植物生态学报 ›› 2020, Vol. 44 ›› Issue (6): 661-668.DOI: 10.17521/cjpe.2019.0298

• 研究论文 • 上一篇    下一篇

柴达木野生黑果枸杞的空间遗传结构

王春成1, 马松梅2,*(), 张丹1, 王绍明1   

  1. 1石河子大学生命科学学院, 绿洲城镇与山盆系统生态兵团重点实验室, 新疆石河子 832000
    2石河子大学理学院, 绿洲城镇与山盆系统生态兵团重点实验室, 新疆石河子 832000
  • 收稿日期:2019-11-04 接受日期:2020-03-27 出版日期:2020-06-20 发布日期:2020-04-30
  • 通讯作者: * 马松梅: ORCID:0000-0002-3107-2256, shzmsm@126.com
  • 基金资助:
    国家自然科学基金(41261011);国家自然科学基金(41561007)

Spatial genetic structure of Lycium ruthenicum in the Qaidam Basin

WANG Chun-Cheng1, MA Song-Mei2,*(), ZHANG Dan1, WANG Shao-Ming1   

  1. 1Key Laboratory of Ecological Corps for Oasis City and Mountain Basin System, College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832000, China
    2Key Laboratory of Ecological Corps for Oasis City and Mountain Basin System, College of Science, Shihezi University, Shihezi, Xinjiang 832000, China
  • Received:2019-11-04 Accepted:2020-03-27 Online:2020-06-20 Published:2020-04-30
  • Contact: MA Song-Mei: ORCID:0000-0002-3107-2256, shzmsm@126.com
  • Supported by:
    National Natural Science Foundation of China(41261011);National Natural Science Foundation of China(41561007)

摘要:

基于cpDNA序列, 研究柴达木野生黑果枸杞(Lycium ruthenicum)的遗传多样性、遗传结构和单倍型进化关系, 可为其种群的遗传保护提供理论依据。该研究基于3个筛选的叶绿体多态引物: psbA-trnH、psbK-psbI和trnV, 利用群体遗传分析方法研究柴达木盆地野生黑果枸杞的遗传变异格局: 利用软件DnaSP 6.0和Permut 2.0计算分子多样性指标, 利用分子方差分析研究组间和种群间的遗传变异来源, 利用单倍型网络分析和主坐标分析研究单倍型的聚类关系; 利用最大似然树和贝叶斯系统树分析单倍型的谱系进化关系。结果显示: 叶绿体序列psbA-trnH、psbK-psbI和trnV拼接后的总长度为1 454 bp, 鉴别出14个核苷酸变异位点, 共定义了7个单倍型。种群间总的遗传多样(hT)和种群内遗传多样性(hS)分别为0.916和0.512。AMOVA分析结果表明, 80%以上的遗传变异来源于组间和种群间。叶绿体单倍型的贝叶斯系统树和最大似然树均表明柴达木盆地黑果枸杞种群聚为2支: 德令哈和格尔木为一支, 诺木洪为另一支。单倍型网络和主坐标分析结果揭示的拓扑结构和聚类关系与系统树一致。Mantel检验结果表明柴达木黑果枸杞种群间的遗传距离与地理距离存在显著的弱相关关系(r = 0.591 1, p = 0.000 9)。柴达木盆地黑果枸杞种群具有较高的遗传多样性, 种群间遗传分化显著。从遗传多样性保护的角度而言, 具有较高遗传多样性的诺木洪林业站和格尔木新乐村种群可划分为保护管理单元。

关键词: 黑果枸杞, 柴达木盆地, 叶绿体片段, 遗传变异, 遗传结构

Abstract:

Aims Based on the cpDNA sequences, we studied the genetic diversity, genetic structure and haplotype evolution of wild Lycium ruthenicum in the Qaidam Basin and provided the scientific basis for the genetic conservation of this species.
Methods We used three filtered high polymorphic cpDNA fragments (psbA-trnH, psbK-psbI and trnV) to study the genetic variation pattern of L. ruthenicum in the Qaidam Basin by employing the population genetic analysis methods. The molecular diversity indices were calculated by using the software of DnaSP 6.0 and Permut 2.0. Genetic differentiation among populations and the defined groups was estimated by the AMOVA analysis. The median-joining network and principal coordinate analysis (PCoA) were used to identify the clustering relationship of haplotype. The maximum likelihood method and Bayesian method were used to reconstruct the phylogenetic tree based on cpDNA haplotypes.
Important findings The combined length of psbA-trnH, psbK-psbI and trnV was 1 454 bp. 14 polymorphic sites were detected, and a total of seven haplotypes were identified. The total genetic diversity (hT) and within-population genetic diversity (hS) were 0.916 and 0.512, respectively. Results from AMOVA suggested that more than 80% of the observed variation was due to differences among groups and populations. The maximum likelihood analysis and Beast analysis revealed that seven haplotypes clustered into two clusters, corresponding to Golmud and Delingha regions and Nuomuhong region, respectively. The revealed topological structure and clusters of haplotype network and PCoA analyses were consistent with the phylogenetic trees. Results of the Mantel test (r = 0.591 1, p = 0.000 9) indicated a non-significant correlation between geographical distance and genetic distance. The L. ruthenicum populations in the Qaidam Basin have high levels of genetic diversity and significant genetic differentiation among populations. In relation to conservation management, we identified the Nuomuhong forestry station and Xinle Village of Golmud City as having a high degree of genetic diversity and these should be the areas of the greatest focus for conservation.

Key words: Lycium ruthenicum, Qaidam Basin, chloroplast fragments, genetic variation, genetic structure