Chin J Plant Ecol ›› 2020, Vol. 44 ›› Issue (5): 543-552.DOI: 10.17521/cjpe.2020.0071
Special Issue: 全球变化与生态系统
• Reviews • Previous Articles Next Articles
Received:
2020-03-17
Accepted:
2020-03-25
Online:
2020-05-20
Published:
2020-04-30
Contact:
Edith BAI
Supported by:
Edith BAI, XUE Bing. A review of influences of land use and land cover change on ecosystems[J]. Chin J Plant Ecol, 2020, 44(5): 543-552.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0071
Fig. 1 The number of papers published from 2000 to 2019 in China and world (A) and the main subject areas of these publications (B). Based on searching on Web of Science using keyword “land use and land cover change”.
序号 No. | 文献信息 Literature information | 备注 Note |
---|---|---|
1 | 最常用的全球尺度土地利用和土地覆被变化(LUCC)数据之一 One of the most commonly used global scale land use and land cover change (LUCC) data | |
2 | 综合各数据源, 研究了1700年到2010年间全球生态系统变化 The global ecosystem changes from 1700 to 2010 were studied by integrating various data sources | |
3 | 综合分析全球LUCC及人地矛盾, 提出最大限度保留自然生态系统的相关策略 A comprehensive analysis of the global LUCC and the contradiction between human and land, suggesting the relevant strategies of retaining the natural ecosystems to the maximum extent | |
4 | 对至2030年的城市化进程进行预测, 并分析其对生物多样性和碳循环的影响 Forecasting the urbanization process to 2030 and analyzing its impact on biodiversity and carbon cycle | |
5 | 将土地利用历史数据与基于多个综合评价模型情景信息结合, 研究人类1500-2100年地球系统的影响的LUCC情景 LUCC scenarios of the impact of human on earth system between 1500-2100 via combination of historical land use data with scenario information based on multiple comprehensive evaluation models | |
6 | LUCC对碳循环的影响, 作者在2017年对相关研究又进行了更新, 发表在Global Biogeochemical Cycles上 The impact of LUCC on carbon cycle. The authors updated the data in 2017 and published the new results in Global Biogeochemical Cycles | |
7 | 全面量化LUCC对气候的影响, 特别是对区域尺度气候的影响 Quantifying the impacts of LUCC on climate, especially on regional scale climate | |
8 | 以意大利为例, 探讨LUCC对生物多样性的影响 Taking Italy as an example to explore the impact of LUCC on biodiversity | |
9 | 中国21世纪早期LUCC的驱动力分析, 指出中国区域发展战略的实施是LUCC的驱动力 The driving force analysis of LUCC in the early 21st century in China, suggesting the importance of the implementation of China’s regional development strategy | |
10 | 以中国某地区为例, 利用高分辨率遥感数据, 探讨城市化过程中的土地利用变化及相关规划政策 Taking an area in China as an example to discuss land use change and related planning policies in the process of urbanization using high-resolution remote sensing data |
Table 1 Ten highly cited publications in the field of land use and land cover change since 2000
序号 No. | 文献信息 Literature information | 备注 Note |
---|---|---|
1 | 最常用的全球尺度土地利用和土地覆被变化(LUCC)数据之一 One of the most commonly used global scale land use and land cover change (LUCC) data | |
2 | 综合各数据源, 研究了1700年到2010年间全球生态系统变化 The global ecosystem changes from 1700 to 2010 were studied by integrating various data sources | |
3 | 综合分析全球LUCC及人地矛盾, 提出最大限度保留自然生态系统的相关策略 A comprehensive analysis of the global LUCC and the contradiction between human and land, suggesting the relevant strategies of retaining the natural ecosystems to the maximum extent | |
4 | 对至2030年的城市化进程进行预测, 并分析其对生物多样性和碳循环的影响 Forecasting the urbanization process to 2030 and analyzing its impact on biodiversity and carbon cycle | |
5 | 将土地利用历史数据与基于多个综合评价模型情景信息结合, 研究人类1500-2100年地球系统的影响的LUCC情景 LUCC scenarios of the impact of human on earth system between 1500-2100 via combination of historical land use data with scenario information based on multiple comprehensive evaluation models | |
6 | LUCC对碳循环的影响, 作者在2017年对相关研究又进行了更新, 发表在Global Biogeochemical Cycles上 The impact of LUCC on carbon cycle. The authors updated the data in 2017 and published the new results in Global Biogeochemical Cycles | |
7 | 全面量化LUCC对气候的影响, 特别是对区域尺度气候的影响 Quantifying the impacts of LUCC on climate, especially on regional scale climate | |
8 | 以意大利为例, 探讨LUCC对生物多样性的影响 Taking Italy as an example to explore the impact of LUCC on biodiversity | |
9 | 中国21世纪早期LUCC的驱动力分析, 指出中国区域发展战略的实施是LUCC的驱动力 The driving force analysis of LUCC in the early 21st century in China, suggesting the importance of the implementation of China’s regional development strategy | |
10 | 以中国某地区为例, 利用高分辨率遥感数据, 探讨城市化过程中的土地利用变化及相关规划政策 Taking an area in China as an example to discuss land use change and related planning policies in the process of urbanization using high-resolution remote sensing data |
区域 Region | 年份 Year | 森林 Forest (Mhm2) | 农田 Cropland (Mhm2) | 牧场 Pasture (Mhm2) | 其他 Others (Mhm2) |
---|---|---|---|---|---|
热带非洲 Tropical Africa | 1850 | 792 | 78 | 777 | 781 |
2015 | 614 | 241 | 809 | 765 | |
拉丁美洲 Latin America | 1850 | 1 248 | 18 | 229 | 555 |
2015 | 932 | 198 | 564 | 356 | |
南亚及东南亚 South Asia and Southeast Asia | 1850 | 533 | 168 | 23 | 222 |
2015 | 326 | 333 | 36 | 250 | |
热带总计 Tropical subtotal | 1850 | 2 573 | 264 | 1 029 | 1 557 |
2015 | 1 872 | 772 | 1 408 | 1 371 | |
北美洲 North America | 1850 | 768 | 60 | 75 | 1 078 |
2015 | 657 | 200 | 266 | 859 | |
欧洲 Europe | 1850 | 130 | 166 | 94 | 103 |
2015 | 174 | 122 | 71 | 126 | |
“苏联” “Former USSR” | 1850 | 879 | 60 | 112 | 1 180 |
2015 | 857 | 153 | 365 | 856 | |
中国 China | 1850 | 159 | 112 | 108 | 582 |
2015 | 208 | 130 | 393 | 229 | |
北非及中东 North Africa and the Middle East | 1850 | 40 | 54 | 225 | 987 |
2015 | 37 | 96 | 345 | 827 | |
东亚 East Asia | 1850 | 64 | 5 | 138 | 10 |
2015 | 49 | 9 | 113 | 45 | |
大洋洲 Oceania | 1850 | 210 | 9 | 299 | 291 |
2015 | 140 | 49 | 351 | 270 | |
温带总计 Temporal subtotal | 1850 | 2 249 | 466 | 1 050 | 4 231 |
2015 | 2 123 | 758 | 1 904 | 3 212 | |
全球 Global | 1850 | 4 823 | 730 | 2 079 | 5 788 |
2015 | 3 995 | 1 530 | 3 312 | 4 583 |
Table 2 Area changes in major land use types from 1850 to 2015 in different regions
区域 Region | 年份 Year | 森林 Forest (Mhm2) | 农田 Cropland (Mhm2) | 牧场 Pasture (Mhm2) | 其他 Others (Mhm2) |
---|---|---|---|---|---|
热带非洲 Tropical Africa | 1850 | 792 | 78 | 777 | 781 |
2015 | 614 | 241 | 809 | 765 | |
拉丁美洲 Latin America | 1850 | 1 248 | 18 | 229 | 555 |
2015 | 932 | 198 | 564 | 356 | |
南亚及东南亚 South Asia and Southeast Asia | 1850 | 533 | 168 | 23 | 222 |
2015 | 326 | 333 | 36 | 250 | |
热带总计 Tropical subtotal | 1850 | 2 573 | 264 | 1 029 | 1 557 |
2015 | 1 872 | 772 | 1 408 | 1 371 | |
北美洲 North America | 1850 | 768 | 60 | 75 | 1 078 |
2015 | 657 | 200 | 266 | 859 | |
欧洲 Europe | 1850 | 130 | 166 | 94 | 103 |
2015 | 174 | 122 | 71 | 126 | |
“苏联” “Former USSR” | 1850 | 879 | 60 | 112 | 1 180 |
2015 | 857 | 153 | 365 | 856 | |
中国 China | 1850 | 159 | 112 | 108 | 582 |
2015 | 208 | 130 | 393 | 229 | |
北非及中东 North Africa and the Middle East | 1850 | 40 | 54 | 225 | 987 |
2015 | 37 | 96 | 345 | 827 | |
东亚 East Asia | 1850 | 64 | 5 | 138 | 10 |
2015 | 49 | 9 | 113 | 45 | |
大洋洲 Oceania | 1850 | 210 | 9 | 299 | 291 |
2015 | 140 | 49 | 351 | 270 | |
温带总计 Temporal subtotal | 1850 | 2 249 | 466 | 1 050 | 4 231 |
2015 | 2 123 | 758 | 1 904 | 3 212 | |
全球 Global | 1850 | 4 823 | 730 | 2 079 | 5 788 |
2015 | 3 995 | 1 530 | 3 312 | 4 583 |
Fig. 2 The net carbon emission fluxes caused by land use and land cover change in the ten regions globally (translated from Houghton & Nassikas, 2017)
[1] | Adrianto HA, Spracklen DV, Arnold SR (2019). Relationship between fire and forest cover loss in Riau Province, Indonesia Between 2001 and 2012. Forests, 10, 889. DOI: 10.3390/f10100889. |
[2] | Bateman IJ, Harwood AR, Mace GM, Watson RT, Abson DJ, Andrews B, Binner A, Crowe A, Day BH, Dugdale S, Fezzi C, Foden J, Hadley D, Haines-Young R, Hulme M, Kontoleon A, Lovett AA, Munday P, Pascual U, Paterson J, Perino G, Sen A, Siriwardena G, van Soest D, Termansen M (2013). Bringing ecosystem services into economic decision-making: land use in the United Kingdom. Science, 341, 45-50. |
[3] | Bonfils C, Lobell D (2007). Empirical evidence for a recent slowdown in irrigation-induced cooling. Proceedings of the National Academy of Sciences of the United States of America, 104, 13582-13587. |
[4] | Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q (2013). Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology, 19, 1325-1346. |
[5] | D’Almeida C, Vörösmarty CJ, Hurtt GC, Marengo JA, Dingman SL, Keim BD (2007). The effects of deforestation on the hydrological cycle in Amazonia: a review on scale and resolution. International Journal of Climatology, 27, 633-647. |
[6] | Devaraju N, Bala G, Modak A (2015). Effects of large-scale deforestation on precipitation in the monsoon regions: remote versus local effects. Proceedings of the National Academy of Sciences of the United States of America, 112, 3257-3262. |
[7] | Ellis EC, Goldewijk KK, Siebert S, Lightman D, Ramankutty N (2010). Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and Biogeography, 19, 589-606. |
[8] | Falcucci A, Maiorano L, Boitani L (2007). Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landscape Ecology, 22, 617-631. |
[9] | Fall S, Diffenbaugh NS, Niyogi D, Pielke RA, Rochon G (2010). Temperature and equivalent temperature over the United States (1979-2005). International Journal of Climatology, 30, 2045-2054. |
[10] | Findell KL, Pitman AJ, England MH, Pegion PJ (2009). Regional and global impacts of land cover change and sea surface temperature anomalies. Journal of Climate, 22, 3248-3269. |
[11] | Gao YZ, Han XG, Wang SP (2004). The effects of grazing on grassland soils. Acta Ecologica Sinica, 24, 790-797. |
[ 高英志, 韩兴国, 汪诗平 (2004). 放牧对草原土壤的影响. 生态学报, 790-797.] | |
[12] | Goldewijk KK (2001). Estimating global land use change over the past 300 years: the HYDE Database. Global Biogeochemical Cycles, 15, 417-433. |
[13] | Grimm NB, Arrowsmith JR, Eisinger C, Heffernan J, Macleod A, Lewis DB, Prashad L, Rychener T, Roach WJ, Sheibley RW (2004). Effects of urbanization on nutrient biogeochemistry of aridland streams//Defries RS, Asner GP, Houghton RA. Ecosystems and Land Use Change. American Geophysical Union, Washington. 129-146. |
[14] | Hergoualc’h K, Verchot LV (2011). Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: a review. Global Biogeochemical Cycles, 25, GB2001. DOI: 10.1029/2009GB003718. |
[15] | Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, Le Quere C, Ramankutty N (2012). Carbon emissions from land use and land-cover change. Biogeosciences, 9, 5125-5142. |
[16] | Houghton RA, Nassikas AA (2017). Global and regional fluxes of carbon from land use and land cover change 1850-2015. Global Biogeochemical Cycles, 31, 456-472. |
[17] | Houlton BZ, Marklein AR, Bai E (2015). Representation of nitrogen in climate change forecasts. Nature Climate Change, 5, 398-401. |
[18] | Huang Y, Sun W, Zhang W, Yu Y, Su Y, Song C (2010). Marshland conversion to cropland in northeast China from 1950 to 2000 reduced the greenhouse effect. Global Change Biology, 16, 680-695. |
[19] | Hurtt GC, Chini LP, Frolking S, Betts RA, Feddema J, Fischer G, Fisk JP, Hibbard K, Houghton RA, Janetos A, Jones CD, Kindermann G, Kinoshita T, Goldewijk KK, Riahi K, Shevliakova E, Smith S, Stehfest E, Thomson A, Thornton P, van Vuuren DP, Wang YP (2011). Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117-161. |
[20] | Karl TR, Gleason BE, Menne MJ, McMahon JR, Heim RR, Brewer MJ, Kunkel KE, Arndt DS, Privette JL, Bates JJ, Groisman PY, Easterling DR (2012). U.S. temperature and drought: recent anomalies and trends. Eos, Transactions American Geophysical Union, 93, 473-474. |
[21] | Koschke L, Furst C, Frank S, Makeschin F (2012). A multi-criteria approach for an integrated land-cover-based assessment of ecosystem services provision to support landscape planning. Ecological Indicators, 21, 54-66. |
[22] | Kuemmerle T, Erb K, Meyfroidt P, Muller D, Verburg PH, Estel S, Haberl H, Hostert P, Jepsen MR, Kastner T, Levers C, Lindner M, Plutzar C, Verkerk PJ, van der Zanden EH, Reenberg A (2013). Challenges and opportunities in mapping land use intensity globally. Current Opinion in Environmental Sustainability, 5, 484-493. |
[23] | Lai L, Huang X, Yang H, Chuai X, Zhang M, Zhong T, Chen Z, Chen Y, Wang X, Thompson JR (2016). Carbon emissions from land-use change and management in China between 1990 and 2010. Science Advances, 2, e1601063. DOI: 10.1126/sciadv.1601063. |
[24] | Lambin EF, Geist HJ, Lepers E (2003). Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environment and Resources, 28, 205-241. |
[25] | Lambin EF, Meyfroidt P (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences of the United States of America, 108, 3465-3472. |
[26] | Li GY, Yang XD, Shi QR, Ma WJ, Wang XH, Yan ER (2014). Effects of clear-felling on soil nutrient pools and nitrogen mineralization and nitrification in Tiantong, Zhejiang Province. Chinese Journal of Ecology, 33, 709-715. |
[ 李光耀, 杨晓东, 史青茹, 马文济, 王希华, 阎恩荣 (2014). 浙江天童森林砍伐对土壤养分库和氮矿化-硝化特征的影响. 生态学杂志, 33, 709-715.] | |
[27] | Li XZ, Chen ZZ (1997). Nitrogen loss and management in grazed grassland. Climatic and Environmental Ressarch, 2(3), 44-53. |
[ 李香真, 陈佐忠 (1997). 放牧草地生态系统中氮素的损失和管理. 气候与环境研究, 2(3), 44-53.] | |
[28] | Liu JY, Zhang ZX, Xu XL, Kuang WH, Zhou WC, Zhang SW, Li RD, Yan CZ, Yu DS, Wu SX, Nan J (2010). Spatial patterns and driving forces of land use change in China during the early 21st century. Journal of Geographical Sciences, 20, 483-494. |
[29] | Liu ML, Tian HQ (2010). China’s land cover and land use change from 1700 to 2005: estimations from high-resolution satellite data and historical archives. Global Biogeochemical Cycles, 24, 18. |
[30] | Long HL, Liu YS, Wu XQ, Dong GH (2009). Spatio-temporal dynamic patterns of farmland and rural settlements in Su-Xi-Chang region: implications for building a new countryside in coastal China. Land Use Policy, 26, 322-333. |
[31] | Naeem S, Prager C, Weeks B, Varga A, Flynn DFB, Griffin K, Muscarella R, Palmer M, Wood S, Schuster W (2016). Biodiversity as a multidimensional construct: a review, framework and case study of herbivory’s impact on plant biodiversity. Proceedings of the Royal Society B: Biological Sciences, 283, 20153005. DOI: 10.1098/rspb.2015.3005. |
[32] | Niyogi D, Pyle P, Lei M, Arya SP, Kishtawal CM, Shepherd M, Chen F, Wolfe B (2011). Urban modification of thunderstorms: an observational storm climatology and model case study for the Indianapolis urban region. Journal of Applied Meteorology and Climatology, 50, 1129-1144. |
[33] | Pan PP, Yang GS, Su WZ (2012). Progress on effects of land use change on land productivity. Progress in Geography, 31, 539-550. |
[ 潘佩佩, 杨桂山, 苏伟忠 (2012). 土地利用变化对土地生产力的影响研究进展. 地理科学进展, 31, 539-550.] | |
[34] | Pandit MK, Sodhi NS, Koh LP, Bhaskar A, Brook BW (2007). Unreported yet massive deforestation driving loss of endemic biodiversity in Indian Himalaya. Biodiversity and Conservation, 16, 153-163. |
[35] | Pielke RA Sr., Marland G, Betts RA, Chase TN, Eastman JL, Niles JO, Niyogi DDS, Running SW (2002). The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philosophical Transactions Series A: Mathematical, Physical, and Engineering Sciences, 360, 1705-1719. |
[36] | Quesada B, Arneth A, Robertson E, de Noblet-Ducoudré N (2018). Potential strong contribution of future anthropogenic land-use and land-cover change to the terrestrial carbon cycle. Environmental Research Letters, 13, 064023. DOI: 10.1088/1748-9326/aac4c3. |
[37] | Ramankutty N, Foley JA (1999). Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochemical Cycles, 13, 997-1027. |
[38] |
Seto KC, Guneralp B, Hutyra LR (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the United States of America, 109, 16083-16088.
DOI URL PMID |
[39] | Sorooshian S, Li J, Hsu K-l, Gao X (2011). How significant is the impact of irrigation on the local hydroclimate in California’s Central Valley? Comparison of model results with ground and remote-sensing data. Journal of Geophysical Research, 116, D06102. DOI: 10.1029/2010JD014775. |
[40] | Turetsky MR, Kotowska A, Bubier J, Dise NB, Crill P, Hornibrook ERC, Minkkinen K, Moore TR, Myers-Smith IH, Nykänen H, Olefeldt D, Rinne J, Saarnio S, Shurpali N, Tuittila E-S, Waddington JM, White JR, Wickland KP, Wilmking M (2014). A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Global Change Biology, 20, 2183-2197. |
[41] | Turner BL, Lambin EF, Reenberg A (2007). The emergence of land change science for global environmental change and sustainability. Proceedings of the National Academy of Sciences of the United States of America, 104, 20666-20671. |
[42] | Turner DP, Koerper G, Gucinski H, Peterson C, Dixon RK (1993). Monitoring global change: comparison of forest cover estimates using remote sensing and inventory approaches. Environmental Monitoring and Assessment, 26, 295-305. |
[43] | Verburg PH (2006). Simulating feedbacks in land use and land cover change models. Landscape Ecology, 21, 1171-1183. |
[44] | Verburg PH, Veldkamp A, Fresco LO (1999). Simulation of changes in the spatial pattern of land use in China. Applied Geography, 19, 211-233. |
[45] | Viglizzo EF, Paruelo JM, Laterra P, Jobbágy EG (2012). Ecosystem service evaluation to support land-use policy. Agriculture, Ecosystems and Environment, 154, 78-84. |
[46] | Wang C, Houlton BZ, Dai W, Bai E (2017). Growth in the global N2 sink attributed to N fertilizer inputs over 1860 to 2000. Science of The Total Environment, 574, 1044-1053. |
[47] | Wu JG, Lü JJ (2008). Effects of land use change on the biodiversity. Ecology and Environment, 17, 1276-1281. |
[ 吴建国, 吕佳佳 (2008). 土地利用变化对生物多样性的影响. 生态环境, 17, 1276-1281.] | |
[48] | Zhao J, Xiao H, Wu G (2000). Comparison analysis on physical and value assessment methods for ecosystems services. Chinese Journal of Applied Ecology, 11, 290-292. |
[49] | Li XB (2000). Study on hydrologic and water resource effects of land use and land cover change: social demand and scientific issues//Committee of Physical Geography, Geographical Society of China. Land Use and Land Cover Change and Its Environmental Effects. Planet Map Press, Beijing. |
[ 李秀彬 (2000). 土地覆被变化的水文水资源效应研究——社会需求与科学问题//中国地理学会自然地理专业委员会. 土地覆被变化及其环境效应. 星球地图出版社, 北京.] |
[1] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[2] | DANG Hong-Zhong, ZHANG Xue-Li, HAN Hui, SHI Chang-Chun, GE Yu-Xiang, MA Quan-Lin, CHEN Shuai, LIU Chun-Ying. Research advances on forest-water relationships in Pinus sylvestris var. mongolica plantations for sand dune immobilization and guidance to forest management practices [J]. Chin J Plant Ecol, 2022, 46(9): 971-983. |
[3] | LI Xiao, PIALUANG Bounthong, KANG Wen-Hui, JI Xiao-Dong, ZHANG Hai-Jiang, XUE Zhi-Guo, ZHANG Zhi-Qiang. Responses of radial growth to climate change over the past decades in secondary Betula platyphylla forests in the mountains of northwest Hebei, China [J]. Chin J Plant Ecol, 2022, 46(8): 919-931. |
[4] | SU Qi-Tao, DU Zhi-Xuan, ZHOU Bing, LIAO Yong-Hui, WANG Cheng-Cheng, XIAO Yi-An. Potential distribution of Impatiens davidii and its pollinator in China [J]. Chin J Plant Ecol, 2022, 46(7): 785-796. |
[5] | HU Xiao-Fei, WEI Lin-Feng, CHENG Qi, WU Xing-Qi, NI Jian. A climate diagram atlas of Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(4): 484-492. |
[6] | CONG Nan, ZHANG Yang-Jian, ZHU Jun-Tao. Temperature sensitivity of vegetation phenology in spring in mid- to high-latitude regions of Northern Hemisphere during the recent three decades [J]. Chin J Plant Ecol, 2022, 46(2): 125-135. |
[7] | YUAN Yuan, MU Yan-Mei, DENG Yu-Jie, LI Xin-Hao, JIANG Xiao-Yan, GAO Sheng-Jie, ZHA Tian- Shan, JIA Xin. Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland [J]. Chin J Plant Ecol, 2022, 46(2): 162-175. |
[8] | GAO De-Cai, BAI E. Influencing factors of soil nitrous oxide emission during freeze-thaw cycles [J]. Chin J Plant Ecol, 2021, 45(9): 1006-1023. |
[9] | JI Yu-He, ZHOU Guang-Sheng, WANG Shu-Dong, WANG Li-Xia, ZHOU Meng-Zi. Evolution characteristics and its driving forces analysis of vegetation ecological quality in Qinling Mountains region from 2000 to 2019 [J]. Chin J Plant Ecol, 2021, 45(6): 617-625. |
[10] | NI Ming, ZHANG Xi-Yue, JIANG Chao, WANG He-Song. Responses of vegetation to extreme climate events in southwestern China [J]. Chin J Plant Ecol, 2021, 45(6): 626-640. |
[11] | FANG Ou-Ya, ZHANG Yong, ZHANG Qi, JIA Heng-Feng. Growth responses of Tamarix austromongolica to extreme drought and flood in the upper Yellow River basin [J]. Chin J Plant Ecol, 2021, 45(6): 641-649. |
[12] | ZHOU Wen, CHI Yong-Gang, ZHOU Lei. Vegetation phenology in the Northern Hemisphere based on the solar-induced chlorophyll fluorescence [J]. Chin J Plant Ecol, 2021, 45(4): 345-354. |
[13] | ZHANG Hong-Jin, WANG Wei. Responses of ecosystem multifunctionality to global change: progress, problem and prospect [J]. Chin J Plant Ecol, 2021, 45(10): 1112-1126. |
[14] | NIU Shu-Li, CHEN Wei-Nan. Global change and ecosystems research progress and prospect [J]. Chin J Plant Ecol, 2020, 44(5): 449-460. |
[15] | ZHANG Wen-Qiang, LUO Ge-Ping, ZHENG Hong-Wei, WANG Hao, HAMDI Rafiq, HE Hui-Li, CAI Peng, CHEN Chun-Bo. Analysis of vegetation index changes and driving forces in inland arid areas based on random forest model: a case study of the middle part of northern slope of the north Tianshan Mountains [J]. Chin J Plant Ecol, 2020, 44(11): 1113-1126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn