植物生态学报 ›› 2021, Vol. 45 ›› Issue (11): 1213-1220.DOI: 10.17521/cjpe.2020.0364
所属专题: 生物多样性
欧文慧1, 刘亚恒1,2, 李娜1, 徐芷妍1, 彭秋桐1, 杨予静1, 李中强1,*()
收稿日期:
2020-11-09
接受日期:
2021-06-30
出版日期:
2021-11-20
发布日期:
2021-07-22
通讯作者:
李中强
作者简介:
* (lizhq@hubu.edu.cn)基金资助:
OU Wen-Hui1, LIU Ya-Heng1,2, LI Na1, XU Zhi-Yan1, PENG Qiu-Tong1, YANG Yu-Jing1, LI Zhong-Qiang1,*()
Received:
2020-11-09
Accepted:
2021-06-30
Online:
2021-11-20
Published:
2021-07-22
Contact:
LI Zhong-Qiang
Supported by:
摘要:
物种多样性格局同时受到多个因子和过程的综合作用。以往对水生植物多样性格局形成机制的研究主要集中在几何限制、水分能量状况或随机过程等少数因子方面。该研究通过野外调查, 研究柴达木盆地水生植物沿经度和纬度梯度的分布格局, 并验证了对物种多样性分布格局影响较大的水分-能量假说、栖息地异质性假说、空间自相关、物种-面积效应和中域效应这5种假说。主要结果表明柴达木盆地水生植物多样性沿经度和纬度梯度均呈现“∩”形单峰格局。回归分析显示中域效应和物种-面积效应显著影响柴达木盆地水生植物多样性格局, 而水分-能量、栖息地异质性假说及空间自相关对该区域水生植物多样性格局影响较小。方差分解显示中域效应对柴达木盆地水生植物多样性经度和纬度格局的单独解释率分别为68.41%和66.91%, 该结果表明柴达木盆地水生植物多样性格局主要受几何限制和扩散限制影响。结合以往研究结果, 该研究进一步证实几何限制和随机效应可能是影响中国干旱区水生植物多样性分布格局的重要自然因素。
欧文慧, 刘亚恒, 李娜, 徐芷妍, 彭秋桐, 杨予静, 李中强. 柴达木盆地水生植物多样性格局及多假说验证. 植物生态学报, 2021, 45(11): 1213-1220. DOI: 10.17521/cjpe.2020.0364
OU Wen-Hui, LIU Ya-Heng, LI Na, XU Zhi-Yan, PENG Qiu-Tong, YANG Yu-Jing, LI Zhong-Qiang. Testing multiple hypotheses for the richness pattern of macrophyte in the Qaidam Basin of Northwest China. Chinese Journal of Plant Ecology, 2021, 45(11): 1213-1220. DOI: 10.17521/cjpe.2020.0364
图2 柴达木盆地水生植物的经度和纬度多样性分布格局。实线为中域效应模型预测值, 虚线为95%的置信区间。***, p < 0.001。
Fig. 2 Longitudinal and latitudinal pattern of macrophyte richness at the Qaidam Basin. Solid lines represent predicted richness by Range Model based on mid-domain effect. Dashed lines represent the 95% confidence interval. ***, p < 0.001.
图3 柴达木盆地水生植物物种-面积关系曲线。实线为物 种-面积效应模型预测值, 虚线为95%的置信区间。***, p < 0.001。
Fig. 3 Species-area relationship curve of macrophytes in the Qaidam Basin. The solid line represents predicted richness by species-area effect, and dashed lines the 95% confidence interval. ***, p < 0.001.
