Chin J Plant Ecol ›› 2013, Vol. 37 ›› Issue (5): 415-426.DOI: 10.3724/SP.J.1258.2013.00043
Previous Articles Next Articles
HUANG Yun-Feng1,LU Xing-Hui1,ZANG Run-Guo1,*(),DING Yi1,LONG Wen-Xing2,WANG Jin-Qiang3,YANG Min3,HUANG Yun-Tian3
Published:
2013-05-16
Contact:
ZANG Run-Guo
HUANG Yun-Feng,LU Xing-Hui,ZANG Run-Guo,DING Yi,LONG Wen-Xing,WANG Jin-Qiang,YANG Min,HUANG Yun-Tian. Community assembly during recovery of tropical lowland rain forest from abandoned shifting cultivation lands on Hainan Island, China[J]. Chin J Plant Ecol, 2013, 37(5): 415-426.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2013.00043
Fig. 1 A map showing the locations of ten 1-hm2 (100 m × 100 m) monitoring plots (■) in Bawangling forest region (BFR). LSA1 and LSA2 are 15 year-old forest plots; LSB1 and LSB2 are 30 year-old forest plots; LSC1, LSC2, LSD1 and LSD2 are 60 year-old forest plots; LOG1 and LOG2 are old-growth forest plots.
样地 Plot | 森林年龄 Forest age (a) | 个体数 Number of individuals | 实测物种丰富度 Species richness of observed | 稀疏化的物种数(95%置信区间) Rarefied species number (95% CI) | Fisher’s α | 基于多度涵盖估计量 Abundance-based coverage estimator | Simpson均匀度 Simpson’s evenness | 优势度 Dominance (%) | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TR | SA | SG | TR | SA | SG | TR | SA | SG | TR | SA | SG | TR | SA | SG | TR | SA | SG | TR | SA | SG | ||||||||
LSA1 | 15 | 1 408 | 7 254 | 1 012 | 39 | 76 | 44 | 36 (32-39) | 55 (47-63) | 35 (27-43) | 3.51 | 6.94 | 4.9 | 44 | 93 | 61 | 0.66 | 0.84 | 0.78 | 80.8 | 52.9 | 64 | ||||||
LSA2 | 15 | 1 709 | 6 773 | 1 150 | 38 | 77 | 39 | 33 (28-38) | 52 (43-61) | 31 (25-36) | 4.60 | 6.30 | 4.4 | 49 | 106 | 44 | 0.73 | 0.82 | 0.76 | 67.9 | 58.8 | 71.8 | ||||||
LSB1 | 30 | 1 439 | 4 294 | 800 | 71 | 95 | 48 | 63 (57-70) | 79 (72-85) | 39 (32-46) | 9.14 | 8.53 | 4.64 | 90 | 109 | 62 | 0.74 | 0.80 | 0.67 | 55.5 | 61.9 | 78 | ||||||
LSB2 | 30 | 2 355 | 8 935 | 863 | 35 | 85 | 41 | 29 (24-34) | 55 (46-63) | 36 (32-41) | 4.55 | 5.95 | 6.89 | 40 | 109 | 48 | 0.76 | 0.84 | 0.81 | 69.7 | 65.1 | 64.9 | ||||||
LSC1 | 60 | 1 444 | 6 757 | 938 | 55 | 83 | 52 | 50 (44-55) | 60 (53-68) | 42 (36-47) | 6.80 | 5.61 | 4.64 | 69 | 110 | 60 | 0.76 | 0.73 | 0.74 | 65.5 | 72.6 | 67.7 | ||||||
LSC2 | 60 | 1 721 | 5 783 | 905 | 54 | 89 | 45 | 46 (38-53) | 66 (58-74) | 36 (29-42) | 6.33 | 6.55 | 5.65 | 78 | 116 | 62 | 0.77 | 0.77 | 0.78 | 65.9 | 68.5 | 76.1 | ||||||
LSD1 | 60 | 1 386 | 4 981 | 802 | 63 | 108 | 53 | 57 (49-65) | 84 (75-93) | 43 (35-51) | 8.90 | 7.89 | 5.31 | 76 | 132 | 75 | 0.79 | 0.77 | 0.76 | 58.2 | 69.7 | 71.6 | ||||||
LSD2 | 60 | 2 447 | 5 245 | 908 | 57 | 99 | 69 | 45 (38-51) | 77 (68-85) | 57 (49-65) | 6.91 | 10.29 | 10.65 | 75 | 124 | 85 | 0.81 | 0.87 | 0.87 | 66.7 | 43.4 | 39.8 | ||||||
LOG1 | OG | 1 246 | 2 783 | 595 | 106 | 127 | 65 | 102 (93-110) | 117 (106-128) | 61 (54-68) | 25.23 | 15.63 | 9.12 | 120 | 158 | 83 | 0.85 | 0.87 | 0.78 | 25.4 | 42.2 | 50.3 | ||||||
