植物生态学报 ›› 2013, Vol. 37 ›› Issue (1): 26-36.DOI: 10.3724/SP.J.1258.2013.00003
所属专题: 生物多样性
许涵1,2, 李意德2,*(), 骆土寿2, 陈德祥2, 林明献2
收稿日期:
2012-05-14
接受日期:
2012-12-14
出版日期:
2013-05-14
发布日期:
2013-01-15
通讯作者:
李意德
作者简介:
*(E-mail:liyide@126.com)基金资助:
XU Han1,2, LI Yi-De2,*(), LUO Tu-Shou2, CHEN De-Xiang2, LIN Ming-Xian2
Received:
2012-05-14
Accepted:
2012-12-14
Online:
2013-05-14
Published:
2013-01-15
Contact:
LI Yi-De
摘要:
环境因子是影响物种分布并导致物种多样性形成的重要因素, 采伐后恢复的热带森林次生林和原始林的环境因子是否一致是一个很重要的问题。对于该问题的回答对长期监测热带森林次生林的变化具有重要意义。该文基于在海南尖峰岭地区设置的164个625 m2植被公里网格样地数据, 记录了每个样地的采伐历史并测定了其他的17个环境变量指标, 分析了17个环境因子之间的相关关系; 将164个样地划分成3种不同采伐历史的森林, 通过典范对应分析(CCA)探讨3种森林类型中影响物种分布的环境因子组成; 比较两种多元回归模型的优劣, 来揭示3种森林类型中影响物种丰富度形成的环境因子组成的差异。结果表明: 驱动海南尖峰岭地区物种分布并导致物种多样性差异的环境因子在森林采伐前后并不是一成不变的, 而是与森林采伐历史有关联的。除了人为森林采伐干扰外, 海拔梯度是形成海南尖峰岭热带天然林物种多样性的最重要因素。CCA分析显示: 原始林中, 物种分布与海拔、土壤交换性钙和交换性镁含量3个环境因子有较密切的关系, 也与4个土壤物理性质环境因子(土壤密度、土壤最大持水能力、毛细管持水量和毛管孔隙度)关系密切; 森林采伐后的恢复森林中, 土壤全磷和速效磷含量对物种分布的影响增强, 但皆伐后土壤交换性钙和交换性镁含量对物种分布的影响减弱。多元回归分析显示: 原始林的物种丰富度与海拔和土壤交换性钙含量显著相关, 径级择伐后恢复热带天然林的物种丰富度和海拔、土壤全磷含量和速效钾含量显著相关, 皆伐后恢复热带天然林的物种丰富度仅和海拔显著相关。研究结果还显示, 如果数据中存在空间自相关, 建立多元回归模型时应该考虑数据中的空间自相关属性, 虽然它并不总是存在的。
许涵, 李意德, 骆土寿, 陈德祥, 林明献. 海南尖峰岭不同热带雨林类型与物种多样性变化关联的环境因子. 植物生态学报, 2013, 37(1): 26-36. DOI: 10.3724/SP.J.1258.2013.00003
XU Han, LI Yi-De, LUO Tu-Shou, CHEN De-Xiang, LIN Ming-Xian. Environmental factors correlated with species diversity in different tropical rain forest types in Jianfengling, Hainan Island, China. Chinese Journal of Plant Ecology, 2013, 37(1): 26-36. DOI: 10.3724/SP.J.1258.2013.00003
环境因子 Environmental factor | 海拔 Elevation | 坡度 Slope degree | 坡向 Slope aspect | 坡位 Slope position | 土壤有机 碳含量 Soil organic carbon content | 土壤全氮含量 Soil total nitrogen content | 土壤全磷含量 Soil total phosphorus content | 土壤全钾 含量 Soil total potassium content | 土壤交换性钙含量 Soil exchangeable calcium content | 土壤交换性镁含量 Soil exchangeable magnesium content | 土壤速效钾含量 Soil available potassium content | 土壤碱解氮含量 Soil alkali dispelled nitrogen content | 土壤速效磷含量 Soil available phosphorus content | 土壤 密度 Soil density | 土壤最大持水量 Soil maximum water holding content | 土壤毛细管持水量 Soil capillary water holding content | 土壤毛管孔 隙度 Soil capillary porosity |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
海拔 Elevation | - | ||||||||||||||||
坡度 Slope degree | 0.006 | ||||||||||||||||
坡向 Slope aspect | -0.002 | -0.298** | |||||||||||||||
坡位 Slope position | 0.009 | -0.190* | 0.146 | ||||||||||||||
土壤有机碳含量 Soil organic carbon content | 0.352** | -0.011 | 0.019 | -0.109 | |||||||||||||
土壤全氮含量 Soil total nitrogen content | 0.366** | 0.070 | 0.079 | -0.013 | 0.775** | ||||||||||||
土壤全磷含量 Soil total phosphorus content | 0.079 | 0.029 | 0.123 | 0.138 | 0.276** | 0.452** | |||||||||||
土壤全钾含量 Soil total potassium content | -0.230** | 0.309** | -0.098 | -0.029 | -0.144 | -0.031 | 0.104 | ||||||||||
土壤交换性钙含量 Soil exchangeable calcium content | -0.126 | 0.037 | 0.017 | 0.097 | 0.069 | 0.157* | 0.718** | 0.130 | |||||||||
土壤交换性镁含量 Soil exchangeable magnesium content | -0.238** | 0.072 | -0.010 | 0.055 | 0.037 | 0.130 | 0.691** | 0.242** | 0.932** | ||||||||
土壤速效钾含量 Soil available potassium content | -0.409** | 0.216** | -0.171* | -0.070 | -0.155* | -0.127 | -0.041 | 0.620** | 0.131 | 0.307** | |||||||
土壤碱解氮含量 Soil alkali dispelled nitrogen content | 0.471** | -0.034 | 0.131 | -0.018 | 0.521** | 0.667** | 0.444** | -0.109 | 0.074 | 0.017 | -0.180* | ||||||
土壤速效磷含量 Soil available phosphorus content | -0.204** | 0.083 | 0.032 | 0.098 | 0.134 | 0.247** | 0.587** | 0.306** | 0.480** | 0.498** | 0.136 | 0.172* | |||||
土壤密度 Soil density | -0.759** | 0.071 | -0.033 | 0.062 | -0.345** | -0.371** | -0.186* | 0.327** | 0.045 | 0.168* | 0.403** | -0.597** | 0.171* | ||||
土壤最大持水量 Soil maximum water holding content | 0.570** | -0.109 | 0.138 | -0.019 | 0.142 | 0.261** | 0.202** | -0.239** | 0.065 | -0.032 | -0.280** | 0.431** | -0.175* | -0.691** | |||
土壤毛细管持水量 Soil capillary water holding content | 0.497** | -0.169* | 0.173* | 0.029 | 0.107 | 0.161* | 0.098 | -0.304** | 0.064 | -0.058 | -0.396** | 0.198* | -0.304** | -0.403** | 0.743** | ||
土壤毛管孔隙度 Soil capillary porosity | 0.499** | -0.167* | 0.173* | 0.026 | 0.109 | 0.161* | 0.097 | -0.304** | 0.062 | -0.060 | -0.395** | 0.200* | -0.306** | -0.405** | 0.743** | 1.000** | - |
表1 17个环境因子间的相关系数交互矩阵
Table 1 Cross-products matrix contains correlation coefficients among 17 environmental factors
环境因子 Environmental factor | 海拔 Elevation | 坡度 Slope degree | 坡向 Slope aspect | 坡位 Slope position | 土壤有机 碳含量 Soil organic carbon content | 土壤全氮含量 Soil total nitrogen content | 土壤全磷含量 Soil total phosphorus content | 土壤全钾 含量 Soil total potassium content | 土壤交换性钙含量 Soil exchangeable calcium content | 土壤交换性镁含量 Soil exchangeable magnesium content | 土壤速效钾含量 Soil available potassium content | 土壤碱解氮含量 Soil alkali dispelled nitrogen content | 土壤速效磷含量 Soil available phosphorus content | 土壤 密度 Soil density | 土壤最大持水量 Soil maximum water holding content | 土壤毛细管持水量 Soil capillary water holding content | 土壤毛管孔 隙度 Soil capillary porosity |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
海拔 Elevation | - | ||||||||||||||||
坡度 Slope degree | 0.006 | ||||||||||||||||
坡向 Slope aspect | -0.002 | -0.298** | |||||||||||||||
坡位 Slope position | 0.009 | -0.190* | 0.146 | ||||||||||||||
土壤有机碳含量 Soil organic carbon content | 0.352** | -0.011 | 0.019 | -0.109 | |||||||||||||
土壤全氮含量 Soil total nitrogen content | 0.366** | 0.070 | 0.079 | -0.013 | 0.775** | ||||||||||||
土壤全磷含量 Soil total phosphorus content | 0.079 | 0.029 | 0.123 | 0.138 | 0.276** | 0.452** | |||||||||||
土壤全钾含量 Soil total potassium content | -0.230** | 0.309** | -0.098 | -0.029 | -0.144 | -0.031 | 0.104 | ||||||||||
土壤交换性钙含量 Soil exchangeable calcium content | -0.126 | 0.037 | 0.017 | 0.097 | 0.069 | 0.157* | 0.718** | 0.130 | |||||||||
土壤交换性镁含量 Soil exchangeable magnesium content | -0.238** | 0.072 | -0.010 | 0.055 | 0.037 | 0.130 | 0.691** | 0.242** | 0.932** | ||||||||
土壤速效钾含量 Soil available potassium content | -0.409** | 0.216** | -0.171* | -0.070 | -0.155* | -0.127 | -0.041 | 0.620** | 0.131 | 0.307** | |||||||
土壤碱解氮含量 Soil alkali dispelled nitrogen content | 0.471** | -0.034 | 0.131 | -0.018 | 0.521** | 0.667** | 0.444** | -0.109 | 0.074 | 0.017 | -0.180* | ||||||
土壤速效磷含量 Soil available phosphorus content | -0.204** | 0.083 | 0.032 | 0.098 | 0.134 | 0.247** | 0.587** | 0.306** | 0.480** | 0.498** | 0.136 | 0.172* | |||||
土壤密度 Soil density | -0.759** | 0.071 | -0.033 | 0.062 | -0.345** | -0.371** | -0.186* | 0.327** | 0.045 | 0.168* | 0.403** | -0.597** | 0.171* | ||||
土壤最大持水量 Soil maximum water holding content | 0.570** | -0.109 | 0.138 | -0.019 | 0.142 | 0.261** | 0.202** | -0.239** | 0.065 | -0.032 | -0.280** | 0.431** | -0.175* | -0.691** | |||
土壤毛细管持水量 Soil capillary water holding content | 0.497** | -0.169* | 0.173* | 0.029 | 0.107 | 0.161* | 0.098 | -0.304** | 0.064 | -0.058 | -0.396** | 0.198* | -0.304** | -0.403** | 0.743** | ||
土壤毛管孔隙度 Soil capillary porosity | 0.499** | -0.167* | 0.173* | 0.026 | 0.109 | 0.161* | 0.097 | -0.304** | 0.062 | -0.060 | -0.395** | 0.200* | -0.306** | -0.405** | 0.743** | 1.000** | - |
环境因子 Environmental factor | 原始林 Old-growth forest | 径级择伐后恢复森林 Recovered forest after diameter-limit logging | 皆伐后恢复森林 Recovered forest after clear-cutting | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
第1轴 Axis 1 | 第2轴 Axis 2 | 第3轴Axis 3 | 第1轴 Axis 1 | 第2轴 Axis 2 | 第3轴Axis 3 | 第1轴 Axis 1 | 第2轴 Axis 2 | 第3轴 Axis 3 | |||
海拔 Elevation | 0.01 | -0.18 | 0.31 | -0.03 | 0.36 | 0.15 | 0.11 | -0.32 | -0.07 | ||
坡度 Slope degree | -0.14 | 0.12 | -0.39 | 0.03 | -0.03 | 0.04 | -0.04 | -0.02 | 0.42 | ||
坡向 Slope aspect | -0.01 | -0.09 | -0.53 | 0.10 | -0.21 | -0.63 | -0.09 | -0.12 | 0.38 | ||
坡位 Slope position | 0.34 | -0.83 | -0.11 | -0.09 | 0.87 | 0.08 | -0.60 | -0.51 | 0.24 | ||
土壤有机碳含量 Soil organic carbon content | 0.11 | -0.54 | 0.11 | 0.07 | 0.14 | 0.26 | -0.05 | 0.54 | -0.18 | ||
土壤全氮含量 Soil total nitrogen content | -0.07 | -0.57 | -0.11 | 0.10 | 0.31 | 0.07 | -0.21 | -0.02 | 0.28 | ||
土壤全磷含量 Soil total phosphorus content | -0.26 | -0.10 | -0.54 | 0.79 | 0.12 | -0.33 | 0.08 | 0.09 | 0.76 | ||
土壤全钾含量 Soil total potassium content | -0.27 | 0.11 | -0.25 | 0.01 | -0.23 | -0.50 | 0.10 | -0.33 | 0.14 | ||
土壤交换性钙含量 Soil exchangeable calcium content | -0.91 | -0.13 | -0.08 | 0.97 | 0.04 | -0.11 | 0.13 | 0.14 | -0.42 | ||
土壤交换性镁含量 Soil exchangeable magnesium content | -0.51 | 0.23 | -0.24 | 0.92 | -0.04 | -0.17 | 0.32 | 0.37 | -0.33 | ||
土壤速效钾含量 Soil available potassium content | -0.15 | 0.26 | -0.23 | -0.04 | -0.14 | -0.43 | 0.20 | 0.23 | -0.45 | ||
土壤碱解氮含量 Soil alkali dispelled nitrogen content | 0.04 | -0.61 | -0.21 | 0.09 | 0.53 | 0.05 | -0.46 | -0.19 | 0.55 | ||
土壤速效磷含量 Soil available phosphorus content | -0.34 | 0.29 | -0.31 | 0.60 | -0.27 | -0.14 | 0.81 | -0.13 | 0.47 | ||
土壤密度 Soil density | -0.29 | 0.65 | 0.23 | -0.04 | -0.63 | -0.18 | 0.59 | 0.26 | -0.49 | ||
土壤最大持水量 Soil maximum water holding content | 0.17 | -0.56 | -0.38 | 0.11 | 0.68 | 0.05 | -0.35 | -0.52 | 0.37 | ||
土壤毛细管持水量 Soil capillary water holding content | 0.15 | -0.65 | -0.03 | 0.14 | 0.51 | 0.15 | -0.25 | -0.60 | 0.20 | ||
土壤毛管孔隙度 Soil capillary porosity | 0.15 | -0.65 | -0.03 | 0.13 | 0.51 | 0.15 | -0.26 | -0.60 | 0.20 |
表2 基于典范对应分析的3种森林类型17个环境因子与第1、第2和第3排序轴的相关性
Table 2 Correlations between 17 environmental factors and the first, second, third ordination axes on canonical correspondence analysis for three forest types
环境因子 Environmental factor | 原始林 Old-growth forest | 径级择伐后恢复森林 Recovered forest after diameter-limit logging | 皆伐后恢复森林 Recovered forest after clear-cutting | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
第1轴 Axis 1 | 第2轴 Axis 2 | 第3轴Axis 3 | 第1轴 Axis 1 | 第2轴 Axis 2 | 第3轴Axis 3 | 第1轴 Axis 1 | 第2轴 Axis 2 | 第3轴 Axis 3 | |||
海拔 Elevation | 0.01 | -0.18 | 0.31 | -0.03 | 0.36 | 0.15 | 0.11 | -0.32 | -0.07 | ||
坡度 Slope degree | -0.14 | 0.12 | -0.39 | 0.03 | -0.03 | 0.04 | -0.04 | -0.02 | 0.42 | ||
坡向 Slope aspect | -0.01 | -0.09 | -0.53 | 0.10 | -0.21 | -0.63 | -0.09 | -0.12 | 0.38 | ||
坡位 Slope position | 0.34 | -0.83 | -0.11 | -0.09 | 0.87 | 0.08 | -0.60 | -0.51 | 0.24 | ||
土壤有机碳含量 Soil organic carbon content | 0.11 | -0.54 | 0.11 | 0.07 | 0.14 | 0.26 | -0.05 | 0.54 | -0.18 | ||
土壤全氮含量 Soil total nitrogen content | -0.07 | -0.57 | -0.11 | 0.10 | 0.31 | 0.07 | -0.21 | -0.02 | 0.28 | ||
土壤全磷含量 Soil total phosphorus content | -0.26 | -0.10 | -0.54 | 0.79 | 0.12 | -0.33 | 0.08 | 0.09 | 0.76 | ||
土壤全钾含量 Soil total potassium content | -0.27 | 0.11 | -0.25 | 0.01 | -0.23 | -0.50 | 0.10 | -0.33 | 0.14 | ||
土壤交换性钙含量 Soil exchangeable calcium content | -0.91 | -0.13 | -0.08 | 0.97 | 0.04 | -0.11 | 0.13 | 0.14 | -0.42 | ||
土壤交换性镁含量 Soil exchangeable magnesium content | -0.51 | 0.23 | -0.24 | 0.92 | -0.04 | -0.17 | 0.32 | 0.37 | -0.33 | ||
土壤速效钾含量 Soil available potassium content | -0.15 | 0.26 | -0.23 | -0.04 | -0.14 | -0.43 | 0.20 | 0.23 | -0.45 | ||
土壤碱解氮含量 Soil alkali dispelled nitrogen content | 0.04 | -0.61 | -0.21 | 0.09 | 0.53 | 0.05 | -0.46 | -0.19 | 0.55 | ||
土壤速效磷含量 Soil available phosphorus content | -0.34 | 0.29 | -0.31 | 0.60 | -0.27 | -0.14 | 0.81 | -0.13 | 0.47 | ||
土壤密度 Soil density | -0.29 | 0.65 | 0.23 | -0.04 | -0.63 | -0.18 | 0.59 | 0.26 | -0.49 | ||
土壤最大持水量 Soil maximum water holding content | 0.17 | -0.56 | -0.38 | 0.11 | 0.68 | 0.05 | -0.35 | -0.52 | 0.37 | ||
土壤毛细管持水量 Soil capillary water holding content | 0.15 | -0.65 | -0.03 | 0.14 | 0.51 | 0.15 | -0.25 | -0.60 | 0.20 | ||
土壤毛管孔隙度 Soil capillary porosity | 0.15 | -0.65 | -0.03 | 0.13 | 0.51 | 0.15 | -0.26 | -0.60 | 0.20 |
环境因子 Environmental factor | 普通最小二乘法模型 Ordinary least-squares model | 联立空间自相关模型 Spatial simultaneous autoregressive error model | |||||
---|---|---|---|---|---|---|---|
估计值±标准误差 Estimated value ± SE | t值 t-value | 显著性检验Pr(>|t|) | 估计值±标准误差 Estimated value ± SE | t值 t-value | 显著性检验 Pr(>|t|) | ||
截距 Intercept | 50.838 ± 6.561 | 7.749 | <0.001 | 51.120 ± 6.277 | 8.144 | <0.001 | |
海拔 Elevation | 0.037 ± 0.007 | 5.021 | <0.001 | 0.037 ± 0.007 | 5.206 | <0.001 | |
土壤交换性钙 Soil exchangeable calcium content | -12.629 ± 3.537 | -3.570 | <0.001 | -12.779 ± 3.414 | -3.743 | <0.001 |
表3 原始林的物种丰富度与17个环境因子的多元回归参数及其显著性检验
Table 3 Coefficients of the multiple regression and associated t-tests for species richness regressed against 17 environmental factors of the old-growth forests
环境因子 Environmental factor | 普通最小二乘法模型 Ordinary least-squares model | 联立空间自相关模型 Spatial simultaneous autoregressive error model | |||||
---|---|---|---|---|---|---|---|
估计值±标准误差 Estimated value ± SE | t值 t-value | 显著性检验Pr(>|t|) | 估计值±标准误差 Estimated value ± SE | t值 t-value | 显著性检验 Pr(>|t|) | ||
截距 Intercept | 50.838 ± 6.561 | 7.749 | <0.001 | 51.120 ± 6.277 | 8.144 | <0.001 | |
海拔 Elevation | 0.037 ± 0.007 | 5.021 | <0.001 | 0.037 ± 0.007 | 5.206 | <0.001 | |
土壤交换性钙 Soil exchangeable calcium content | -12.629 ± 3.537 | -3.570 | <0.001 | -12.779 ± 3.414 | -3.743 | <0.001 |
图1 原始林通过检验模型的残差自相关性评价模型的适用性。A, 原始数据。B, 普通最小二乘法模型的残差。C, 联立空间自相关模型的残差。
Fig. 1 Assessing model adequacy by testing the autocorrelation in residuals of the models of the old-growth forests. A, Original data. B, Residuals of ordinary least-squares model. C, Residuals of spatial simultaneous autoregressive error model.
环境因子 Environmental factor | 普通最小二乘法模型 Ordinary least-squares model | 联立空间自相关模型 Spatial simultaneous autoregressive error model | |||||
---|---|---|---|---|---|---|---|
估计值±标准误差 Estimated value ± SE | t值 t-value | 显著性检验 Pr(>|t|) | 估计值±标准误差 Estimated value ± SE | t值 t-value | 显著性检验 Pr(>|t|) | ||
截距 Intercept | 84.918 ± 8.199 | 10.357 | <0.001 | 81.388 ± 8.887 | 9.158 | <0.001 | |
海拔 Elevation | 0.024 ± 0.007 | 3.254 | 0.002 | 0.026 ± 0.008 | 3.056 | 0.002 | |
土壤全磷含量 Soil total phosphorus content | -100.354 ± 20.090 | -4.996 | <0.001 | -89.345 ± 19.793 | -4.514 | <0.001 | |
土壤速效钾含量 Soil available potassium content | -20.187 ± 7.743 | -2.607 | 0.011 | -18.620 ± 7.218 | -2.580 | 0.010 |
表4 径级择伐后恢复森林的物种丰富度与17个环境因子的多元回归参数及其显著性检验
Table 4 Coefficients of the multiple regression and associated t-tests for species richness regressed against 17 environmental factors of the recovered forests after diameter-limit logging
环境因子 Environmental factor | 普通最小二乘法模型 Ordinary least-squares model | 联立空间自相关模型 Spatial simultaneous autoregressive error model | |||||
---|---|---|---|---|---|---|---|
估计值±标准误差 Estimated value ± SE | t值 t-value | 显著性检验 Pr(>|t|) | 估计值±标准误差 Estimated value ± SE | t值 t-value | 显著性检验 Pr(>|t|) | ||
截距 Intercept | 84.918 ± 8.199 | 10.357 | <0.001 | 81.388 ± 8.887 | 9.158 | <0.001 | |
海拔 Elevation | 0.024 ± 0.007 | 3.254 | 0.002 | 0.026 ± 0.008 | 3.056 | 0.002 | |
土壤全磷含量 Soil total phosphorus content | -100.354 ± 20.090 | -4.996 | <0.001 | -89.345 ± 19.793 | -4.514 | <0.001 | |
土壤速效钾含量 Soil available potassium content | -20.187 ± 7.743 | -2.607 | 0.011 | -18.620 ± 7.218 | -2.580 | 0.010 |
图2 径级择伐后恢复森林通过检验模型的残差自相关性评价模型的适用性。A, 原始数据。B, 普通最小二乘法模型的残差。C, 联立空间自相关模型的残差。
Fig. 2 Assessing model adequacy by testing the autocorrelation in residuals of the models of the recovered forests after diameterlimit logging. A, Original data. B, Residuals of ordinary least-squares model. C, Residuals of spatial simultaneous autoregressive error model.
环境因子 Environmental factor | 普通最小二乘法模型 Ordinary least-squares model | 联立空间自相关模型 Spatial simultaneous autoregressive error model | |||||
---|---|---|---|---|---|---|---|
估计值±标准误差 Estimated value ± SE | t值 t-value | 显著性检验 Pr(>|t|) | 估计值±标准误差 Estimated value ± SE | t值 t-value | 显著性检验 Pr(>|t|) | ||
截距 Intercept | 59.600 ± 11.037 | 5.400 | <0.001 | 59.720 ± 10.712 | 5.575 | <0.001 | |
海拔 Elevation | 0.034 ± 0.014 | 2.390 | 0.022 | 0.033 ± 0.014 | 2.451 | 0.014 |
表5 皆伐后恢复森林的物种丰富度与17个环境因子的多元回归参数及其显著性检验
Table 5 Coefficients of the multiple regression and associated t-tests for species richness regressed against 17 environmental factors of the recovered forests after clear-cutting
环境因子 Environmental factor | 普通最小二乘法模型 Ordinary least-squares model | 联立空间自相关模型 Spatial simultaneous autoregressive error model | |||||
---|---|---|---|---|---|---|---|
估计值±标准误差 Estimated value ± SE | t值 t-value | 显著性检验 Pr(>|t|) | 估计值±标准误差 Estimated value ± SE | t值 t-value | 显著性检验 Pr(>|t|) | ||
截距 Intercept | 59.600 ± 11.037 | 5.400 | <0.001 | 59.720 ± 10.712 | 5.575 | <0.001 | |
海拔 Elevation | 0.034 ± 0.014 | 2.390 | 0.022 | 0.033 ± 0.014 | 2.451 | 0.014 |
图3 皆伐后恢复森林通过检验模型的残差自相关性评价模型的适用性。A, 原始数据。B, 普通最小二乘法模型的残差。C, 联立空间自相关模型的残差。
Fig. 3 Assessing model adequacy by testing the autocorrelation in residuals of the models of the recovered forests after clear-cutting. A, Original data. B, Residuals of ordinary least-squares model. C, Residuals of spatial simultaneous autoregressive error model.
[1] | Badgley C, Fox DL (2000). Ecological biogeography of North American mammals: species density and ecological structure in relation to environmental gradients. Journal of Biogeography, 27, 1437-1467. |
[2] | Beck J, Chey VK (2008). Explaining the elevational diversity pattern of geometrid moths from Borneo: a test of five hypotheses. Journal of Biogeography, 35, 1452-1464. |
[3] | Berry NJ, Phillips OL, Ong RC, Hamer KC (2008). Impacts of selective logging on tree diversity across a rainforest landscape: the importance of spatial scale. Landscape Ecology, 23, 915-929. |
[4] |
Brown KA, Gurevitch J (2004). Long-term impacts of logging on forest diversity in Madagascar. Proceedings of the National Academy of Sciences of the United States of America, 101, 6045-6049.
DOI URL PMID |
[5] |
Cannon CH, Peart DR, Leighton M (1998). Tree species diversity in commercially logged Bornean rainforest. Science, 281, 1366-1368.
URL PMID |
[6] | Cramer MJ, Willig MR (2002). Habitat heterogeneity, habitat associations, and rodent species diversity in a sand- shinnery-oak landscape. Journal of Mammalogy, 83, 743-753. |
[7] | de Deyn GB, Raaijmakers CE, van der Putten WH (2004). Plant community development is affected by nutrients and soil biota. Journal of Ecology, 92, 824-834. |
[8] | Diniz-Filho JAF, Bini LM, Hawkins BA (2003). Spatial autocorrelation and red herrings in geographical ecology. Global Ecology and Biogeography, 12, 53-64. |
[9] | Diniz-Filho JAF, de Campos Telles MP (2002). Spatial autocorrelation analysis and the identification of operational units for conservation in continuous populations. Conservation Biology, 16, 924-935. |
[10] |
Diniz-Filho JAF, Rangel TFLVB, Hawkins BA (2004). A test of multiple hypotheses for the species richness gradient of South American owls. Oecologia, 140, 633-638.
DOI URL PMID |
[11] | Dormann CF (2007). Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global Ecology and Biogeography, 16, 129-138. |
[12] | Dumbrell AJ, Clark EJ, Frost GA, Randell TE, Pitchford JW, Hill JK (2008). Changes in species diversity following habitat disturbance are dependent on spatial scale: theoretical and empirical evidence. Journal of Applied Ecology, 45, 1531-1539. |
[13] |
Firn J, Erskine PD, Lamb D (2007). Woody species diversity influences productivity and soil nutrient availability in tropical plantations. Oecologia, 154, 521-533.
DOI URL PMID |
[14] | Foody GM (2004). Spatial nonstationarity and scale- dependency in the relationship between species richness and environmental determinants for the sub-Saharan endemic avifauna. Global Ecology and Biogeography, 13, 315-320. |
[15] | Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JRG (2003). Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105-3117. |
[16] | He JS, Chen WL (1997). A review of gradient changes in species diversity of land plant communities. Acta Ecologica Sinica, 17, 91-99. (in Chinses with English abstract) |
[ 贺金生, 陈伟烈 (1997). 陆地植物群落物种多样性的梯度变化特征. 生态学报, 17, 91-99.] | |
[17] | Hurlbert AH, White EP (2005). Disparity between range map- and survey-based analyses of species richness: patterns, processes and implications. Ecology Letters, 8, 319-327. |
[18] | Jiang YX, Lu JP (1991). Tropical Forest Ecosystems of Jianfengling, Hainan Island, China. Science Press, Beijing. 29-42. (in Chinese) |
[ 蒋有绪, 卢俊培 (1991). 中国海南岛尖峰岭热带林生态系统. 科学出版社, 北京. 29-42.] | |
[19] | Kaboli M, Guillaumet A, Prodon R (2006). Avifaunal gradients in two arid zones of central Iran in relation to vegetation, climate, and topography. Journal of Biogeography, 33, 133-144. |
[20] | Kühn I (2007). Incorporating spatial autocorrelation may invert observed patterns. Diversity and Distributions, 13, 66-69. |
[21] | Legendre P, Legendre L (1998). Numerical Ecology 2nd edn. Elsevier Science, Amsterdam. |
[22] | Li YD, Chen BF, Zhou GY, Wu ZM, Zeng QB, Luo TS, Huang SN, Xie MD, Huang Q (2002). Research on Tropical Forest and Biodiversity Conservation in Hainan Island, China. Chinese Forest Publishing House, Beijing. 47-51. (in Chinese) |
[ 李意德, 陈步峰, 周光益, 吴仲民, 曾庆波, 骆土寿, 黄世能, 谢明东, 黄全 (2002). 中国海南岛热带森林及其生物多样性保护研究. 中国林业出版社, 北京. 47-51.] | |
[23] | Lomolino MV (2001). Elevation gradients of species-density: historical and prospective views. Global Ecology and Biogeography Letters, 10, 3-13. |
[24] | Paoli GD, Currant LM, Zak DR (2006). Soil nutrients and beta diversity in the Bornean Dipterocarpaceae: evidence for niche partitioning by tropical rain forest trees. Journal of Ecology, 94, 157-170. |
[25] |
Pimm SL, Brown JH (2004). Domains of diversity. Science, 304, 831-833.
URL PMID |
[26] | Qian H, Wang S, Li Y, Wang X (2009). Breeding bird diversity in relation to environmental gradients in China. Acta Oecologica, 35, 819-823. |
[27] |
Rahbek C, Graves GR (2000). Detection of macro-ecological patterns in South American humming birds is affected by spatial scale. Proceedings of the Royal Society of London Series B, 267, 2259-2265.
DOI URL PMID |
[28] | Rossi JP, Queneherve P (1998). Relating species density to environmental variables in presence of spatial autocorrela- tion: a study case on soil nematodes distribution. Ecography, 21, 117-123. |
[29] | Rowe RJ, Lidgard S (2009). Elevational gradients and species richness: do methods change pattern perception? Global Ecology and Biogeography, 18, 163-177. |
[30] | Tognelli MF, Kelt DA (2004). Analysis of determinants of mammalian species richness in South America using spatial autoregressive models. Ecography, 27, 427-436. |
[31] |
van Rensburg BJ, Chown SL, Gaston KJ (2002). Species richness, environmental correlates, and spatial scale: a test using South African birds. The American Naturalist, 159, 566-577.
URL PMID |
[32] | Vetaas OR, Grytnes JA (2002). Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecology and Biogeography, 11, 291-301. |
[33] | Wang SX, Wang XA, Li GQ, Guo H, Zhu ZH (2010). Species diversity and environmental interpretation in the process of community succession in the Ziwu Mountain of Shaanxi Province. Acta Ecologica Sinica, 30, 1638-1647. (in Chinses with English abstract) |
[ 王世雄, 王孝安, 李国庆, 郭华, 朱志红 (2010). 陕西子午岭植物群落演替过程中物种多样性变化与环境解释. 生态学报, 30, 1638-1647.] | |
[34] | Xu H, Li YD, Luo TS, Chen DX, Lin MX, Yang H (2012). Impacts of forest logging on the species diversity of endemic seed plants from Hainan Island. Biodiversity Science, 20, 168-176. (in Chinses with English abstract) |
[ 许涵, 李意德, 骆土寿, 陈德祥, 林明献, 杨怀 (2012). 森林采伐对尖峰岭海南特有种子植物多样性的影响. 生物多样性, 20, 168-176.] | |
[35] | Xu YJ, Chen YN, Li WH, Fu AH, Ma XD, Gui DW, Chen YP (2010). Distribution pattern and environmental interpretation of plant species diversity in the mountainous region of Ili River Valley, Xinjiang, China. Chinese Journal of Plant Ecology, 34, 1142-1154. (in Chinses with English abstract) |
[ 徐远杰, 陈亚宁, 李卫红, 付爱红, 马晓东, 桂东伟, 陈亚鹏 (2010). 伊黎河谷山地植物群落物种多样性分布格局及环境解释. 植物生态学报, 34, 1142-1154.] |
[1] | 李闪闪 刘学勤. 长江中游河漫滩湿地植物功能性状分析[J]. 植物生态学报, 2024, 48(5): 601-611. |
[2] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[3] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[4] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[5] | 李安艳, 黄先飞, 田源斌, 董继兴, 郑菲菲, 夏品华. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报, 2023, 47(8): 1171-1181. |
[6] | 杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制[J]. 植物生态学报, 2023, 47(8): 1105-1115. |
[7] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[8] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[9] | 杨丽琳, 邢万秋, 王卫光, 曹明珠. 新安江源区杉木树干液流速率变化及其对环境因子的响应[J]. 植物生态学报, 2023, 47(4): 571-583. |
[10] | 朱华, 谭运洪. 中国热带雨林的群落特征、研究现状及问题[J]. 植物生态学报, 2023, 47(4): 447-468. |
[11] | 张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响[J]. 植物生态学报, 2023, 47(11): 1585-1599. |
[12] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[13] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[14] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[15] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19