水环境因子 Aquatic environment factor | 解释度 Explain (%) | p |
---|---|---|
溶解性固体总量 TDS | 2.0 | 0.046* |
盐度 Salinity | 1.9 | 0.064 |
pH | 1.5 | 0.154 |
电导率 Conductivity | 1.3 | 0.250 |
水深 Water depth | 1.0 | 0.460 |
温度 Temperature | 0.9 | 0.478 |
表1 水环境因子对柴达木盆地水生植物丰富度的解释度
Table 1 Explanatory power of aquatic environmental factors on macrophyte species richness in the Qaidam Basin
水环境因子 Aquatic environment factor | 解释度 Explain (%) | p |
---|---|---|
溶解性固体总量 TDS | 2.0 | 0.046* |
盐度 Salinity | 1.9 | 0.064 |
pH | 1.5 | 0.154 |
电导率 Conductivity | 1.3 | 0.250 |
水深 Water depth | 1.0 | 0.460 |
温度 Temperature | 0.9 | 0.478 |
假说 Hypothesis | 回归方程 Regression equation | p |
---|---|---|
水分-能量假说 Water-energy hypothesis | $\text{log}S=1.82-0.01\text{log}PAN-0.20\text{log}PET-0.02\text{log}PE{{T}^{2}}$ | 0.051 |
空间自相关 Spatial autocorrelation | - | 0.250 |
栖息地异质性假说 Habitat heterogeneity hypothesis | $S=6.48-0.49TDS$ | 0.330 |
表2 柴达木盆地水生植物多样性在水分-能量假说、空间自相关和栖息地异质性假说下的回归方程
Table 2 Regression equations of macrophyte richness in the Qaidam Basin under hypotheses of water-energy, spatial autocorrelation, and environmental heterogeneity
假说 Hypothesis | 回归方程 Regression equation | p |
---|---|---|
水分-能量假说 Water-energy hypothesis | $\text{log}S=1.82-0.01\text{log}PAN-0.20\text{log}PET-0.02\text{log}PE{{T}^{2}}$ | 0.051 |
空间自相关 Spatial autocorrelation | - | 0.250 |
栖息地异质性假说 Habitat heterogeneity hypothesis | $S=6.48-0.49TDS$ | 0.330 |
图4 中域效应及物种-面积效应对柴达木盆地水生植物经度和纬度多样性格局的相对影响。A, B分别为经度和纬度的中域效应和物种-面积效应的方差分解韦恩图。负值以0表示, 代表无解释度。
Fig. 4 Relative explanatory power of mid-domain effect and species-area effect on longitudinal and latitudinal patterns of macrophyte richness in the Qaidam Basin. A, B are the Venn diagram of the variance partitioning of mid-domain effect and species-area effect on longitude and latitude, respectively. The negative value is represented by 0, which means lack of explanatory power.
[1] |
Alahuhta J, Aroviita J (2016). Quantifying the relative importance of natural variables, human disturbance and spatial processes in ecological status indicators of boreal lakes. Ecological Indicators, 63, 240-248.
DOI URL |
[2] |
Alahuhta J, Ecke F, Johnson LB, Sass L, Heino J (2017). A comparative analysis reveals little evidence for niche conservatism in aquatic macrophytes among four areas on two continents. Oikos, 126, 136-148.
DOI URL |
[3] |
Alahuhta J, Heino J (2013). Spatial extent, regional specificity and metacommunity structuring in lake macrophytes. Journal of Biogeography, 40, 1572-1582.
DOI URL |
[4] |
Bhattarai KR, Vetaas OR, Grytnes JA (2004). Fern species richness along a central Himalayan elevational gradient, Nepal. Journal of Biogeography, 31, 389-400.
DOI URL |
[5] |
Buckley HL, Miller TE, Ellison AM, Gotelli NJ (2010). Reverse latitudinal trends in species richness of pitcher- plant food webs. Ecology Letters, 6, 825-829.
DOI URL |
[6] |
Capers RS, Selsky R, Bugbee GJ (2010). The relative importance of local conditions and regional processes in structuring aquatic plant communities. Freshwater Biology, 55, 952-966.
