH ( 2016). A new framework for inferring community assembly processes using phylogenetic information, relevant traits and environmental gradients. One Ecosystem, 1, e9501. DOI: 10.3897/oneeco.1.e9501.
[87] Luo YQ, Yu MJ, Yu JJ, Zheng SL, Liu JJ, Yu MJ ( 2017). Effects of plant traits and the relative abundance of common woody species on seedling herbivory in the Thousand Island Lake region. Chinese Journal of Plant Ecology, 41, 1033-1040.
[ 骆杨青, 余梅生, 余晶晶, 郑诗璐, 刘佳佳, 于明坚 ( 2017). 千岛湖地区常见木本植物性状和相对多度对幼苗植食作用的影响. 植物生态学报, 41, 1033-1040.]
[88] MacArthur RH, Wilson EO ( 1963). An equilibrium theory of insular zoogeography. Evolution, 17, 373-387.
[89] MacArthur RH, Wilson EO ( 1967). The Theory of Island Biogeography. Princeton University Press, Princeton.
[90] Margules CR ( 1992). The Wog-Wog habitat fragmentation experiment. Environmental Conservation, 19, 316-325.
[91] Marini L, Bruun HH, Heikkinen RK, Helm A, Honnay O, Krauss J, Kühn I, Lindborg R, Pärtel M, Bommarco R ( 2012). Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss. Diversity and Distributions, 18, 898-908.
[92] Matthews TJ, Borges PAV, de Azevedo EB, Whittaker RJ ( 2017). A biogeographical perspective on species abundance distributions: Recent advances and opportunities for future research. Journal of Biogeography, 44, 1705-1710.
[93] Matthews TJ, Cottee-Jones HEW, Whittaker RJ ( 2015a). Quantifying and interpreting nestedness in habitat islands: A synthetic analysis of multiple datasets. Diversity and Distributions, 21, 392-404.
[94] Matthews TJ, Whittaker RJ ( 2015b). On the species abundance distribution in applied ecology and biodiversity management. Journal of Applied Ecology, 52, 443-454.
[95] McGarigal K, Cushman SA ( 2002). Comparative evaluation of experimental approaches to the study of habitat fragmentation effects. Ecological Applications, 12, 335-345.
[96] McGill BJ, Etienne RS, Gray JS, Alonso D, Anderson MJ, Benecha HK, Dornelas M, Enquist BJ, Green JL, He F, Hurlbert AH, Magurran AE, Marquet PA, Maurer BA, Ostling A, Soykan CU, Ugland KI, White EP ( 2007). Species abundance distributions: Moving beyond single prediction theories to integration within an ecological framework. Ecology Letters, 10, 995-1015.
[97] McPeek MA ( 2007). The macroevolutionary consequences of ecological differences among species. Palaeontology, 50, 111-129.
[98] Mittelbach GG, Schemske DW ( 2015). Ecological and evolutionary perspectives on community assembly. Trends in Ecology & Evolution, 30, 241-247.
[99] Mori AS, Isbell F, Seidl R ( 2018). β-diversity, community assembly, and ecosystem functioning. Trends in Ecology & Evolution, 33, 549-564.
[100] Mouchet MA, Villéger S, Mason NWH, Mouillot D ( 2010). Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24, 867-876.
[101] Mouquet N, Loreau M ( 2003). Community patterns in source-sink metacommunities. The American Naturalist, 162, 544-557.
[102] Mutshinda CM, O’Hara RB, Woiwod IP ( 2009). What drives community dynamics? Proceedings of the Royal Society B: Biological Sciences, 276, 2923-2929.
[103] Myers JA, LaManna JA ( 2016). The promise and pitfalls of β-diversity in ecology and conservation. Journal of Vegetation Science, 27, 1081-1083.
[104] Negoita L, Fridley JD, Lomolino MV, Mittelhauser G, Craine JM, Weiher E ( 2016). Isolation-driven functional assembly of plant communities on islands. Ecography, 39, 1066-1077.
[105] Niu KC, Liu YN, Shen ZH, He FL, Fang JY ( 2009). Community assembly: The relative importance of neutral theory and niche theory. Biodiversity Science, 17, 579-593.
[ 牛克昌, 刘怿宁, 沈泽昊, 何芳良, 方精云 ( 2009). 群落构建的中性理论和生态位理论. 生物多样性, 17, 579-593.]
[106] Öckinger E, Schweiger O, Crist TO, Debinski DM, Krauss J, Kuussaari M, Petersen JD, Pöyry J, Settele J, Summerville KS, Bommarco R ( 2010). Life-history traits predict species responses to habitat area and isolation: A cross-continental synthesis. Ecology Letters, 13, 969-979.
[107] Ojima MN, Jiang L ( 2017). Interactive effects of disturbance and dispersal on community assembly. Oikos, 126, 682-691.
[108] Pearse WD, Barbosa AM, Fritz SA, Keith SA, Harmon LJ, Harte J, Silvestro D, Xiao X, Davies TJ ( 2018). Building up biogeography: Pattern to process. Journal of Biogeography, 45, 1223-1230.
[109] Peng SY, Hu G, Yu MJ ( 2014). Beta diversity of vascular plants and its influencing factors on islands in the Thousand Island Lake. Acta Ecologica Sinica, 34, 3866-3872.
[ 彭思羿, 胡广, 于明坚 ( 2014). 千岛湖岛屿维管植物β多样性及其影响因素. 生态学报, 34, 3866-3872.]
[110] Perronne R, Munoz F, Borgy B, Reboud X, Gaba S ( 2017). How to design trait-based analyses of community assembly mechanisms: Insights and guidelines from a literature review. Perspectives in Plant Ecology, Evolution and Systematics, 25, 29-44.
[111] Qiao XJ, Jabot F, Tang ZY, Jiang MX, Fang JY ( 2015a). A latitudinal gradient in tree community assembly processes evidenced in Chinese forests. Global Ecology and Biogeography, 24, 314-323.
[112] Qiao XJ, Li QX, Jiang QH, Lu JM, Franklin S, Tang ZY, Wang QG, Zhang JX, Lu ZJ, Bao DC, Guo YL, Liu HB, Xu YZ, Jiang MX ( 2015b). Beta diversity determinants in Badagongshan, a subtropical forest in central China. Scientific Reports, 5, 17043. DOI: 10.1038/srep17043.
[113] Resasco J, Bruna EM, Haddad NM, Banks-Leite C, Margules CR ( 2017). The contribution of theory and experiments to conservation in fragmented landscapes. Ecography, 40, 109-118.
[114] Ricklefs RE ( 2004). A comprehensive framework for global patterns in biodiversity. Ecology Letters, 7, 1-15.
[115] Ricklefs RE, Schluter D ( 1993). Species Diversity in Ecological Communities: Historical and Geographical Perspectives. University of Chicago Press, Chicago.
[116] Rominger AJ, Goodman KR, Lim JY, Armstrong EE, Becking LE, Bennett GM, Brewer MS, Cotoras DD, Ewing CP, Harte J, Martinez ND, O’Grady PM, Percy DM, Price DK, Roderick GK, Shaw KL, Valdovinos FS, Gruner DS, Gillespie RG ( 2016). Community assembly on isolated islands: Macroecology meets evolution. Global Ecology and Biogeography, 25, 769-780.
[117] Ron R, Fragman-Sapir O, Kadmon R ( 2018). Dispersal increases ecological selection by increasing effective community size. Proceedings of the National Academy of Sciences of the United States of America, 115, 11280-11285.
[118] Rösch V, Tscharntke T, Scherber C, Batáry P ( 2015). Biodiversity conservation across taxa and landscapes requires many small as well as single large habitat fragments. Oecologia, 179, 209-222.
[119] Ruffell J, Banks-Leite C, Didham RK ( 2016). Accounting for the causal basis of collinearity when measuring the effects of habitat loss versus habitat fragmentation. Oikos, 125, 117-125.
[120] Ryser R, Häussler J, Stark M, Brose U, Rall BC, Guill C ( 2019). The biggest losers: Habitat isolation deconstructs complex food webs from top to bottom. Proceedings of the Royal Society B: Biological Sciences, 286, 20191177. DOI: 10.1098/rspb.2019.1177.
[121] Santos AMC, Field R, Ricklefs RE ( 2016). New directions in island biogeography. Global Ecology and Biogeography, 25, 751-768.
[122] Saunders DA, Hobbs RJ, Margules CR ( 1991). Biological consequences of ecosystem fragmentation: A review. Conservation Biology, 5, 18-32.
[123] Seibold S, Cadotte MW, MacIvor JS, Thorn S, Müller J ( 2018). The necessity of multitrophic approaches in community ecology. Trends in Ecology & Evoluation, 33, 754-764.
[124] Taubert F, Fischer R, Groeneveld J, Lehmann S, Müller MS, Rödig E, Wiegand T, Huth A ( 2018). Global patterns of tropical forest fragmentation. Nature, 554, 519-522.
[125] Terborgh J, Alvarez-Loayza P, Dexter K, Cornejo F, Carrasco C ( 2011). Decomposing dispersal limitation: Limits on fecundity or seed distribution? Journal of Ecology, 99, 935-944.
[126] Tewksbury JJ, Levey DJ, Haddad NM, Sargent S, Orrock JL, Weldon A, Danielson BJ, Brinkerhoff J, Damschen EI, Townsend P ( 2002). Corridors affect plants, animals, and their interactions in fragmented landscapes. Proceedings of the National Academy of Sciences of the United States of America, 99, 12923-12926.
[127] Tilman D ( 1982). Resource competition and community structure. Monographs in Population Biology, 17, 1-296
[128] Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C ( 2002). Contribution of small habitat fragments to conservation of insect communities of grassland-cropland landscapes. Ecological Applications, 12, 354-363.
[129] Ulrich W, Kusumoto B, Shiono T, Kubota Y ( 2016). Climatic and geographic correlates of global forest tree species-‌abundance distributions and community evenness. Journal of Vegetation Science, 27, 295-305.
[130] Ulrich W, Ollik M, Ugland KI ( 2010). A meta-analysis of ‌species- abundance distributions. Oikos, 119, 1149-1155.
[131] Valladares G, Salvo A, Cagnolo L ( 2006). Habitat fragmentation effects on trophic processes of insect-plant food webs. Conservation Biology, 20, 212-217.
[132] Vellend M ( 2010). Conceptual synthesis in community ecology. The Quarterly Review of Biology, 85, 183-206.
[133] Vellend M ( 2016). The Theory of Ecological Communities. Princeton University Press, Princeton.
[134] Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E ( 2007). Let the concept of trait be functional! Oikos, 116, 882-892.
[135] Walker LR, Wardle DA, Bardgett RD, Clarkson BD ( 2010). The use of chronosequences in studies of ecological succession and soil development. Journal of Ecology, 98, 725-736.
[136] Waller DM, Mudrak EL, Rogers DA ( 2018). Do metacommunity mass effects predict changes in species incidence and abundance? Ecography, 41, 11-23.
[137] Wardle DA, Hörnberg G, Zackrisson O, Kalela-Brundin M, Coomes DA ( 2003). Long-term effects of wildfire on ecosystem properties across an island area gradient. Science, 300, 972-975.
[138] Wardle DA, Jonsson M, Bansal S, Bardgett RD, Gundale MJ, Metcalfe DB ( 2012). Linking vegetation change, carbon sequestration and biodiversity: Insights from island ecosystems in a long-term natural experiment. Journal of Ecology, 100, 16-30.
[139] Warren BH, Simberloff D, Ricklefs RE, Aguilée R, Condamine FL, Gravel D, Morlon H, Mouquet N, Rosindell J, Casquet J, Conti E, Cornuault J, Fernández-Palacios JM, Hengl T, Norder SJ, Rijsdijk KF, Sanmartín I, Strasberg D, Triantis KA, Valente LM, Whittaker RJ, Gillespie RG, Emerson BC, Thébaud C ( 2015). Islands as model systems in ecology and evolution: Prospects fifty years after Macarthur- Wilson. Ecology Letters, 18, 200-217.
[140] Webb CO, Ackerly DD, McPeek MA, Donoghue MJ ( 2002). Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505.
[141] Whittaker RJ, Jones SH, Partomihardjo T ( 1997). The rebuilding of an isolated rain forestassemblage: How disharmonicis the flora of Krakatau? Biodiversity and Conservation, 6, 1671-1696.
[142] Wiens JJ, Donoghue MJ ( 2004). Historical biogeography, ecology and species richness. Trends in Ecology & Evolution, 19, 639-644.
[143] Wilcove DS, McLellan CH, Dobson AP ( 1986). Habitat fragmentation in the temperate zone. Conservation Biology, 6, 237-256.
[144] Wilson EO, Willis EO ( 1975). Applied biogeography. In: Cody ML, Diamond JM eds. Ecology and Evolution of Communities. Harvard University Press, Cambridge, USA. 522-534.
[145] Wilson MC, Chen XY, Corlett RT, Didham RK, Ding P, Holt RD, Holyoak M, Hu G, Hughes AC, Jiang L, Laurance WF, Liu JJ, Pimm SL, Robinson SK, Russo SE, Si XF, Wilcove DS, Wu JG, Yu MJ ( 2016). Habitat fragmentation and biodiversity conservation: Key findings and future challenges. Landscape Ecology, 31, 219-227.
[146] Wintle BA, Kujala H, Whitehead A, Cameron A, Veloz S, Kukkala A, Moilanen A, Gordon A, Lentini PE, Cadenhead NCR, Bekessy SA ( 2019). Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 116, 909-914.
[147] Wright S ( 1940). Breeding structure of populations in relation to speciation. The American Naturalist, 74, 232-248.
[148] Wu CP, Vellend M, Yuan WG, Jiang B, Liu JJ, Shen AH, Liu JL, Zhu JR, Yu MJ ( 2017a). Patterns and determinants of plant biodiversity in non-commercial forests of eastern China. PLOS ONE, 12, e0188409. DOI: 10.1371/journal.pone.0188409.
[149] Wu H, Franklin SB, Liu JM, Lu ZJ ( 2017b). Relative importance of density dependence and topography on tree mortality in a subtropical mountain forest. Forest Ecology and Management, 384, 169-179.
[150] Yu MJ, Hu G, Feeley KJ, Wu JG, Ding P ( 2012). Richness and composition of plants and birds on land-bridge islands: Effects of island attributes and differential responses of species groups. Journal of Biogeography, 39, 1124-1133.
[151] Zambrano J, Garzon-Lopez CX, Yeager L, Fortunel C, Cordeiro NJ, Beckman NG ( 2019). The effects of habitat loss and fragmentation on plant functional traits and functional diversity: What do we know so far? Oecologia, 191, 505-518.
[152] Zavaleta E, Pasari J, Moore J, Hernández D, Suttle KB, Wilmers CC ( 2009). Ecosystem responses to community disassembly. Annals of the New York Academy of Sciences, 1162, 311-333.
[153] Zhu Y, Mi XC, Ma KP ( 2009). A mechanism of plant species coexistence: The negative density-dependent hypothesis. Biodiversity Science, 17, 594-604.
[ 祝燕, 米湘成, 马克平 ( 2009). 植物群落物种共存机制: 负密度制约假说. 生物多样性, 17, 594-604.]
[154] Zhu Y, Queenborough SA, Condit R, Hubbell SP, Ma KP, Comita LS ( 2018). Density-dependent survival varies with species life-history strategy in a tropical forest. Ecology Letters, 21, 506-515.
[1] TANG Li-Li,ZHANG Mei,ZHAO Xiang-Lin,KANG Mu-Yi,LIU Hong-Yan,GAO Xian-Ming,YANG Tong,ZHENG Pu-Fan,SHI Fu-Chen. Species distribution and community assembly rules of Juglans mandshurica in North China [J]. Chin J Plant Ecol, 2019, 43(9): 753-761.
[2] SHI Jing-Jing,ZHAO Ming-Fei,WANG Yu-Hang,XUE Feng,KANG Mu-Yi,JIANG Yuan. Community assembly of herbaceous layer of the planted forests in the central Loess Plateau, China [J]. Chin J Plant Ecol, 2019, 43(9): 834-842.
[3] CHAI Yong-Fu,XU Jin-Shi,LIU Hong-Yan,LIU Quan-Ru,ZHENG Cheng-Yang,KANG Mu-Yi,LIANG Cun-Zhu,WANG Ren-Qing,GAO Xian-Ming,ZHANG Feng,SHI Fu-Chen,LIU Xiao,YUE Ming. Species composition and phylogenetic structure of major shrublands in North China [J]. Chin J Plant Ecol, 2019, 43(9): 793-805.
[4] XU Jin-Shi,CHAI Yong-Fu,LIU Xiao,YUE Ming,GUO Yao-Xin,KANG Mu-Yi,LIU Quan-Ru,ZHENG Cheng-Yang,JI Cheng-Jun,YAN Ming,ZHANG Feng,GAO Xian-Ming,WANG Ren-Qing,SHI Fu-Chen,ZHANG Qin-Di,WANG Mao. Community assembly, diversity patterns and distributions of broad-leaved forests in North China [J]. Chin J Plant Ecol, 2019, 43(9): 732-741.
[5] Gui Xujun, Lian Juyu, Zhang Ruyun, Li Yanpeng, Shen Hao, Ni Yunlong, Ye Wanhui. Vertical structure and its biodiversity in a subtropical evergreen broad- leaved forest at Dinghushan in Guangdong Province, China [J]. Biodiv Sci, 2019, 27(6): 619-629.
[6] Liu Xiangyu, Zhao Ciliang, Xu Mingshan, Liang Qiming, Zhu Xiaotong, Li Liang, Yan Enrong. Beta diversity of vascular plants and its drivers in sea-islands of eastern China [J]. Biodiv Sci, 2019, 27(4): 380-387.
[7] HAO Shu-Jun, LI Xiao-Yu, HOU Man-Man, ZHAO Xiu-Hai. Spatial variations of community functional traits at different successional stages in temperate forests of Changbai Mountains, Northeast China [J]. Chin J Plant Ecol, 2019, 43(3): 208-216.
[8] CHENG Yi-Kang, ZHANG Hui, WANG Xu, LONG Wen-Xing, LI Chao, FANG Yan-Shan, FU Ming-Qi, ZHU Kong-Xin. Effects of functional diversity and phylogenetic diversity on the tropical cloud forest community assembly [J]. Chin J Plant Ecol, 2019, 43(3): 217-226.
[9] Zhou Haonan, Zhao Yuhao, Zeng Di, Liu Juan, Jin Tinghao, Ding Ping. Spatial patterns and influencing factors of ground ant species diversity on the land-bridge islands in the Thousand Island Lake, China [J]. Biodiv Sci, 2019, 27(10): 1101-1111.
[10] Weng Changlu,Zhang Tiantian,Wu Donghao,Chen Shengwen,Jin Yi,Ren Haibao,Yu Mingjian,Luo Yuanyuan. Drivers and patterns of α- and β-diversity in ten main forest community types in Gutianshan, eastern China [J]. Biodiv Sci, 2019, 27(1): 33-41.
[11] Song Naiping, Wang Xing, Chen Lin, Xue Yi, Chen Juan, Sui Jinming, Wang Lei, Yang Xinguo. Co-existence mechanisms of plant species within “soil islands” habitat of desert steppe [J]. Biodiv Sci, 2018, 26(7): 667-677.
[12] Yunfeng Song, Shengwen Chen, Wei Wang, Jianping Yu, Haiyuan Qian, Yunquan Wang, Lei Chen, Xiangcheng Mi, Haibao Ren, Duo Ye, Jianhua Chen, Keping Ma. Effects of negative density dependence and habitat filtering on the functional diversity of seedlings in the subtropical forest of Gutianshan [J]. Biodiv Sci, 2017, 25(9): 959-965.
[13] Xingfeng Si, Yuhao Zhao, Chuanwu Chen, Peng Ren, Di Zeng, Lingbing Wu, Ping Ding. Beta-diversity partitioning: methods, applications and perspectives [J]. Biodiv Sci, 2017, 25(5): 464-480.
[14] Yang Meng, Yue Qiu, Liang Zhang, Cuiling Wang, Zhenhua Zang, Xueyao Zhang, Guozhen Shen, Caifeng Yan, Quansheng Chen. Effects of geographical distance and differences in climate and altitude on species dissimilarity of vascular plant communities in the Dulongjiang River Watershed Area [J]. Biodiv Sci, 2017, 25(12): 1313-1320.
[15] Ying-Di CHE, Min-Xia LIU, Li-Rong LI, Jiao JIAO, Wei XIAO. Exploring the community assembly of subalpine meadow communities based on functional traits and community phylogeny [J]. Chin J Plan Ecolo, 2017, 41(11): 1157-1167.
Full text



[1] Qin Wei-cheng Li Jian-zhong. The Application Effects of the Cold-resister CR-4 in Our Area's Rice Seedling Culture[J]. Chin Bull Bot, 1994, 11(特辑): 102 -104 .
[2] Ningguang Dong, Ying Gao, Wei Wang, Weilun Yin, Dong Pei. Immunogold Silver Localization of Indole-3-acetic Acid (IAA) During the Rhizogenesis of In Vitro Poplar[J]. Chin Bull Bot, 2011, 46(3): 324 -330 .
[3] HONG Wei CAO Jia-Shu. The Function of FLC in Vernalization Process[J]. Chin Bull Bot, 2002, 19(04): 406 -411 .
[4] . Development and Utilization of Plant Resources II[J]. Chin Bull Bot, 1994, 11(02): 53 -57 .
[5] FAN Qing-Shu ZHAO Jian-Cheng YU Shu-Hong LI Xiu-Qin. Progress in Study on Spore Germination and Protonema Development of the Bryophytes[J]. Chin Bull Bot, 2003, 20(03): 280 -286 .
[6] LIU Jian-Wu LIU Ning. The Progress in Study on Development of Fern Gametophytes and Differentiation of Sex Organ[J]. Chin Bull Bot, 2001, 18(02): 149 -157 .
[7] An Cheng-xi. Studies on the Chemical Constituents of Essential of Aiania-Tanuifolia[J]. Chin Bull Bot, 1997, 14(增刊): 74 -76 .
[8] Nie Wei. Observation on some Biological Characteristics of Juncellus serotinus in Transplanted Rice[J]. Chin Bull Bot, 1988, 5(01): 34 -36 .
[9] . Mechanism of Plant Photosynthetic Acclimation to Elevated Atmospheric CO2[J]. Chin Bull Bot, 2005, 22(04): 486 -493 .