LOG2 | OG | 1 216 | 2 440 | 524 | 103 | 123 | 68 | 96 (83-110) | 117 (109-126) | 67 (57-76) | 19.40 | 16.31 | 9.52 | 144 | 139 | 110 | 0.83 | 0.85 | 0.76 | 40.8 | 40.8 | 47.3 |
Table 1 Forest age, species abundance, species diversity and dominance for adult trees (TR), saplings (SA) and seedlings (SG) in ten 1-hm2 (100 m × 100 m) monitoring plots in Bawangling forest region
样地 Plot | 森林年龄 Forest age (a) | 个体数 Number of individuals | 实测物种丰富度 Species richness of observed | 稀疏化的物种数(95%置信区间) Rarefied species number (95% CI) | Fisher’s α | 基于多度涵盖估计量 Abundance-based coverage estimator | Simpson均匀度 Simpson’s evenness | 优势度 Dominance (%) | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TR | SA | SG | TR | SA | SG | TR | SA | SG | TR | SA | SG | TR | SA | SG | TR | SA | SG | TR | SA | SG | ||||||||
LSA1 | 15 | 1 408 | 7 254 | 1 012 | 39 | 76 | 44 | 36 (32-39) | 55 (47-63) | 35 (27-43) | 3.51 | 6.94 | 4.9 | 44 | 93 | 61 | 0.66 | 0.84 | 0.78 | 80.8 | 52.9 | 64 | ||||||
LSA2 | 15 | 1 709 | 6 773 | 1 150 | 38 | 77 | 39 | 33 (28-38) | 52 (43-61) | 31 (25-36) | 4.60 | 6.30 | 4.4 | 49 | 106 | 44 | 0.73 | 0.82 | 0.76 | 67.9 | 58.8 | 71.8 | ||||||
LSB1 | 30 | 1 439 | 4 294 | 800 | 71 | 95 | 48 | 63 (57-70) | 79 (72-85) | 39 (32-46) | 9.14 | 8.53 | 4.64 | 90 | 109 | 62 | 0.74 | 0.80 | 0.67 | 55.5 | 61.9 | 78 | ||||||
LSB2 | 30 | 2 355 | 8 935 | 863 | 35 | 85 | 41 | 29 (24-34) | 55 (46-63) | 36 (32-41) | 4.55 | 5.95 | 6.89 | 40 | 109 | 48 | 0.76 | 0.84 | 0.81 | 69.7 | 65.1 | 64.9 | ||||||
LSC1 | 60 | 1 444 | 6 757 | 938 | 55 | 83 | 52 | 50 (44-55) | 60 (53-68) | 42 (36-47) | 6.80 | 5.61 | 4.64 | 69 | 110 | 60 | 0.76 | 0.73 | 0.74 | 65.5 | 72.6 | 67.7 | ||||||
LSC2 | 60 | 1 721 | 5 783 | 905 | 54 | 89 | 45 | 46 (38-53) | 66 (58-74) | 36 (29-42) | 6.33 | 6.55 | 5.65 | 78 | 116 | 62 | 0.77 | 0.77 | 0.78 | 65.9 | 68.5 | 76.1 | ||||||
LSD1 | 60 | 1 386 | 4 981 | 802 | 63 | 108 | 53 | 57 (49-65) | 84 (75-93) | 43 (35-51) | 8.90 | 7.89 | 5.31 | 76 | 132 | 75 | 0.79 | 0.77 | 0.76 | 58.2 | 69.7 | 71.6 | ||||||
LSD2 | 60 | 2 447 | 5 245 | 908 | 57 | 99 | 69 | 45 (38-51) | 77 (68-85) | 57 (49-65) | 6.91 | 10.29 | 10.65 | 75 | 124 | 85 | 0.81 | 0.87 | 0.87 | 66.7 | 43.4 | 39.8 | ||||||
LOG1 | OG | 1 246 | 2 783 | 595 | 106 | 127 | 65 | 102 (93-110) | 117 (106-128) | 61 (54-68) | 25.23 | 15.63 | 9.12 | 120 | 158 | 83 | 0.85 | 0.87 | 0.78 | 25.4 | 42.2 | 50.3 | ||||||
LOG2 | OG | 1 216 | 2 440 | 524 | 103 | 123 | 68 | 96 (83-110) | 117 (109-126) | 67 (57-76) | 19.40 | 16.31 | 9.52 | 144 | 139 | 110 | 0.83 | 0.85 | 0.76 | 40.8 | 40.8 | 47.3 |
Fig. 2 Species-abundance accumulation curves and species rank-abundance distribution curves for adult trees (A, B), saplings (C, D) and seedlings (E, F) in each forest age category: 15, 30 and 60 year-old secondary forest and old-growth forest (OG).