DOI URL |
[7] |
Chase JM, McGill BJ, Thompson PL, Antão LH, Bates AE, Blowes SA, Dornelas M, Gonzalez A, Magurran AE, Supp SR, Winter M, Bjorkman AD, Bruelheide H, Byrnes JEK, Cabral JS, et al. (2019). Species richness change across spatial scales. Oikos, 128, 1079-1091.
DOI URL |
[8] | Chen GC, Huang ZW, Lu XF, Peng M (2002). Characteristics of wetland and its conservation in the Qinghai Plateau. Journal of Glaciology and Geocryology, 24, 254-259. |
[ 陈桂琛, 黄志伟, 卢学峰, 彭敏 (2002). 青海高原湿地特征及其保护. 冰川冻土, 24, 254-259.] | |
[9] |
Colwell RK (2008). RangeModel: tools for exploring and assessing geometric constraints on species richness (the mid-domain effect) along transects. Ecography, 31, 4-7.
DOI URL |
[10] |
Crow GE (1993). Species diversity in aquatic angiosperms: latitudinal patterns. Aquatic Botany, 44, 229-258.
DOI URL |
[11] |
Elo M, Alahuhta J, Kanninen A, Meissner KK, Seppälä K, Mönkkönen M (2018). Environmental characteristics and anthropogenic impact jointly modify aquatic macrophyte species diversity. Frontiers in Plant Science, 9, 1001. DOI: 10.3389/fpls.2018.01001.
DOI URL |
[12] |
Fang JY, Wang XP, Shen ZH, Tang ZY, He JS, Yu D, Jiang Y, Wang ZH, Zheng CY, Zhu JL, Guo ZD (2009). Methods and protocols for plant community inventory. Biodiversity Science, 17, 533-548.
DOI URL |
[ 方精云, 王襄平, 沈泽昊, 唐志尧, 贺金生, 于丹, 江源, 王志恒, 郑成洋, 朱江玲, 郭兆迪 (2009). 植物群落清查的主要内容、方法和技术规范. 生物多样性, 17, 533-548.] | |
[13] |
Gaston KJ (2000). Global patterns in biodiversity. Nature, 405, 220-227.
DOI URL |
[14] |
Gould P (1970). Is Statistix Inferens the geographical name for a wild goose? Economic Geography, 46, 439-448.
DOI URL |
[15] |
Gray JS, Ugland KI, Lambshead J (2004). On species accumulation and species-area curves. Global Ecology and Biogeography, 13, 567-568.
DOI URL |
[16] | Hawkins BA, Diniz-Filho JAF, Weis AE (2005). The mid- domain effect and diversity gradients: Is there anything to learn? The American Naturalist, 166, 140-143. |
[17] |
Heino J (2011). A macroecological perspective of diversity patterns in the freshwater realm. Freshwater Biology, 56, 1703-1722.
DOI URL |
[18] | Heino J, Toivonen H (2008). Aquatic plant biodiversity at high latitudes: patterns of richness and rarity in Finnish freshwater macrophytes. Boreal Environment Research, 13, 1-14. |
[19] |
Hortal J, Bello F, Diniz-Filho J, Lewinsohn T, Lobo J, Ladle RJ (2015). Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and Systematics, 46, 523-549.
DOI URL |
[20] | Hutchinson GE (1975). A Treatise on Limnology. III. Limnological Botany. John Wiley, New York. |
[21] |
Jetz W, Rahbek C (2002). Geographic range size and determinants of avian species richness. Science, 297, 1548-1551.
DOI URL |
[22] |
Kehoe L, Kuemmerle T, Meyer C, Levers C, Václavík T, Kreft H (2015). Global patterns of agricultural land-use intensity and vertebrate diversity. Diversity and Distributions, 21, 1308-1318.
DOI URL |
[23] | Li YH, Hao T, Gong XS, Yang YJ, Li ZQ (2020). Species richness and influencing factors of aquatic plant in the Kaidu River Basin, Xinjiang, China. Chinese Journal of Applied Ecology, 31, 1691-1698. |
[ 李宇辉, 郝涛, 龚旭昇, 杨予静, 李中强 (2020). 新疆开都河流域水生植物多样性及其影响因素. 应用生态学报, 31, 1691-1698.] | |
[24] | Li ZQ (2005). Study on the Biodiversity of Aquatic Plants in the Arid Zone of Northwest China. PhD dissertation, Wuhan University, Wuhan. |
[ 李中强 (2005). 中国西北干旱区水生植物多样性研究. 博士学位论文, 武汉大学, 武汉.] | |
[25] |
Li ZQ, Tian YQ, Zhou YL, Gong XS, Peng QT, Xu ZY, Cai YJ (2020). Geometric constraints and area effects shape geographical patterns of aquatic plant diversity in a highly arid region. Ecological Indicators, 116, 106502. DOI: 10.1016/j.ecolind.2020.106502.
DOI URL |
[26] | Liu JP, Lv XG, Liu QF, Gao JQ (2010). Spatial autocorrelation analysis of wetland bird diversity in Bielahong Basin. Acta Ecologica Sinica, 30, 2647-2655. |
[ 刘吉平, 吕宪国, 刘庆凤, 高俊琴 (2010). 别拉洪河流域湿地鸟类丰富度的空间自相关分析. 生态学报, 30, 647-2655.] | |
[27] |
Lomolino MV (2001). Elevation gradients of species-density: historical and prospective views. Global Ecology and Biogeography, 10, 3-13.
DOI URL |
[28] |
Michael Anderson T, Metzger KL, McNaughton SJ (2007). Multi-scale analysis of plant species richness in Serengeti grasslands. Journal of Biogeography, 34, 313-323.
DOI URL |
[29] |
Mikulyuk A, Sharma S, van Egeren S, Erdmann E, Nault ME, Hauxwell J (2011). The relative role of environmental, spatial, and land-use patterns in explaining aquatic macrophyte community composition. Canadian Journal of Fisheries and Aquatic Sciences, 68, 1778-1789.
DOI URL |
[30] |
Murphy K, Carvalho P, Efremov A, Grimaldo JT, Molina- Navarro E, Davidson TA, Thomaz SM (2020). Latitudinal variation in global range-size of aquatic macrophyte species shows evidence for a Rapoport effect. Freshwater Biology, 65, 1622-1640.
DOI URL |
[31] |
Murphy K, Efremov A, Davidson TA, Molina-Navarro E, Fidanza K, Betiol TCC, Chambers P, Grimaldo JT, Martins SV, Springuel I, Kennedy M, Mormul RP, Dibble E, Hofstra D, Lukács BA, et al. (2019). World distribution, diversity and endemism of aquatic macrophytes. Aquatic Botany, 158, 103127. DOI: 10.1016/j.aquabot.2019.06.006.
DOI URL |
[32] |
O’Brien EM (1993). Climatic gradients in woody plant species richness: towards an explanation based on an analysis of southern Africaʼs woody flora. Journal of Biogeography, 20, 181-198.
DOI URL |
[33] |
O’Brien EM (1998). Water-energy dynamics, climate, and prediction of woody plant species richness: an interim general model. Journal of Biogeography, 25, 379-398.
DOI URL |
[34] |
Pearson RG, Boyero L (2009). Gradients in regional diversity of freshwater taxa. Journal of the North American Benthological Society, 28, 504-514.
DOI URL |
[35] |
Qian H (1999). Spatial pattern of vascular plant diversity in North America north of Mexico and its floristic relationship with Eurasia. Annals of Botany, 83, 271-283.
DOI URL |
[36] |
Rahbek C (1997). The relationship among area, elevation, and regional species richness in neotropical birds. The American Naturalist, 149, 875-902.
DOI URL |
[37] |
Rahbek C (2005). The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Letters, 8, 224-239.
DOI URL |
[38] |
Rolon AS, Maltchik L (2006). Environmental factors as predictors of aquatic macrophyte richness and composition in wetlands of southern Brazil. Hydrobiologia, 556, 221-231.
DOI URL |
[39] |
Santamaría L (2002). Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica, 23(3), 137-154.
DOI URL |
[40] |
Shmida A, Wilson MV (1985). Biological determinants of species diversity. Journal of Biogeography, 12, 1-20.
DOI URL |
[41] |
Shrestha N, Su X, Xu X, Wang Z (2018). The drivers of high Rhododendron diversity in south-west China: Does seasonality matter? Journal of Biogeography, 45, 438-447.
DOI URL |
[42] |
Tang ZY, Qiao XJ, Fang JY (2009). Species-area relationship in biological communities. Biodiversity Science, 17, 549-559.
DOI URL |
[ 唐志尧, 乔秀娟, 方精云 (2009). 生物群落的种-面积关系. 生物多样性, 17, 549-559.] | |
[43] | Tian YQ, Shi DL, Zhang SQ, Gong XS, Wang ZX, Li ZQ (2020). Biogeographic pattern, main community types, and the influencing factors of aquatic macrophytes in the Hexi Corridor of Northwest China. Acta Ecologica Sinica, 40, 202-212. |
[ 田玉清, 石道良, 张淑倩, 龚旭昇, 汪正祥, 李中强 (2020). 河西走廊水生植物多样性格局、群落特征及影响因素. 生态学报, 40, 202-212.] | |
[44] |
Tisseuil C, Cornu JF, Beauchard O, Brosse S, Darwall W, Holland R, Hugueny B, Tedesco PA, Oberdorff T (2013). Global diversity patterns and cross-taxa convergence in freshwater systems. Journal of Animal Ecology, 82, 365-376.
DOI PMID |
[45] |
Tognelli MF, Kelt DA (2004). Analysis of determinants of mammalian species richness in South America using spatial autoregressive models. Ecography, 27, 427-436.
DOI URL |
[46] |
Viana DS, Santamaría L, Schwenk K, Manca M, Hobæk A, Mjelde M, Preston CD, Gornall RJ, Croft JM, King RA, Green AJ, Figuerola J (2014). Environment and biogeography drive aquatic plant and cladoceran species richness across Europe. Freshwater Biology, 59, 2096-2106.
DOI URL |
[47] |
Wang JM, Wang WJ, Li JW, Feng YM, Wu B, Lu Q (2017). Biogeographic patterns and environmental interpretation of plant species richness in desert regions of Northwest China. Biodiversity Science, 25, 1192-1201.
DOI URL |
[ 王健铭, 王文娟, 李景文, 冯益明, 吴波, 卢琦 (2017). 中国西北荒漠区植物物种丰富度分布格局及其环境解释. 生物多样性, 25, 1192-1201.] | |
[48] |
Wang ZH, Fang JY, Tang ZY, Lin X (2011). Patterns, determinants and models of woody plant diversity in China. Proceedings of the Royal Society B: Biological Sciences, 278, 2122-2132.
DOI URL |
[49] |
Willig MR, Kaufman DM, Stevens RD (2003). Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics, 34, 273-309.
DOI URL |
[50] | Wu YH, Shi HL (2018). The seed plant flora of the Qaidam Basin and its contiguous mountainous region in Qinghai Province. Acta Botanica Boreali-Occidentalia Sinica, 38, 1542-1552. |
[ 吴玉虎, 史惠兰 (2018). 柴达木盆地及其毗邻山地植物区系研究. 西北植物学报, 38, 1542-1552.] | |
[51] | Xing X, Chen H, Zhu JJ, Chen TT (2014). Water sources of five dominant desert plant species in Nuomuhong area of Qaidam Basin. Acta Ecologica Sinica, 34, 6277-6286. |
[ 邢星, 陈辉, 朱建佳, 陈同同 (2014). 柴达木盆地诺木洪地区5种优势荒漠植物水分来源. 生态学报, 34, 6277-6286.] | |
[52] |
Xu J, Molinos JG, Su G, Matsuzaki SS, Akasaka M, Zhang H, Heino J (2019). Cross-taxon congruence of multiple diversity facets of freshwater assemblages is determined by large-scale processes across China. Freshwater Biology, 64, 1492-1503.
DOI URL |
[53] |
Zhang M, Molinos JG, Su G, Zhang H, Xu J (2019). Spatially structured environmental variation plays a prominent role on the biodiversity of freshwater macrophytes across China. Frontiers in Plant Science, 10, 161. DOI: 10.3389/fpls.2019.00161.
DOI PMID |
[1] | 董劭琼, 侯东杰, 曲孝云, 郭柯. 柴达木盆地植物群落样方数据集[J]. 植物生态学报, 2024, 48(4): 534-540. |
[2] | 姜艳, 陈兴芳, 杨旭杰. 基于Landsat影像的武汉东湖30年来水生植物动态变化[J]. 植物生态学报, 2022, 46(12): 1551-1561. |
[3] | 王春成, 马松梅, 张丹, 王绍明. 柴达木野生黑果枸杞的空间遗传结构[J]. 植物生态学报, 2020, 44(6): 661-668. |
[4] | 汪洋, 苗琳琳, 于丹, 刘春花, 王忠. 青藏高原3种生活型水生植物的热值及环境的影响[J]. 植物生态学报, 2017, 41(2): 209-218. |
[5] | 窦渤凯, 王义东, 薛冬梅, 王中良. 挺水和湿生草本植物传输甲烷的过程与机制研究进展[J]. 植物生态学报, 2017, 41(11): 1208-1218. |
[6] | 陈永刚, 汤孟平, 杨春菊, 马天午, 王礼. 天然毛竹林竞争空间关系分析[J]. 植物生态学报, 2015, 39(7): 726-735. |
[7] | 许涵, 李意德, 骆土寿, 陈德祥, 林明献. 海南尖峰岭不同热带雨林类型与物种多样性变化关联的环境因子[J]. 植物生态学报, 2013, 37(1): 26-36. |
[8] | 池秀莲, 唐志尧. 面积、温度及分布区限制对物种丰富度海拔格局的影响: 以秦岭太白山为例[J]. 植物生态学报, 2011, 35(4): 362-370. |
[9] | 王英, 康明, 黄宏文. 用分子标记揭示植物随机大居群中亚居群的遗传结构——茅栗自然居群空间遗传结构的SSR分析[J]. 植物生态学报, 2006, 30(1): 147-156. |
[10] | 陈开宁, 强胜, 李文朝, 吴庆龙, 胡耀辉. 蓖齿眼子菜繁殖多样性研究[J]. 植物生态学报, 2003, 27(5): 672-676. |
[11] | 吴中华, 于丹, 王东, 夏盛林. 汉江水生植物群落的结构与数量特征[J]. 植物生态学报, 2003, 27(1): 118-124. |
[12] | 简永兴, 李仁东, 王建波, 陈家宽. 鄱阳湖滩地水生植物多样性调查及滩地植被的遥感研究[J]. 植物生态学报, 2001, 25(5): 581-587. |
[13] | 严国安, 马剑敏, 邱东茹, 昊振斌. 武汉东湖水生植物群落演替的研究[J]. 植物生态学报, 1997, 21(4): 319-327. |
[14] | 于丹. 水生植物群落动态与演替的研究[J]. 植物生态学报, 1994, 18(4): 372-378. |
[15] | 孙世洲. 青海省柴达木盆地及其周围山地植被[J]. 植物生态学报, 1989, 13(3): 236-249. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19