Chin J Plan Ecolo ›› 2010, Vol. 34 ›› Issue (3): 309-315.doi: 10.3773/j.issn.1005-264x.2010.03.008

• Research Articles • Previous Articles     Next Articles

Influence of environmental factors on phylogenetic structure at multiple spatial scales in an evergreen broad-leaved forest of China

HUANG Jian-Xiong1,2; ZHENG Feng-Ying3; MI Xiang-Cheng1*   

  1. 1State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
    2Graduate Universityof Chinese Academy of Sciences, Beijing 100049, China;
    3Marine College, Shangdong University at Weihai, Weihai, Shandong 264209, China
  • Received:2009-07-18 Online:2010-03-01 Published:2010-03-01
  • Contact: MI Xiang-Cheng

Abstract: Aims Phylogenetic structure of a community is a synthetical indicator reflecting underlying ecological processes. Understanding of the phylogenetic structure of a community will provide insights into the relative importance
of different processes structuring the community. Our objectives are 1) examine the effects of environmental factors on phylogenetic structure; 2) test the prediction of neutral theory that the community is randomly assembled and the prediction of niche theory that the community is mainly determined by niche differentiation; and 3) determine the relative importance of neutral theory and niche theory in biodiversity maintenance in subtropical
evergreen broadleaved forest.
Methods Gutianshan forest dynamic plot is located in the Gutianshan National Nature Reserve at Kaihua County, Zhejian Province of China. We randomly chose 1 000 subplots at five spatial scales of radii 5, 25, 50, 75 and 100 m in the Gutianshan forest dynamic plot and analyzed phylogenetic structure of subplots at these scales with net relatedness index (NRI). We analyzed the effect of environmental factors, including topographical factors, such as altitude, slope, aspect and convexity, and edaphic factors such as soil moisture, pH and 16 soil nutrients, on the community phylogenetic structure with multivariate regression.
Important findings Communities were phylogenetically clustered at all spatial scales, indicating that trees were more closely related to their neighbors than expected by chance. With increasing scale, the strength of clustering increased and then deceased. Multiple linear regression showed that environmental factors had almost no effect on phylogenetic structure at smaller scales, but strongly affected the community structure at larger scales (radius of 100 m). At the radius of 100 m, two types of different phylogenetic structure emerged: some of subplots kept clustering, yet others became overdispersed. The difference of phylogenetic community structures at scale of 100 m was mainly determined by altitude. Our results support the prediction of niche theory that the community phylogenetic structure is structured by niche differentiation, and do not support the prediction that the community phylogenetic structure is randomly assembled by ecological drift and dispersal limitation.

No related articles found!
Full text



[1] Liu Ying-di. The Role of Ultrastructure in Algal Systematics[J]. Chin Bull Bot, 1990, 7(04): 18 -23 .
[2] Fan Guo-qiang and Jiang Jian-ping. Study on the Methods of Extraction of Protein from Paulownia Leaves[J]. Chin Bull Bot, 1997, 14(03): 61 -64 .
[3] Tong Zhe and Lian Han-ping. Cryptochrome[J]. Chin Bull Bot, 1985, 3(02): 6 -9 .
[4] Huang Ju-fu and Luo Ai-ling. The Advances of the Studies on Extraction of FeMoco from Nitrogenase Molybdenum-Iron Protein[J]. Chin Bull Bot, 1991, 8(03): 19 -25 .
[5] Hsu Rong-jiang Gu Wen-mao Gao Jing-cheng and Peng Chang-ming. Inhibitory Effect of High CO2 and Low O2 Tension on Ethylene Evolution in Apples[J]. Chin Bull Bot, 1984, 2(01): 29 -31 .
[6] Zou Shu-hua;Zhao Shu-wen and Xu Bao. Electropheresis Profiles of Esterase Isozymes in Different Types of Soybean[J]. Chin Bull Bot, 1985, 3(06): 18 -20 .
[7] . [J]. Chin Bull Bot, 1999, 16(增刊): 49 -52 .
[8] Chi Tingfei;Shi Xiaofang;Huang Ruzhu;Zheng Xiangyun;Yuan Xiangning and Wu Dangjian. A Preliminary Study on the Chemical Constituents of the Leave Oil in prunus zippeliana Mig[J]. Chin Bull Bot, 1986, 4(12): 44 -45 .
[9] Houqing Zeng, Yaxian Zhang, Shang Wang, Xiajun Zhang, Huizhong Wang, Liqun Du. Calcium/calmodulin-mediated Signal Transduction System in Plants[J]. Chin Bull Bot, 2016, 51(5): 705 -723 .
[10] Zhu Zhi-qing. Abbreviations for some Commonly Used Terms in Ultrastructures of Plant Cells[J]. Chin Bull Bot, 1984, 2(04): 57 -58 .