Fig. 3 Non-metric dimensional scaling (NMDS) plots of adult trees (■), saplings (□) and seedlings (○) in each forest age category: 15, 30 and 60 year-old secondary forest and old-growth forest. NMDS was calculated using the Chao-Jaccard similarity index (A) and S?rensen index (B). LSA1 and LSA2 are 15 year-old forest plots; LSB1 and LSB2 are 30 year-old forest plots; LSC1, LSC2, LSD1 and LSD2 are 60 year-old forest plots; LOG1 and LOG2 are old-growth forest plots. SG, SA and TR represent seedling, sapling and adult tree, respectively.
Fig. 4 Species similarity indices calculated across the three size classes (adult trees, saplings, seedlings) for each forest category: 15, 30 and 60 year-old secondary forest and old-growth forest (OG). The similarity measure was calculated among three communities based on shared information between any two communities (□) or using all shared information (○).
Fig. 5 Horn similarity indices across size classes for between secondary forest and old-growth forest (OG). The Horn similarity indices were calculated between secondary forest (SF) adult trees and OG adult tress (A), SF saplings and OG adult trees (B), SF seedlings and OG adult trees (C), SF saplings and OG saplings (D), and SF seedlings and OG seedlings (E), respectively. Each open square represents the mean (± SE) similarity index of all possible comparisons between the SF plots in each age category (15, 30 and 60 year-old) and two OG plots. The OG open squares in the figure of A, D, and E represent comparisons between the two OG plots. SG, SA and TR represent seedling, sapling and adult tree, respectively.
[1] |
Adler PB, Ellner SP, Levine JM ( 2010). Coexistence of perennial plants: an embarrassment of niches. Ecology Letters, 13, 1019-1029.
DOI URL PMID |
[2] | Brook BW, Bradshaw CJA, Koh LP, Sodhi NS ( 2006). Momentum drives the crash: mass extinction in the tropics. Biotropica, 38, 302-305. |
[3] | Bruelheide H, Böhnke M, Both S, Fang T, Assmann T, Baruffol M, Bauhus J, Buscot F, Chen XY, Ding BY, Durka W, Erfmeier A, Fischer M, Geißler C, Guo DL, Guo LD, Härdtle W, He JS, Hector A, Kröber W, Kühn P, Lang A, Nadrowski K, Pei KQ, Scherer-Lorenzen M, Shi XZ, Scholten T, Schuldt A, Trogisch S, von Oheimb G, Welk E, Wirth C, Wu YT, Yang XF, Zeng XQ, Zhang SR, Zhou HZ, Ma KP, Schmid B ( 2011). Community assembly during secondary forest succession in a Chinese subtropical forest. Ecological Monographs, 81, 25-41. |
[4] | Bullock JM, Aronson J, Newton AC, Pywell RF, Rey-Benayas JM ( 2011). Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends in Ecology & Evolution, 26, 541-549. |
[5] | Bustamante-Sánchez MA, Armesto JJ ( 2012). Seed limitation during early forest succession in a rural landscape on Chiloé Island, Chile: implications for temperate forest restoration. Journal of Applied Ecology, 49, 1103-1112. |
[6] | Bustamante-Sánchez MA, Armesto JJ, Halpern CB ( 2011). Biotic and abiotic controls on tree colonization in three early successional communities of Chiloé Island, Chile. Journal of Ecology, 99, 288-299. |
[7] |
Cale WG, Henebry GM, Yeakley JA ( 1989). Inferring process from pattern in natural communities. BioScience, 39, 600-605.
DOI URL |
[8] | Capers RS, Chazdon RL, Brenes AR, Alvarado BV ( 2005). Successional dynamics of woody seedling communities in wet tropical secondary forests. Journal of Ecology, 93, 1071-1084. |
[9] | Chao A, Chazdon RL, Colwell RK, Shen TJ ( 2005). A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters, 8, 148-159. |
[10] |
Chao A, Jost L, Chiang SC, Jiang YH, Chazdon RL ( 2008). A two-stage probabilistic approach to multiple-community similarity indices. Biometrics, 64, 1178-1186.
URL PMID |
[11] | Chave J ( 2004). Neutral theory and community ecology. Ecology Letters, 7, 241-253. |
[12] | Chazdon RL (2008). Chance and determinism in tropical forest succession. In: Carson WP, Schnitzer SA eds. Tropical Forest Community Ecology. Wiley-Blackwell, Chichester, UK. 384-408. |
[13] | Chazdon RL, Letcher SG, van Breugel M, Martínez-Ramos M, Bongers F, Finegan B ( 2007). Rates of change in tree communities of secondary neotropical forests following major disturbances. Philosophical Transactions of the Royal Society B-Biological Sciences, 362, 273-289. |
[14] | Comita LS, Aguilar S, Pérez R, Lao S, Hubbell SP ( 2007). Patterns of woody plant species abundance and diversity in the seedling layer of a tropical forest. Journal of Vegetation Science, 18, 163-174. |
[15] |
Dalling JW, Hubbell SP, Silvera K ( 1998). Seed dispersal, seedling establishment and gap partitioning among tropical pioneer trees. Journal of Ecology, 86, 674-689.
DOI URL |
[16] | de Steven D, Wright SJ ( 2002). Consequences of variable reproduction for seedling recruitment in three neotropical tree species. Ecology, 83, 2315-2327. |
[17] | Dent DH, DeWalt SJ, Denslow JS ( 2013). Secondary forests of central Panama increase in similarity to old-growth forest over time in shade tolerance but not species composition. Journal of Vegetation Science, 24, 530-542. |
[18] | Ding Y, Zang RG ( 2008). Changes in deciduous trees during recovery of tropical lowland rain forests on abandoned shifting cultivation lands in Hainan Island, South China. Biodiversity Science, 16, 103-109. (in Chinese with English abstract) |
[ 丁易, 臧润国 ( 2008). 海南岛热带低地雨林刀耕火种弃耕地恢复过程中落叶树种的变化. 生物多样性, 16, 103-109.] | |
[19] | Ding Y, Zang RG ( 2011). Vegetation recovery dynamics of tropical lowland rain forest in Bawangling of Hainan Island, South China. Chinese Journal of Plant Ecology, 35, 577-586. (in Chinese with English abstract) |
[ 丁易, 臧润国 ( 2011). 海南岛霸王岭热带低地雨林植被恢复动态. 植物生态学报, 35, 577-586.] | |
[20] | Ding Y, Zang RG, Liu SR, He FL, Letcher SG ( 2012). Recovery of woody plant diversity in tropical rain forests in southern China after logging and shifting cultivation. Biological Conservation, 145, 225-233. |
[21] | Ewel J ( 1980). Tropical succession: manifold routes to maturity. Biotropica, 12(Suppl.), 2-7. |
[22] | Ewel J, Berish C, Brown B, Price N, Raich J ( 1981). Slash and burn impacts on a Costa Rican wet forest site. Ecology, 62, 816-829. |
[23] | Finegan B ( 1996). Pattern and process in neotropical secondary rain forests: the first 100 years of succession. Trends in Ecology & Evolution, 11, 119-124. |
[24] | Götzenberger L, de Bello F, Anne Bråthen K, Davison J, Dubuis A, Guisan A, Lepš J, Lindborg R, Moora M, Pärtel M, Pellissier L, Pottier J, Vittoz P, Zobel K, Zobel M ( 2012). Ecological assembly rules in plant communities— approaches, patterns and prospects. Biological Reviews of the Cambridge Philosophical Society, 87, 111-127. |
[25] | Guariguata MR, Ostertag R ( 2001). Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management, 148, 185-206. |
[26] | HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM ( 2012). Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics, 43, 227-248. |
[27] | Huang YF, Ding Y, Zang RG, Li XC, Zou ZC, Han WT ( 2012). Spatial pattern of trees in tropical lowland rain forest in Bawangling of Hainan Island, China. Chinese Journal of Plant Ecology, 36, 269-280. (in Chinese with English abstract) |
[ 黄运峰, 丁易, 臧润国, 李小成, 邹正冲, 韩文涛 ( 2012). 海南岛霸王岭热带低地雨林树木的空间格局. 植物生态学报, 36, 269-280.] | |
[28] | Hubbell SP (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton. |
[29] |
Johnson EA, Miyanishi K ( 2008). Testing the assumptions of chronosequences in succession. Ecology Letters, 11, 419-431.
DOI URL PMID |
[30] | Jost L ( 2006). Entropy and diversity. Oikos, 113, 363-375. |
[31] | Kennard DK ( 2002). Secondary forest succession in a tropical dry forest: patterns of development across a 50-year chronosequence in lowland Bolivia. Journal of Tropical Ecology, 18, 53-66. |
[32] |
Laurance WF ( 2007). Have we overstated the tropical biodiversity crisis? Trends in Ecology & Evolution, 22, 65-70.
URL PMID |
[33] | Lawrence D, Suma V, Mogea JP ( 2005). Change in species composition with repeated shifting cultivation: limited role of soil nutrients. Ecological Applications, 15, 1952-1967. |
[34] | Letcher SG, Chazdon RL ( 2009). Rapid recovery of biomass, species richness, and species composition in a forest chronosequence in northeastern Costa Rica. Biotropica, 41, 608-617. |
[35] | Lozada T, de Koning GHJ, Marché R, Klein AM, Tscharntke T ( 2007). Tree recovery and seed dispersal by birds: comparing forest, agroforestry and abandoned agroforestry in coastal Ecuador. Perspectives in Plant Ecology, Evolution and Systematics, 8, 131-140. |
[36] |
Marín-Spiotta E, Silver WL, Ostertag R ( 2007). Long-term patterns in tropical reforestation: plant community composition and aboveground biomass accumulation. Ecological Applications, 17, 828-839.
DOI URL PMID |
[37] | Mascaro J, Asner GP, Dent DH, DeWalt SJ, Denslow JS ( 2012). Scale-dependence of aboveground carbon accumulation in secondary forests of Panama: a test of the intermediate peak hypothesis. Forest Ecology and Management, 276, 62-70. |
[38] |
Montoya D, Rogers L, Memmott J ( 2012). Emerging perspectives in the restoration of biodiversity-based ecosystem services. Trends in Ecology & Evolution, 27, 666-672.
URL PMID |
[39] |
Nathan R, Muller-Landau HC ( 2000). Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecology & Evolution, 15, 278-285.
DOI URL PMID |
[40] | Norden N, Chave J, Caubère A, Châtelet P, Ferroni N, Forget PM, Thébaud C ( 2007). Is temporal variation of seedling communities determined by environment or by seed arrival? A test in a neotropical forest. Journal of Ecology, 95, 507-516. |
[41] |
Norden N, Chazdon RL, Chao A, Jiang YH, Vílchez-Alvarado B ( 2009). Resilience of tropical rain forests: tree community reassembly in secondary forests. Ecology Letters, 12, 385-394.
DOI URL PMID |
[42] | Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2012). vegan: Community Ecology Package. R package version 2.0-4. http://cran.r-project.org/web/ packages/vegan/index.html. Cited Dec. 2012. |
[43] | Pakeman RJ ( 2011). Functional diversity indices reveal the impacts of land use intensification on plant community assembly. Journal of Ecology, 99, 1143-1151. |
[44] | Peña-Claros M ( 2003). Changes in forest structure and species composition during secondary forest succession in the Bolivian Amazon. Biotropica, 35, 450-461. |
[45] | R Development Core Team ( 2011). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. |
[46] |
Rees M, Condit R, Crawley M, Pacala S, Tilman D ( 2001). Long-term studies of vegetation dynamics. Science, 293, 650-655.
DOI URL PMID |
[47] | Schechtman E, Wang SJ ( 2004). Jackknifing two-sample statistics. Journal of Statistical Planning and Inference, 119, 329-340. |
[48] | Schlawin JR, Zahawi RA ( 2008). “Nucleating” succession in recovering neotropical wet forests: the legacy of remnant trees. Journal of Vegetation Science, 19, 485-492. |
[49] |
Seidler TG, Plotkin JB ( 2006). Seed dispersal and spatial pattern in tropical trees. PLoS Biology, 4, e344.
DOI URL PMID |
[50] |
Suding KN ( 2011). Toward an era of restoration in ecology: successes, failures, and opportunities ahead. Annual Review of Ecology, Evolution, and Systematics, 42, 465-487.
DOI URL |
[51] |
Turner BL, Wells A, Andersen KM, Condron LM ( 2012). Patterns of tree community composition along a coastal dune chronosequence in lowland temperate rain forest in New Zealand. Plant Ecology, 213, 1525-1541.
DOI URL |
[52] |
Wright SJ, Muller-Landau HC ( 2006). The future of tropical forest species. Biotropica, 38, 287-301.
DOI URL |
[53] | Zang RG, Ding Y, Zhang ZD, Deng FY, Mao PL (2010). Ecological Foundation of Conservation and Restoration for the Major Functional Groups in Tropical Natural Forests on Hainan Island. Science Press, Beijing. (in Chinese) |
[ 臧润国, 丁易, 张志东, 邓福英, 毛培利 (2010). 海南岛热带天然林主要功能群保护与恢复的生态学基础. 科学出版社, 北京.] |
[1] | Qingshui Yu xiaofeng ni Jiangling Zhu Zhi-Yao TANG Jing-Yun FANG. Effects of 10 years of nitrogen and phosphorus additions on leaf non-structural carbohydrates of dominant plants in two tropical rainforests in the Jianfengling, Hainan [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | CHEN Zhao-Quan, WANG Ming-Hui, HU Zi-Han, LANG Xue-Dong, HE Yun-Qiong, LIU Wan-De. Mechanisms of seedling community assembly in a monsoon evergreen broadleaf forest in Pu’er, Yunnan, China [J]. Chin J Plant Ecol, 2024, 48(1): 68-79. |
[3] | ZHU Hua, TAN Yun-Hong. Community characteristics, research states and problems of tropical rain forests in China [J]. Chin J Plant Ecol, 2023, 47(4): 447-468. |
[4] | ZHAO Rong-Jiang, CHEN Tao, DONG Li-Jia, GUO Hui, MA Hai-Kun, SONG Xu, WANG Ming-Gang, XUE Wei, YANG Qiang. Progress of plant-soil feedback in ecology studies [J]. Chin J Plant Ecol, 2023, 47(10): 1333-1355. |
[5] | LI Xiao, PIALUANG Bounthong, KANG Wen-Hui, JI Xiao-Dong, ZHANG Hai-Jiang, XUE Zhi-Guo, ZHANG Zhi-Qiang. Responses of radial growth to climate change over the past decades in secondary Betula platyphylla forests in the mountains of northwest Hebei, China [J]. Chin J Plant Ecol, 2022, 46(8): 919-931. |
[6] | LI Xiao-Long, ZHOU Jun, PENG Fei, ZHONG Hong-Tao, Hans LAMBERS. Temporal trends of plant nutrient-acquisition strategies with soil age and their ecological significance [J]. Chin J Plant Ecol, 2021, 45(7): 714-727. |
[7] | ZUO Yong-Ling, YANG Xiao-Bo, LI Dong-Hai, WU Er-Huan, YANG Ning, LI Long, ZHANG Pei-Chun, CHEN Lin, LI Chen-Di. Effects of environmental variables on the species composition and distribution patterns of wild orchids in Hainan Island [J]. Chin J Plant Ecol, 2021, 45(12): 1341-1349. |
[8] | HU Zong-Da, LIU Shi-Rong, LUO Ming-Xia, HU Jing, LIU Xing-Liang, LI Ya-Fei, YU Hao, OU Ding-Hua. Characteristics of soil carbon and nitrogen contents and enzyme activities in sub-alpine secondary forests with different successional stages in Western Sichuan, China [J]. Chin J Plant Ecol, 2020, 44(9): 973-985. |
[9] | LUO Jin-Huan, TAN Zhao-Yuan, CHEN Bin, CHEN Guang-Wu, JIANG Kai, HEI Qi-Fang, ZHANG Hui. Key characteristics for facilitating Leucaena leucocephala to successfully invade pioneer communities of tropical rain forests [J]. Chin J Plant Ecol, 2020, 44(12): 1215-1223. |
[10] | LUO Si-Sheng, LUO Bi-Zhen, WEI Shu-Jing, HU Hai-Qing, LI Xiao-Chuan, WU Ze-Peng, WANG Zhen-Shi, ZHOU Yu-Fei, ZHONG Ying-Xia. Effects of moderate forest fires on soil organic carbon density in secondary forests of Pinus massoniana [J]. Chin J Plant Ecol, 2020, 44(10): 1073-1086. |
[11] | XU Jin-Shi,CHAI Yong-Fu,LIU Xiao,YUE Ming,GUO Yao-Xin,KANG Mu-Yi,LIU Quan-Ru,ZHENG Cheng-Yang,JI Cheng-Jun,YAN Ming,ZHANG Feng,GAO Xian-Ming,WANG Ren-Qing,SHI Fu-Chen,ZHANG Qin-Di,WANG Mao. Community assembly, diversity patterns and distributions of broad-leaved forests in North China [J]. Chin J Plant Ecol, 2019, 43(9): 732-741. |
[12] | CHAI Yong-Fu, XU Jin-Shi, LIU Hong-Yan, LIU Quan-Ru, ZHENG Cheng-Yang, KANG Mu-Yi, LIANG Cun-Zhu, WANG Ren-Qing, GAO Xian-Ming, ZHANG Feng, SHI Fu-Chen, LIU Xiao, YUE Ming. Species composition and phylogenetic structure of major shrublands in North China [J]. Chin J Plant Ecol, 2019, 43(9): 793-805. |
[13] | SHI Jing-Jing,ZHAO Ming-Fei,WANG Yu-Hang,XUE Feng,KANG Mu-Yi,JIANG Yuan. Community assembly of herbaceous layer of the planted forests in the central Loess Plateau, China [J]. Chin J Plant Ecol, 2019, 43(9): 834-842. |
[14] | TANG Li-Li, ZHANG Mei, ZHAO Xiang-Lin, KANG Mu-Yi, LIU Hong-Yan, GAO Xian-Ming, YANG Tong, ZHENG Pu-Fan, SHI Fu-Chen. Species distribution and community assembly rules of Juglans mandshurica in North China [J]. Chin J Plant Ecol, 2019, 43(9): 753-761. |
[15] | HAO Shu-Jun, LI Xiao-Yu, HOU Man-Man, ZHAO Xiu-Hai. Spatial variations of community functional traits at different successional stages in temperate forests of Changbai Mountains, Northeast China [J]. Chin J Plant Ecol, 2019, 43(3): 208-216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn