Chin J Plan Ecolo ›› 2014, Vol. 38 ›› Issue (2): 93-102.doi: 10.3724/SP.J.1258.2014.00009

• Editorial •     Next Articles

Drivers and regulating mechanisms of grassland and desert ecosystem services

BAI Yong-Fei1*, HUANG Jian-Hui1, ZHENG Shu-Xia1, PAN Qing-Min1, ZHANG Li-Xia1, ZHOU Hua-Kun2, XU Hai-Liang3, LI Yu-Lin4, and MA Jian3   

  1. 1State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;

    2Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China;

    3Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China;

    4Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2014-01-07 Revised:2014-01-24 Online:2014-02-12 Published:2014-02-01
  • Contact: BAI Yong-Fei


Examining the drivers and regulating mechanisms of multiple ecosystem services has emerged as a central issue in ecology in recent years. In this paper, we start with the definition of ecosystem services, recent progresses and research priorities in the field. Then, we propose an experimental network to examine the key drivers of ecosystem services and relationships among multiple ecosystem services across grassland and desert ecosystems in northern China. The research network include conceptual diagram, research questions and objectives, field experimental design, ecosystem properties and processes observed across four grassland and desert sites. We review the major findings from the experimental network and future research directions in grassland and desert ecosystem services.

No related articles found!
Full text



[1] Lin liang-qiu;Zhang Qing-qi and Wu Wen-shan. A Study on Pollen Morphology of Rosa laevigata and Its Nutrition Composition[J]. Chin Bull Bot, 1994, 11(04): 43 -44 .
[2] Jie Dong;Fenghui Qi;Yaguang Zhan. Establishment of the Suspension Culture System and Optimization of Biosynthesis of Gallic Acid in Acer ginnala[J]. Chin Bull Bot, 2008, 25(06): 734 -740 .
[3] Li Guo-zhen;Qin Ming-bo;Kang Ning-ling;Xie De-yu;Ye He-chun and Li Guo-feng. Tissue Culture and Chromosome Analysis of Arnebia euchroma[J]. Chin Bull Bot, 1992, 9(01): 37 -41 .
[4] Han Bi-wen. The Synthitic Activities of Roots and their Relation to the Above-grond Parts[J]. Chin Bull Bot, 1984, 2(23): 23 -25 .
[5] Guiling Wang;Zhiwei Qin;Xiuyan Zhou;Zhiyun Zhao. Genetic Analysis and SSR Markers of Tuberculate Trait in Cucumis sativus[J]. Chin Bull Bot, 2007, 24(02): 168 -172 .
[6] Hui Yang;Lizhe An;Zhiye Wang;Jianping Zhou;Xunling Wang. Effects of Enhanced UV-B Radiation on Pollen Activities of 2 Tomato Cultivars in Terms of Endogenous Hormone,Polyamine and Proline Levels in Stamens[J]. Chin Bull Bot, 2007, 24(02): 161 -167 .
[7] Hao Zhao;Zhao Xue-chen;Zheng Shu-jun and Qu Chun-ying. Winter Hardiness of Wheat Seedling at Differant Leaf-Age[J]. Chin Bull Bot, 1985, 3(05): 38 -40 .
[8] Chang Huey-ju;Guan Zhong-tian;Zhou Lin and Hsu Kuo-shih. Comparison of two natural cycad communities in China[J]. Chin Bull Bot, 1995, 12(专辑): 52 -58 .
[9] . Positional Information and Plant Development [J]. Chin Bull Bot, 2005, 22(03): 366 -374 .
[10] Deyong Ren, Guanghua He, Yinghua Ling, Xianchun Sang, Zhenglin Yang, Fangming Zhao. Analysis of Quantitative Trait Loci Additive and Epistasis Effects for Panicle Length with Single Segment Substitution Lines in Rice[J]. Chin Bull Bot, 2010, 45(06): 662 -669 .