Chin J Plant Ecol ›› 2016, Vol. 40 ›› Issue (10): 1049-1063.DOI: 10.17521/cjpe.2016.0069
Special Issue: 全球变化与生态系统; 生态系统碳水能量通量
• Research Articles • Previous Articles Next Articles
Hua JU1,2, Guo-Zhen SHEN2,*(), Ming-Zhe MA2, Jie-Lin GE2, Wen-Ting XU2, Chang-Ming ZHAO2, Qiu- Liang ZHANG1
Online:
2016-10-10
Published:
2016-11-02
Contact:
Guo-Zhen SHEN
Hua JU, Guo-Zhen SHEN, Ming-Zhe MA, Jie-Lin GE, Wen-Ting XU, Chang-Ming ZHAO, Qiu- Liang ZHANG. Greenhouse gas fluxes of typical northern subtropical forest soils: Impacts of land use change and reduced precipitation[J]. Chin J Plant Ecol, 2016, 40(10): 1049-1063.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2016.0069
土壤因子 Factors of soil | 原始林 Primary forest | 次生林 Secondary forest | 人工林 Artificial forest |
---|---|---|---|
全氮 Total N (g·kg-1) | 3.83 ± 0.43 | 1.90 ± 0.28 | 1.35 ± 0.06 |
全磷 Total P (g·kg-1) | 801.50 ± 0.03 | 239.23 ± 37.74 | 245.47 ± 12.93 |
全钾 Total K (g·kg-1) | 6.35 ± 0.01 | 19.69 ± 0.61 | 18.06 ± 0.41 |
硝态氮 Nitrate nitrogen (g·kg-1) | 7.43 ± 0.92 | 5.06 ± 1.09 | 3.32 ± 0.5. |
铵态氮 Ammonium nitrogen (g·kg-1) | 34.32 ± 3.46 | 17.04 ± 1.42 | 13.70 ± 1.20 |
可溶性有机碳 Dissolved organic carbon (g·kg-1) | 119.80 ± 30.83 | 76.69 ± 20.54 | 92.97 ± 9.34 |
可溶性有机氮 Organic nitrogen (g·kg-1) | 22.98 ± 5.64 | 13.03 ± 3.80 | 14.18 ± 0.99 |
有机碳 Organic carbon (g·kg-1) | 57.58 ± 8.12 | 18.99 ± 3.61 | 14.46 ± 1.10 |
pH | 5.50 ± 0.02 | 5.13 ± 0.22 | 4.96 ± 0.05 |
土壤容重 Soil bulk density (g·m-1) | 1.30 ± 0.04 | 1.32 ± 0.07 | 1.47 ± 0.01 |
土壤湿度 Soil moisture (%) | 48.50 ± 1.33 | 32.54 ± 0.01 | 30.00 ± 1.79 |
Table 1 The woodland surface soil (0-20 cm) physicochemical properties under the three kind of land use type in Shennongjia, Hubei, China (mean ± SE)
土壤因子 Factors of soil | 原始林 Primary forest | 次生林 Secondary forest | 人工林 Artificial forest |
---|---|---|---|
全氮 Total N (g·kg-1) | 3.83 ± 0.43 | 1.90 ± 0.28 | 1.35 ± 0.06 |
全磷 Total P (g·kg-1) | 801.50 ± 0.03 | 239.23 ± 37.74 | 245.47 ± 12.93 |
全钾 Total K (g·kg-1) | 6.35 ± 0.01 | 19.69 ± 0.61 | 18.06 ± 0.41 |
硝态氮 Nitrate nitrogen (g·kg-1) | 7.43 ± 0.92 | 5.06 ± 1.09 | 3.32 ± 0.5. |
铵态氮 Ammonium nitrogen (g·kg-1) | 34.32 ± 3.46 | 17.04 ± 1.42 | 13.70 ± 1.20 |
可溶性有机碳 Dissolved organic carbon (g·kg-1) | 119.80 ± 30.83 | 76.69 ± 20.54 | 92.97 ± 9.34 |
可溶性有机氮 Organic nitrogen (g·kg-1) | 22.98 ± 5.64 | 13.03 ± 3.80 | 14.18 ± 0.99 |
有机碳 Organic carbon (g·kg-1) | 57.58 ± 8.12 | 18.99 ± 3.61 | 14.46 ± 1.10 |
pH | 5.50 ± 0.02 | 5.13 ± 0.22 | 4.96 ± 0.05 |
土壤容重 Soil bulk density (g·m-1) | 1.30 ± 0.04 | 1.32 ± 0.07 | 1.47 ± 0.01 |
土壤湿度 Soil moisture (%) | 48.50 ± 1.33 | 32.54 ± 0.01 | 30.00 ± 1.79 |
土地利用类型 Land use types | 原始林 Primary forest | 次生林 Secondary forest | 人工林 Artificial forest |
---|---|---|---|
位置 Location | 31.31° N 110.47° E | 31.33° N 110.49° E | 31.32° N 110.49° E |
海拔 Elevation (m) | 1 670 | 1 321 | 1 325 |
坡度 Slope (°) | 40° | 38° | 36° |
降水量 Precipitation (mm) | 708.8 | 637.40 | 2187.60 |
平均胸径 Mean diameter at breast height (cm) | 11.5 | 10.97 | 9.60 |
郁闭度 Canopy | 0.90 | 0.95 | 0.93 |
建群种 Constructive species | 米心水青冈 Fagus engleriana 青冈 Cyclobalanopsis glauca | 桦木 Betula luminifera 鹅耳枥 Carpinus turczaninowii | 马尾松 Pinus massoniana 短柄枹栎 Quercus glandulifera |
土壤类型 Soil type | 山地黄棕壤 Mountain yellow brown earth | 山地黄棕壤 Mountain yellow brown earth | 山地黄棕壤 Mountain yellow brown earth |
Table 2 Site characteristics of three kind of land use type in Shennongjia, Hubei, China
土地利用类型 Land use types | 原始林 Primary forest | 次生林 Secondary forest | 人工林 Artificial forest |
---|---|---|---|
位置 Location | 31.31° N 110.47° E | 31.33° N 110.49° E | 31.32° N 110.49° E |
海拔 Elevation (m) | 1 670 | 1 321 | 1 325 |
坡度 Slope (°) | 40° | 38° | 36° |
降水量 Precipitation (mm) | 708.8 | 637.40 | 2187.60 |
平均胸径 Mean diameter at breast height (cm) | 11.5 | 10.97 | 9.60 |
郁闭度 Canopy | 0.90 | 0.95 | 0.93 |
建群种 Constructive species | 米心水青冈 Fagus engleriana 青冈 Cyclobalanopsis glauca | 桦木 Betula luminifera 鹅耳枥 Carpinus turczaninowii | 马尾松 Pinus massoniana 短柄枹栎 Quercus glandulifera |
土壤类型 Soil type | 山地黄棕壤 Mountain yellow brown earth | 山地黄棕壤 Mountain yellow brown earth | 山地黄棕壤 Mountain yellow brown earth |
Fig. 1 Greenhouse gas fluxes of the primary forest, secondary forest and artificial forest (mean ± SE). The capital letters indicated the differences land use types in significant at 0.05 level and lowercase letters indicated the same land use types under different precipitation reduction treatments were significant at 0.05 level. AF, artificial forest; PF, primary forest; SF, secondary forest. NR, natural precipitation site; RR, precipitation reduction 50% site.
Fig. 2 Relationships between the CH4 fluxes and the soil temperature at 5 cm below surface and soil moisture at the 5 cm in the primary forest (PF), secondary forest (SF) and artificial forest (AF). NR, natural precipitation site; RR, precipitation reduction 50% site. a1, slope of dash line; a2, slope of solid line.
Fig. 3 Relationships between the CO2 fluxes and the soil temperature at 5 cm below surface and soil moisture at 5 cm in the primary forest (PF) , secondary forest (SF) and artificial forest (AF). NR, natural precipitation site; RR, precipitation reduction 50% site. a1, slope of dash line; a2, slope of solid line.
Fig. 4 Relationships between the N2O fluxes and the soil temperature at 5 cm below surface and soil moisture at 5 cm in the primary forest (PF), secondary forest (SF) and artificial forest (AF). NR, natural precipitation site; RR, precipitation reduction 50% site. a1, slope of dash line; a2, slope of solid line.
Fig. 5 Relationships between the N2O fluxes and soil nitrate nitrogen content in the primary forest (PF), secondary forest (SF) and artificial forest (AF). NR, natural precipitation site; RR, precipitation reduction 50% site. a1, slope of dash line; a2, slope of solid line.
[1] | Adamsen A, King G (1993). Methane consumption in temperate and subarctic forest soils: Rates, vertical zonation and responses to water and nitrogen.Applied and Environmental Microbiology, 59, 485-490. |
[2] | Ball BC, McTaggart IP, Watson CA (2002). Influence of organic ley-arable management and afforestation in sandy loam to clay loam soils on fluxes of N2O and CH4 in Scotland.Agriculture, Ecosystems & Environment, 90, 305-317. |
[3] | Bodelier PL, Laanbroek HJ (2004). Nitrogen as a regulatory factor of methane oxidation in soils and sediments.FEMS Microbiology Ecology, 47, 265-277. |
[4] | Butterbach-Bahl K, Breuer L, Gasche R, Willibald G, Papen H (2002). Exchange of trace gases between soils and the atmosphere in Scots pine forest ecosystems of the northeastern German lowlands. 1. Fluxes of N2O,NO/NO2 and CH4 at forest sites with different N-deposition.Forest Ecology and Management, 167, 123-134. |
[5] | Carlisle EA, Steenwerth KL, Smart DR (2006). Effects of land use on soil respiration: Conversion of oak woodlands to vineyards.Journal of Environmental Quality, 35, 1396-1404. |
[6] | Castro MS, Steudler PA, Melillo JM, Aber JD, Bowden RD (1995). Factors controlling atmospheric methane consumption by temperate forest soils.Global Biogeochemical Cycles, 9, 1-10. |
[7] | Chang SC, Tseng KH, Hsia YJ, Wang CP, Wu JT (2008). Soil respiration in a subtropical montane cloud forest in Taiwan.Agricultural and Forest Meteorology, 148, 788-798. |
[8] | Christiansen JR, Outhwaite J, Smukler SM (2015). Comparison of CO2, CH4 and N2O soil-atmosphere exchange measured in static chambers with cavity ring-down spectroscopy and gas chromatography.Agricultural and Forest Meteorology, 211, 48-57. |
[9] | Chu JX, Zhang XQ (2006). Dynamic and fractionalization of soil respiration under three different land use/covers in the subalpine region of western Sichuan Province, China.Acta Ecologica Sinica, 26, 1693-1700.(in Chinese with English abstract)[褚金翔, 张小全 (2006). 川西亚高山林区三种土地利用方式下土壤呼吸动态及组分区分. 生态学报,26, 1693-1700.] |
[10] | Davidson EA, Ishida FY, Nepstad DC (2004). Effects of an experimental drought on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest.Global Change Biology, 10, 718-730. |
[11] | Du R, Huang JH, Wan XW, Jia YH (2004). The research on the law of greenhouse gases emissions from warm temperate forest soil in Beijing region.Chinese Journal of Environmental Science, 25, 12-16.(in Chinese with English abstract)[杜睿, 黄建辉, 万小伟, 贾月慧 (2004). 北京地区暖温带森林土壤温室气体排放规律. 环境科学,25, 12-16.] |
[12] | Flechard CR, Ambus P, Skiba U, Rees RM, Hensen A, van Amstel A, Raschi A (2007). Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe.Agriculture, Ecosystems & Environment, 121, 135-152. |
[13] | Galford GL, Melillo JM, Kicklighter DW, Cronin TW, Cerri CE, Mustard JF, Cerri CC (2010). Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the southern Amazon.Proceedings of the National Academy of Sciences of the United States of America, 107, 19649-19654. |
[14] | Geng SC, Chen ZJ, Zhang JH, Lou X, Wang XX, Dai GH, Han SJ, Yu DD (2013). Soil methane fluxes of three forest types in Changbai Mountain of Northeast China.Chinese Journal of Ecology, 32, 1091-1096.(in Chinese with English abstract) [耿世聪, 陈志杰, 张军辉, 娄鑫, 王秀秀, 戴冠华, 韩士杰, 于丹丹 (2013). 长白山三种主要林地土壤甲烷通量. 生态学杂志,32, 1091-1096.] |
[15] | Grünzweig JM, Sparrow SD, Chapin FS (2003). Impact of forest conversion to agriculture on carbon and nitrogen mineralization in subarctic Alaska.Biogeochemistry, 64, 271-296. |
[16] | Hiltbrunner D, Zimmermann S, Karbin S, Hagedorn F, Niklaus PA (2012). Increasing soil methane sink along a 120-year afforestation chronosequence is driven by soil moisture.Global Change Biology, 18, 3664-3671. |
[17] | Houghton RA (2003). Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000.Tellus B, 55, 378-390. |
[18] | IPCC (Intergovernmental Panel on Climate Change) (2011). Summary for policymakers. In: Edenhofer O, Pichs- Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C eds. Special Report on Renewable Energy Sources and Climate Change Mitigation of Working Group III to the 11th Session of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[19] | Ishizuka S, Tsuruta H, Murdiyarso D (2002). An intensive field study on CO2, CH4, and N2O emissions from soils at four land-use types in Sumatra, Indonesia.Global Biogeochemical Cycles, 16, 1049-1060. |
[20] | Jassal RS, Black TA, Roy R, Ethier G (2011). Effect of nitrogen fertilization on soil CH4 and N2O fluxes, and soil and bole respiration.Geoderma, 162, 182-186. |
[21] | Jin GY, Zhao XH, Kang FF, Wang JS (2013). The great rainfall effect on soil respiration of Pinus tabulaeformis plantation in Taiyue Mountain.Acta Ecologica Sinica, 33, 1832-1841.(in Chinese with English abstract)[金冠一, 赵秀海, 康峰峰, 汪金松 (2013). 太岳山油松人工林土壤呼吸对强降雨的响应. 生态学报,33, 1832-1841.] |
[22] | Li HF, Xia HP, Fu SL, Zhang XF (2009). Emission of soil greenhouse gases in response to understory removal and cassia alata addition in an eucalyptus urophylla plantation in Guangdong Province, China.Chinese Journal of Plant Ecology, 33, 1015-1022.(in Chinese with English abstract).[李海防, 夏汉平, 傅声雷, 张杏锋 (2009). 剔除林下灌草和添加翅荚决明对尾叶桉林土壤温室气体排放的影响. 植物生态学报,33, 1015-1022] |
[23] | Liu H, Zhao P, Lu P, Wang YS, Lin YB, Rao XQ (2008). Greenhouse gas fluxes from soils of different land-use types in a hilly area of South China.Agriculture, Ecosystems & Environment, 124, 125-135. |
[24] | Liu HF, Wu X, Li Y,Li ZS, Liu GH (2014). Effects of land use change on greenhouse gas fluxes from soils: A review.Chinese Journal of Ecology, 33, 1960-1968.(in Chinese with English abstract)[刘慧峰, 伍星, 李雅, 李宗善, 刘国华 (2014). 土地利用变化对土壤温室气体排放通量影响研究进展. 生态学杂志,33, 1960-1968. ] |
[25] | Liu LL, Liu YF, Wen XF, Wang YH (2008). CH4 emission flux from soil pine plantations in the Qian-Yanzhou red earth hill region of China. Jornal of Plant Ecology (Chinese Version), 32, 431-439.(in Chinese with English abstract).[刘玲玲, 刘允芬, 温学友, 王迎红 (2008). 千烟洲红壤丘陵区人工针叶林土壤CH4排放通量. 植物生态学报,32, 431-439.] |
[26] | Merino A, Pérez-Batallón P, Macı?as F (2004). Responses of soil organic matter and greenhouse gas fluxes to soil management and land use changes in a humid temperate region of southern Europe.Soil Biology & Biochemistry, 36, 917-925. |
[27] | Mo JM, Fang YT, Lin ED, Li YE (2006). Soil N2O emission and its response to simulated N deposition in the main forests of Dinghushan in subtropical China. Chinese Journal of Plant Ecology (Chinese Version), 30, 901-910.(in Chinese with English abstract)[莫江明, 方运霆, 林而达, 李玉娥 (2006). 鼎湖山主要森林土壤N2O排放及其对模拟N沉降的响应. 植物生态学报,30, 901-910.] |
[28] | Mo JM, Fang YT, Xu GL, Li DJ, Xue JH (2005). The short-term responses of soil CO2 emission and CH4 uptake to sim ula ted N deposition in nursery and forests of Dinghushan in subtropical China. Acta Ecologica Sinica, 25, 682-690.(in Chinese with English abstract)[莫江明, 方运霆, 徐国良, 李德军, 薛璟花 (2005). 鼎湖山苗圃和主要森林土壤CO2排放和CH4吸收对模拟N沉降的短期响应. 生态学报,25, 682-690.] |
[29] | Norton U, Mosier AR, Morgan JA, Derner JD, Ingram LJ, Stahl PD (2008). Moisture pulses, trace gas emissions and soil C and N in cheatgrass and native grass-dominated sagebrush- steppe in wyoming, USA.Soil Biology & Biochemistry, 40, 1421-1431. |
[30] | Qi YC, Dong YS, Geng YB, Yang XH, Liu LX, Li MF, Liu XR (2004). The comparison of the CH4 flux diurnal variation characteristics and diurnal uptake flux in different phenologies in Leymus chinense grassland in Inner Mongolia, China. Geographical Research, 23, 785-794.(in Chinese with English abstract)[齐玉春, 董云社, 耿元波, 杨小红, 刘立新, 李明峰, 刘杏认 (2004). 内蒙古羊草草原不同物候CH4通量日变化特征与日通量比较. 地理研究,23, 785-794.] |
[31] | Rustad LE, Huntington TG, Boone RD (2000). Controls on soil respiration: Implications for climate change.Biogeochemistry, 48, 1-6. |
[32] | Schaufler G, Kitzler B, Schindlbacher A, Skiba U, Sutton MA, Zechmeister-Boltenstern S (2010). Greenhouse gas emissions from European soils under different land use: Effects of soil moisture and temperature.European Journal of Soil Science, 61, 683-696. |
[33] | Sheng H, Li X, Yang ZJ, Xie JS, Chen GS, Yang YS (2010). Impact of land use/cover change on soil CO2 efflux in mid subtropical mountainous area of Southern China.Scientia Geographica Sinica, 30, 446-451.(in Chinese with English abstract)[盛浩, 李旭, 杨智杰, 谢锦升, 陈光水, 杨玉盛 (2010). 中亚热带山区土地利用变化对土壤CO2 排放的影响. 地理科学,30, 446-451.] |
[34] | Skiba UM, Sheppard LJ, MacDonald J, Fowler D (1998). Some key environmental variables controlling nitrous oxide emissions from agricultural and semi-natural soils in Scotland.Atmospheric Environment, 32, 3311-3320. |
[35] | Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A (2003). Exchange of greenhouse gases between soil and atmosphere: Interactions of soil physical factors and biological processes.European Journal of Soil Science, 54, 779-791. |
[36] | Steudler PA, Bowden RD, Melillo JM, Aber JD (1989). Influence of nitrogen fertilization on methane uptake in temperate forest soils.Nature, 341, 314-316. |
[37] | Steudler PA, Melillo JM, Bowden RD, Castro MS, Lugo AE (2015). The effects of natural and human disturbances on soil nitrogen dynamics and trace gas fluxes in a Puerto Rican wet forest.Biotropica, 23, 356-363. |
[38] | Stocker TF, Qin DH, Plattner GK, Tignor M, Allen SK, Boschung J, Midgley PM (2013). The Physical Science Basis. Intergovernmental Panel on Climate Change, Working Group I Contribution to the “IPCC Fifth Assessment Report”. Cambridge University Press, Cambridge, UK. 72. |
[39] | Sun XY, Xu HC (2001). Emission flux of nitrous oxide from forest soil in Beijing.Scientia Silvae Sinicae, 37(5), 57-63.(in Chinese with English abstract)[孙向阳, 徐化成 (2001). 北京低山区两种人工林土壤中N2O排放通量的研究. 林业科学,37(5), 57-63.] |
[40] | Takakai F, Morishita T, Hashidoko Y, Darung U, Kuramochi K, Dohong S, Hatano R (2006). Effects of agricultural land-use change and forest fire on N2O emission from tropical peatlands, Central Kalimantan, Indonesia.Soil Science and Plant Nutrition, 52, 662-674. |
[41] | Tang XL, Liu SG, Zhou GY, Zhang DQ, Zhou CY (2006). Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China.Global Change Biology, 12, 546-560. |
[42] | Verchot LV, Davidson EA, Cattânio H, Ackerman IL, Erickson HE, Keller M (1999). Land use change and biogeo- chemical controls of nitrogen oxide emissions from soils in eastern Amazonia.Global Biogeochemical Cycles, 13, 31-46. |
[43] | Wang Y, Wang CK, Fu MJ, Liu S, Wang XC (2009). Soil nitrous oxide emission in four temperate forests in north eastern China.Chinese Journal of Applied Ecology, 20, 1007-1012.(in Chinese with English abstract)[王颖, 王传宽, 傅民杰, 刘实, 王兴昌 (2009). 四种温带森林土壤氧化亚氮通量及其影响因子. 应用生态学报, 20, 1007-1012.] |
[44] | Wang YD, Wang HM, Ma ZQ, Li QK, Shi LL, Xu F (2010). Review of response mechanism of soil respiration to rainfall.Chinese Journal of Plant Ecology, 34, 601-610.(in Chinese with English abstract).[王义东, 王辉民, 马泽清, 李庆康, 施蕾蕾, 徐飞 (2010). 土壤呼吸对降雨响应的研究进展. 植物生态学报,34, 601-610.] |
[45] | Weitz AM, Veldkamp E, Keller M, Neff J, Crill PM (1998). Nitrous oxide, nitric oxide, and methane fluxes from soils following clearing and burning of tropical secondary forest.Journal of Geophysical Research: Atmospheres, 103, 28047-28058. |
[46] | Werner C, Zheng X, Tang J, Xie B, Liu C, Kiese R, Butterbach-Bahl K (2006). N2O, CH4 and CO2 emissions from seasonal tropical rainforests and a rubber plantation in Southwest China.Plant and Soil, 289, 335-353. |
[47] | Willcock S, Phillips OL, Platts PJ, Swetnam RD, Balmford A, Burgess ND, Fanning E (2016). Land cover change and carbon emissions over 100 years in an African biodiversity hotspot.Global Change Biology, 22, 2787-2800. |
[48] | Xiao DM, Wang M, Ji LZ, Han SJ, Wang YS (2004). Variation characteristics of soil N2O emission flux in broad-leaved Korean pine forest of Changbai Mountain.Chinese Journal of Ecology, 23, 46-52.(in Chinese with English abstract)[肖冬梅, 王淼, 姬兰柱, 韩士杰, 王跃思 (2004). 长白山阔叶红松林土壤N2O排放通量的变化特征. 生态学杂志,23, 46-52.] |
[49] | Xu BX, Hu YG, Zhang ZS, Chen YL, Zhang P, Li G (2014). Effects of experimental warming on CO2, CH4 and N2O fluxes of biological soil crust and soil system in a desert region.Chinese Journal of Plant Ecology, 38, 809-820.(in Chinese with English abstract)[徐冰鑫, 胡宜刚, 张志山, 陈永乐, 张鹏, 李刚 (2014). 模拟增温对荒漠生物土壤结皮-土壤系统CO2、CH4和N2O通量的影响. 植物生态学报,38, 809-820.] |
[50] | Xu YL, Xue F, Lin YH (2003). Changes of surface air temperature and precipitation in China during the 21st century simulated by had CM2 under different greenhouse gas emission scenarios.Climatic and Environmental Research, 8(2), 209-217.(in Chinese with English abstract)[许吟隆, 薛峰, 林一骅 (2003). 不同温室气体排放情景下中国 21 世纪地面气温和降水变化的模拟分析. 气候与环境研究,8(2), 209-217.] |
[51] | Zhang DQ, Sun XM, Zhou GY, Yan JH, Wang YS, Liu SZ, Zhou CY, Liu JX, Tang XL (2006). Seasonal dynamics of soil CO2 effluxes with responses to environmental factors in lower subtropical forest of China.Science in China Series D: Earth Sciences, 49( Suppl. II) , 139-149. |
[52] | Zhang JT (1998). Effects of global climate change on C and N circulation in natural soils.Scientia Geographica Sinica, 18, 463-471.(in Chinese with English abstract)[张金屯 (1998). 全球气候变化对自然土壤碳, 氮循环的影响. 地理科学,18, 463-471. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn