植物生态学报 ›› 2015, Vol. 39 ›› Issue (10): 1003-1011.DOI: 10.17521/cjpe.2015.0097
所属专题: 生物多样性
王锦楠1,*, 陈进福2,*, 陈武生2, 周新洋3, 许东1, 李际红1,**(), 亓晓1
出版日期:
2015-10-01
发布日期:
2015-10-24
通讯作者:
王锦楠,陈进福,李际红
作者简介:
# 共同第一作者
基金资助:
WANG Jin-Nan1,*, CHEN Jin-Fu2,*, Chen Wu-Sheng1, Zhou Xin-Yang3, XU Dong1, LI Ji-Hong1,**(), QI Xiao1
Online:
2015-10-01
Published:
2015-10-24
Contact:
Jin-Nan WANG,Jin-Fu CHEN,Ji-Hong LI
About author:
# Co-first authors
摘要:
采用扩增片段长度多态性(AFLP)分子标记技术对青海省柴达木地区5个野生黑果枸杞(Lycium ruthenicum)种群的120份样品的遗传多样性进行分析。结果表明: 柴达木地区野生黑果枸杞具有很高的遗传多样性, 9对选扩引物共得到1691条清晰条带, 其中多态性条带1678条, 多态性变异率为99.23%, 种群间的有效等位基因数为1.4712, Nei’s基因多样性为0.3245, Shannon信息指数为0.4367。分子方差分析(AMOVA)结果表明: 柴达木地区5个黑果枸杞种群的遗传变异主要存在于种群内部(92%), 种群间的遗传分化较小(8%, 遗传分化系数0.08)。黑果枸杞种群间的遗传相似系数介于0.9709-0.9922之间, 平均值为0.9835。种群间的聚类及Mantel检验(γ = 0.3368, p = 0.8064)均表明柴达木地区黑果枸杞种群地理距离与遗传距离之间的相关性不明显; 黑果枸杞个体间的聚类表明同一种群的个体不能完全聚在一起。对同一种源的遗传多样性分析发现, 诺木洪奥斯勒草场的种源内部的遗传变异更为丰富, 这或许可以推断诺木洪可能为柴达木地区野生黑果枸杞种质资源的中心产区。
王锦楠, 陈进福, 陈武生, 周新洋, 许东, 李际红, 亓晓. 柴达木地区野生黑果枸杞种群遗传多样性的AFLP分析. 植物生态学报, 2015, 39(10): 1003-1011. DOI: 10.17521/cjpe.2015.0097
WANG Jin-Nan,CHEN Jin-Fu,Chen Wu-Sheng,Zhou Xin-Yang,XU Dong,LI Ji-Hong,QI Xiao. Population genetic diversity of wild Lycium ruthenicum in Qaidam inferred from AFLP markers. Chinese Journal of Plant Ecology, 2015, 39(10): 1003-1011. DOI: 10.17521/cjpe.2015.0097
种群 Population | 海拔 Altitude (m) | 纬度 Latitude (N) | 经度 Longitude (E) | 样品数 Sampling size |
---|---|---|---|---|
德令哈怀头他拉 Huaitoutala, Delingha (DLH1) | 2 810 | 37.25° | 96.83° | 24 |
诺木洪贝壳梁 Beikeliang, Nomhon (NMH1) | 2 703 | 36.50° | 96.22° | 24 |
诺木洪奥斯勒草场 Osler grassland, Nomhon (NMH2) | 2 770 | 36.45° | 96.45° | 24 |
格尔木乌图美仁 Urt Moron, Glomud (GEM1) | 2 890 | 36.88° | 93.12° | 24 |
格尔木鱼水河 River water, Glomud (GEM2) | 2 750 | 36.48° | 94.95° | 24 |
表1 黑果枸杞种群采样地和生境
Table 1 Habitats and localities of the sampled Lycium ruthenicum populations
种群 Population | 海拔 Altitude (m) | 纬度 Latitude (N) | 经度 Longitude (E) | 样品数 Sampling size |
---|---|---|---|---|
德令哈怀头他拉 Huaitoutala, Delingha (DLH1) | 2 810 | 37.25° | 96.83° | 24 |
诺木洪贝壳梁 Beikeliang, Nomhon (NMH1) | 2 703 | 36.50° | 96.22° | 24 |
诺木洪奥斯勒草场 Osler grassland, Nomhon (NMH2) | 2 770 | 36.45° | 96.45° | 24 |
格尔木乌图美仁 Urt Moron, Glomud (GEM1) | 2 890 | 36.88° | 93.12° | 24 |
格尔木鱼水河 River water, Glomud (GEM2) | 2 750 | 36.48° | 94.95° | 24 |
引物组合 Primer combination | 总带数 Total No. of bands | 多态带数 No. of polymorphic bands | 多态带比例 Percentage of polymorphic bands (%) |
---|---|---|---|
E-AAG/M-CAC | 182 | 182 | 100.00 |
E-AAG/M-CAG | 192 | 189 | 98.43 |
E-ACA/M-CAA | 190 | 189 | 99.47 |
E-ACA/M-CAC | 180 | 180 | 100.00 |
E-ACT/M-CTT | 205 | 201 | 98.05 |
E-AGG/M-CAA | 193 | 193 | 100.00 |
E-AGG/M-CAC | 177 | 177 | 100.00 |
E-AGG/M-CAG | 184 | 182 | 98.91 |
E-AGG/M-CTG | 188 | 185 | 98.40 |
合计 Summation | 1 691 | 1 678 | |
平均 Mean | 211.40 | 209.75 | 99.23 |
表2 AFLP选择性扩增引物产生的条带多态性
Table 2 Polymorphism of AFLP bands obtained by selective amplification based on the primer combinations
引物组合 Primer combination | 总带数 Total No. of bands | 多态带数 No. of polymorphic bands | 多态带比例 Percentage of polymorphic bands (%) |
---|---|---|---|
E-AAG/M-CAC | 182 | 182 | 100.00 |
E-AAG/M-CAG | 192 | 189 | 98.43 |
E-ACA/M-CAA | 190 | 189 | 99.47 |
E-ACA/M-CAC | 180 | 180 | 100.00 |
E-ACT/M-CTT | 205 | 201 | 98.05 |
E-AGG/M-CAA | 193 | 193 | 100.00 |
E-AGG/M-CAC | 177 | 177 | 100.00 |
E-AGG/M-CAG | 184 | 182 | 98.91 |
E-AGG/M-CTG | 188 | 185 | 98.40 |
合计 Summation | 1 691 | 1 678 | |
平均 Mean | 211.40 | 209.75 | 99.23 |
引物组合 Primer combination | 有效等位 基因数 Ne | Nei’s基因 多样性指数 H | Shannon多态性 信息指数 I |
---|---|---|---|
E-AAG/M-CAC | 1.500 1 | 0.337 9 | 0.453 5 |
E-AAG/M-CAG | 1.456 4 | 0.318 6 | 0.430 2 |
E-ACA/M-CAA | 1.473 2 | 0.322 5 | 0.431 3 |
E-ACA/M-CAC | 1.494 9 | 0.335 0 | 0.450 0 |
E-ACT/M-CTT | 1.432 9 | 0.302 2 | 0.406 1 |
E-AGG/M-CAA | 1.491 9 | 0.336 7 | 0.453 6 |
E-AGG/M-CAC | 1.501 4 | 0.342 4 | 0.461 9 |
E-AGG/M-CAG | 1.445 2 | 0.311 2 | 0.419 9 |
E-AGG/M-CTG | 1.444 5 | 0.314 2 | 0.424 2 |
平均 Mean | 1.471 2 | 0.324 5 | 0.436 7 |
表3 基于不同引物组合的黑果枸杞遗传多样性水平
Table 3 Genetic diversity level of Lycium ruthenicum based on different primer combinations
引物组合 Primer combination | 有效等位 基因数 Ne | Nei’s基因 多样性指数 H | Shannon多态性 信息指数 I |
---|---|---|---|
E-AAG/M-CAC | 1.500 1 | 0.337 9 | 0.453 5 |
E-AAG/M-CAG | 1.456 4 | 0.318 6 | 0.430 2 |
E-ACA/M-CAA | 1.473 2 | 0.322 5 | 0.431 3 |
E-ACA/M-CAC | 1.494 9 | 0.335 0 | 0.450 0 |
E-ACT/M-CTT | 1.432 9 | 0.302 2 | 0.406 1 |
E-AGG/M-CAA | 1.491 9 | 0.336 7 | 0.453 6 |
E-AGG/M-CAC | 1.501 4 | 0.342 4 | 0.461 9 |
E-AGG/M-CAG | 1.445 2 | 0.311 2 | 0.419 9 |
E-AGG/M-CTG | 1.444 5 | 0.314 2 | 0.424 2 |
平均 Mean | 1.471 2 | 0.324 5 | 0.436 7 |
种群 Population | 有效等位 基因数 Ne | Nei’s基因 多样性指数 H | Shannon多态性 信息指数 I |
---|---|---|---|
DLH1 | 1.343 4b | 0.216 9b | 0.349 6b |
NMH1 | 1.366 2ab | 0.225 9ab | 0.359 5a |
NMH2 | 1.373 4a | 0.231 1a | 0.366 1a |
GEM1 | 1.347 5b | 0.222 8b | 0.357 5b |
GEM2 | 1.351 0b | 0.224 8b | 0.349 2b |
表4 5个黑果枸杞种群内遗传多样性水平和显著性分析
Table 4 Genetic diversity of the five Lycium ruthenicum populations
种群 Population | 有效等位 基因数 Ne | Nei’s基因 多样性指数 H | Shannon多态性 信息指数 I |
---|---|---|---|
DLH1 | 1.343 4b | 0.216 9b | 0.349 6b |
NMH1 | 1.366 2ab | 0.225 9ab | 0.359 5a |
NMH2 | 1.373 4a | 0.231 1a | 0.366 1a |
GEM1 | 1.347 5b | 0.222 8b | 0.357 5b |
GEM2 | 1.351 0b | 0.224 8b | 0.349 2b |
变异来源 Source of variation | 自由度 dt | 基因多样性指数 Gene diversity index | 占总变异百分率(%) Percentage of total variation | p |
---|---|---|---|---|
种群间 Among populations | 9 | 0.075 6 | 8 | <0.001 |
种群内 Within populations | 70 | 0.164 3 | 92 | <0.001 |
表5 柴达木地区黑果枸杞种群的遗传分化
Table 5 Genetic divergence of Lycium ruthenicum populations in Qaidam area
变异来源 Source of variation | 自由度 dt | 基因多样性指数 Gene diversity index | 占总变异百分率(%) Percentage of total variation | p |
---|---|---|---|---|
种群间 Among populations | 9 | 0.075 6 | 8 | <0.001 |
种群内 Within populations | 70 | 0.164 3 | 92 | <0.001 |
种群 Population | DLH1 | NMH1 | NMH2 | GEM1 | GEM2 |
---|---|---|---|---|---|
DLH1 | — | 0.986 3 | 0.977 2 | 0.970 9 | 0.971 0 |
NMH1 | 0.013 9 | — | 0.992 2 | 0.986 4 | 0.986 1 |
NMH2 | 0.023 1 | 0.007 8 | — | 0.989 8 | 0.984 7 |
GEM1 | 0.029 5 | 0.014 4 | 0.009 7 | — | 0.990 2 |
GEM2 | 0.029 7 | 0.014 5 | 0.015 5 | 0.009 5 | — |
表6 基于AFLP检测的5个黑果枸杞种群间遗传一致度和遗传距离
Table 6 genetic identity and genetic distance between five Lycium ruthenicum populations based on AFLP
种群 Population | DLH1 | NMH1 | NMH2 | GEM1 | GEM2 |
---|---|---|---|---|---|
DLH1 | — | 0.986 3 | 0.977 2 | 0.970 9 | 0.971 0 |
NMH1 | 0.013 9 | — | 0.992 2 | 0.986 4 | 0.986 1 |
NMH2 | 0.023 1 | 0.007 8 | — | 0.989 8 | 0.984 7 |
GEM1 | 0.029 5 | 0.014 4 | 0.009 7 | — | 0.990 2 |
GEM2 | 0.029 7 | 0.014 5 | 0.015 5 | 0.009 5 | — |
图1 柴达木黑果枸杞种群地理距离和遗传距离相关性的Mantel检验。DLH1、NMH1、NMH2、GEM1、GEM2, 同表1。
Fig. 1 Correlation between geographical distance and genetic distance revealed by Mantel test. DLH1, NMH1, NMH2, GEM1, GEM2, see Table 1.
[1] | Alitong QMK, Wang QF, Yang CF, Chen JM (2013). ISSR analysis on genetic diversity of medically important Lycium ruthenicum murr. in Xinjiang.Plant Science Journal, 31, 517-524. (in Chinese with English abstract) |
[阿力同·其米克, 王青峰, 杨春峰, 陈进明 (2013). 新疆产药用植物黑果枸杞遗传多样性的ISSR分析. 植物科学学报, 31, 517-524.] | |
[2] | Chen H (2008). Analysis of Genetic Diversity and Relationship among Chaenomeles germplasm using RAPD and AFLP Makers. Master degree dissertation, Shandong Agricultural University, Tai’an. (in Chinese with English abstract) |
[陈红 (2008). 木瓜属种质资源的RAPD、AFLP亲缘关系鉴定及遗传多样性分析. 硕士学位论文, 山东农业大学, 泰安.] | |
[3] | Chen HK, Pu LK, Cao JM, Ren X (2008). Current research state and exploitation of Lycium ruthenicum Murr.Heilongjiang Agricultural Sciences, (5), 155-157. (in Chinese with English abstract) |
[陈海魁, 蒲凌奎, 曹君迈, 任贤 (2008). 黑果枸杞的研究现状及其开发利用. 黑龙江农业科学, (5), 155-157.] | |
[4] | Chen LH, Hu TX, Zhang F, Li GH (2008). Genetic diversities of four Juglans populations revealed by AFLP in Sichuan Province, China. Journal of Plant Ecology (Chinese Version), 32, 1362-1372. (in Chinese with English abstract) |
[陈良华, 胡庭兴, 张帆, 李国和 (2008). 用AFLP技术分析四川核桃资源的遗传多样性. 植物生态学报, 32, 1362-1372.] | |
[5] | Ellstrand NC, Elam DR (1993). Population genetic consequences of small population size: Implications for plant conservation.Annual Review of Ecology and Systematics, 24, 217-242. |
[6] | Excoffier L (1993). Analysis of Molecular Variance. version 1. 55. Genetics and Biometry Laboratory, University of Geneva, Switzerland. |
[7] | Govindaraju DR (1988). Relationship between dispersal ability and levels of gene flow in plants.Oikos, 52, 31-35. |
[8] | Guo XM, Xue X, Chen H (2006). Progress in research on amplified fragment length polymorphism (AFLP).Chinese Journal of Comparative Medicine, 16, 369-372. (in Chinese with English abstract) |
[郭雄明, 薛霞, 陈华 (2006). 扩增片段长度多态性(AFLP)研究进展. 中国比较医学杂志, 16, 369-372.] | |
[9] | Jiang X (2012). Studies on the Physiological Mechanism Underlying Salt Tolerance of Lycium ruthenicum murr. Master degree dissertation, Northwest A&F University, Yang- ling. (in Chinese with English abstract) |
[姜霞 (2012). 黑果枸杞耐盐机理的相关研究. 硕士学位论文, 西北农林科技大学, 杨凌.] | |
[10] | Jiang ZY, Yu XX, Yu Z, Liu ZH, Hao ZM, Li XL (2015). Construction of an AFLP-based genetic linkage map of tetraploid hybrid wheatgrass.Journal of Triticeae Crops, 35, 457-463. (in Chinese with English abstract) |
[姜志燕, 于肖夏, 于卓, 刘志华, 郝治满, 李小雷 (2015). 四倍体杂交冰草AFLP遗传连锁图谱的构建. 麦类作物学报, 35, 457-463.] | |
[11] | Jiao XL, Chi XF, Dong Q, Xiao YC, Hu FZ (2011). Analysis of the nutritional components of Lycium ruthenicum.Amino Acids & Biotic Resources, 33(3), 60-62. (in Chinese with English abstract) |
[矫晓丽, 迟晓峰, 董琦, 肖远灿, 胡凤祖 (2011). 柴达木野生黑果枸杞营养成分分析. 氨基酸和生物资源, 33(3), 60-62.] | |
[12] | Jin MY, Liu LZ, Fu FY, Zhang ZS, Zhang XK, Li JN (2006). Construction of a genetic linkage map in Brassica napus based on SRAP, SSR, AFLP and TRAP.Molecular Plant Breeding, 4, 520-526. (in Chinese with English abstract) |
[金梦阳, 刘列钊, 付福友, 张正圣, 张学昆, 李加纳 (2006). 甘蓝型油菜SRAP、SSR、AFLP、和TRAP标记遗传图谱构建. 分子植物育种, 4, 520-526.] | |
[13] | Li J, Yuan H, Zeng XC, Han B, Shi DH (2007). Toxicological assessment of pigment of Lycium ruthenicum Murr.Food Science, 28(7), 470-474. (in Chinese with English abstract) |
[李进, 原惠, 曾献春, 韩彬, 时德红 (2007). 黑果枸杞色素的毒理学研究. 食品科学, 28(7), 470-474.] | |
[14] | Li SZ, Li J, Yang ZJ, Yuan H (2008). Technology of extracting and refining total flavonoids from Lycium ruthenicun Murr.Food Research and Development, 29(8), 82-87. (in Chinese with English abstract) |
[李淑珍, 李进, 杨志江, 原惠 (2008). 黑果枸杞类黄酮的提取和精制工艺研究. 食品研究与开发, 29(8), 82-87.] | |
[15] | Li YL, Fan YF, Dai GL, An W, Cao YL (2011). Analysis of genetic diversity for wolfberry germplasms by AFLP technology.Chinese Traditional and Herbal Drugs, 42, 770-773. (in Chinese with English abstract) |
[李彦龙, 樊云芳, 戴国礼, 安巍, 曹有龙 (2011). 枸杞种质遗传多样性的AFLP分析. 中草药, 42, 770-773.] | |
[16] | Lin L, Li J, Ding CL (2013). Determination of anthocyanins in fruits of Lycium ruthenicum Murr. By HPLC.Food Science, 34(6), 164-166. (in Chinese with English abstract) |
[林丽, 李进, 丁成丽 (2013). 高效液相色谱法测定黑果枸杞果实中花色苷的含量. 食品科学, 34(6), 164-166.] | |
[17] | Liu ZG, Shu QY, Wang L, Yu MF, Hu YP, Zhang HG, Tao YD, Shao Y (2012). Genetic diversity of the endangered and medically important Lycium ruthenicum Murr. revealed by sequence-related amplified polymorphism (SRAP) markers.Biochemical Systematics and Ecology, 45, 86-97. |
[18] | Liu ZL, Zhao GF (1999). Population genetics and its implications for conservation of rare and endangered plants.Chinese Biodiversity, 7, 340-346. (in Chinese with English abstract) |
[刘占林, 赵桂仿 (1999). 居群遗传学原理及其在珍稀濒危植物保护中的应用. 生物多样性, 7, 340-346.] | |
[19] | Lu WJ, Wang ZL, Fan GH (2014). Morphological variation of Lycium ruthenicum under artificial cultivation conditions.Nonwood Forest Research, 32(1), 171-174. (in Chinese with English abstract) |
[卢文晋, 王占林, 樊光辉 (2014). 黑果枸杞在人工栽培条件下的形态变异. 经济林研究, 32(1), 171-174.] | |
[20] | Ma JP, Li JG, Wang X, Chen X, Wang J (2013). Rapid propagation of seedlings and technology of planting of Black Wolfberry.North Horticulture, (9), 185-187. (in Chinese with English abstract) |
[马金平, 李建国, 王孝, 陈曦, 王佳 (2013). 黑果枸杞苗木快速繁育及建园技术. 北方园艺, (9), 185-187.] | |
[21] | Nei M (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals.Genetics, 89, 583-590. |
[22] | Nybom H (2004). Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants.Molecular Ecology, 13, 1143-1155. |
[23] | Qiu YX, Huang AJ, Fu CX (2000). Studies on genetic diversity in Changium smyrnioides Wolff (Umbelliferae).Acta Phytotaxonomica Sinica, 38(2), 111-120. (in Chinese with English abstract) |
[邱英雄, 黄爱军, 傅承新 (2000). 明党参的遗传多样性研究. 植物分类学报, 38(2), 111-120.] | |
[24] | Rohlf FJ (1988). NTSYSpc: Numerical Taxonomy and Multivariate Analysis System. Exeter Software, Setauket, New York. |
[25] | Savage AE, Miller JS (2006). Gametophytic self-incompati- bility in Lycium parishii (Solanaceae): Allelic diversity, genealogical structure, and patterns of molecular evolution at the S-RNase locus.Heredity, 96, 434-444. |
[26] | Shang J, Li S, Zhang KW (2010). Genetic diversity analysis of Lycium barbarum L. by RAPD.Bulletin of Botanical Research, 30, 116-119. (in Chinese with English abstract) |
[尚洁, 李收, 张靠稳 (2010). 宁夏枸杞遗传多样性的RAPD分析. 植物研究, 30, 116-119.] | |
[27] | Song XL (2008). AFLP Identification of 12 Close Genetic Relationships of Cultivars in Capsicum frutescens L. Master degree dissertation, Zhejiang University, Hangzhou. (in Chinese) |
[宋小丽 (2008). 亲缘关系密切的12个辣椒品种的AFLP鉴定. 硕士学位论文, 浙江大学, 杭州.] | |
[28] | Sun K (2011). Study on the extracting technology of pigments from Lycium ruthenicum in Qaidam Basin.Hubei Agricultural Sciences, 50, 2318-2320. (in Chinese with English abstract) |
[孙奎 (2011) 柴达木盆地黑果枸杞色素最佳提取工艺研究. 湖北农业科学, 50, 2318-2320.] | |
[29] | Vos P, Hogers R, Bleeker M, Reijans M, Lee TVD, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995). AFLP: A new technique for DNA fingerprinting.Nucleic Acids Research, 23, 4407-4414. |
[30] | Wang HB, Bai HJ, Wang JL, Chu ZQ, Wang Q (2006). Study on scavenging free radical activity of pigment in Lycium rethenicum Murr.Food Research and Development, 27(11), 8-10. (in Chinese with English abstract) |
[汪河滨, 白红进, 王金磊, 褚志强, 王奇 (2006). 黑果枸杞色素清除自由基活性的研究. 食品研究与开发, 27(11), 8-10.] | |
[31] | Wang JH, Chen XQ, Zhang WJ (2009). Study on hypoglycemic function of polysaccharides from Lycium ruthenicum Murr. fruit and its mechanism.Food Science, 30(5), 244-248. (in Chinese with English abstract) |
[汪建红, 陈晓琴, 张蔚佼 (2009). 黑果枸杞果实多糖降血糖生物功效及其机制研究. 食品科学, 30(5), 244-248.] | |
[32] | Yan YM, Dai GL, Ran LW, Luo Q, Li XY, Qin K, Wu PJ (2014). The polyphenols composition of Lycium ruthenicum Murr. From different places.Scientia Agricultura Sinica, 22, 4540-4550. (in Chinese with English abstract) |
[闫亚美, 戴国礼, 冉林武, 罗青, 李晓莺, 秦垦, 巫鹏举 (2014). 不同产地野生黑果枸杞资源果实多酚组成分析. 中国农业科学, 22, 4540-4550.] | |
[33] | Yang ZJ, Li J, Li SZ, Zhang Y, Ling LH (2008). Effect of different sodium salt stress on the seed germination of Lycium ruthenicum murr.Seed, 27(9), 19-22. (in Chinese with English abstract) |
[杨志江, 李进, 李淑珍, 张尧, 陵林辉 (2008). 不同钠盐胁迫对黑果枸杞种子萌发的影响. 种子, 27(9), 19-22.] | |
[34] | Zhang YC, Zhang JN (2004). Studies on morphological structure characteristics of leaves of Lycium ruthenicum in two salinity environments. Journal of Ningxia University (Natural Science Edition), 25(4), 365-367. (in Chinese with English abstract) |
[章英才, 张晋宁 (2004). 两种盐浓度环境中的黑果枸杞叶的形态结构特征研究. 宁夏大学学报(自然科学版), 25(4), 365-367.] | |
[35] | Zhang YH, Hou Y, Lou AR (2010). Population genetic diversity of Rhodiola dumulosa in Northern China inferred from AFLP makers.Chinese Journal of Plant Ecology, 34, 1084-1094. (in Chinese with English abstract) |
[张云红, 侯艳, 娄安如 (2010). 华北地区小丛红景天种群的AFLP遗传多样性. 植物生态学报, 34, 1084-1094.] | |
[36] | Zhang YJ, Wang YS (2008). Genetic diversity of endangered shrub Reaumuria trigyna population detected by RAPD and ISSR markers.Scientia Silvae Sinicae, 44(12), 43-47. (in Chinese with English abstract) |
[张颖娟, 王玉山 (2008). 濒危小灌木长叶红砂种群的遗传多样性. 林业科学, 44(12), 43-47.] | |
[37] | Zheng J, Ding CX, Wang LS, Li GL, Shi JY, Li H, Wang HL, Suo YR (2011). Anthocyanins composition and antioxidant activity of wild Lycium ruthenicum Murr. from Qinghai-Tibet Plateau.Food Chemistry, 126, 859-865. |
[1] | 哈里布努尔, 古丽扎尔·阿不都克力木, 热依拉穆·麦麦提吐尔逊, 艾沙江·阿不都沙拉木. 黑果枸杞两种花型的花部综合征与传粉特性[J]. 植物生态学报, 2022, 46(9): 1050-1063. |
[2] | 陈天翌, 娄安如. 青藏高原东侧白桦种群的遗传多样性与遗传结构[J]. 植物生态学报, 2022, 46(5): 561-568. |
[3] | 闫涵, 张云玲, 马松梅, 王春成, 张丹. 黑果枸杞在新疆的适宜分布模拟与局部环境适应性分化[J]. 植物生态学报, 2021, 45(11): 1221-1230. |
[4] | 王春成, 马松梅, 张丹, 王绍明. 柴达木野生黑果枸杞的空间遗传结构[J]. 植物生态学报, 2020, 44(6): 661-668. |
[5] | 张新新, 王茜, 胡颖, 周玮, 陈晓阳, 胡新生. 植物边缘种群遗传多样性研究进展[J]. 植物生态学报, 2019, 43(5): 383-395. |
[6] | 张俪文, 韩广轩. 植物遗传多样性与生态系统功能关系的研究进展[J]. 植物生态学报, 2018, 42(10): 977-989. |
[7] | 刘军, 姜景民, 邹军, 徐金良, 沈汉, 刁松峰. 中国特有濒危树种毛红椿核心和边缘居群的遗传多样性[J]. 植物生态学报, 2013, 37(1): 52-60. |
[8] | 张炜, 罗建勋, 辜云杰, 胡庭兴. 西南地区麻疯树天然种群遗传多样性的等位酶变异[J]. 植物生态学报, 2011, 35(3): 330-336. |
[9] | 魏源, 王世杰, 刘秀明, 黄天志. 不同喀斯特小生境中土壤丛枝菌根真菌的遗传多样性[J]. 植物生态学报, 2011, 35(10): 1083-1090. |
[10] | 张云红, 侯艳, 娄安如. 华北地区小丛红景天种群的AFLP遗传多样性[J]. 植物生态学报, 2010, 34(9): 1084-1094. |
[11] | 刘伟, 王曦, 干友民, 黄林凯, 谢文刚, 苗佳敏. 高山嵩草种群在放牧干扰下遗传多样性的变化[J]. 植物生态学报, 2009, 33(5): 966-973. |
[12] | 陈良华, 胡庭兴, 张帆, 李国和. 用AFLP技术分析四川核桃资源的遗传多样性[J]. 植物生态学报, 2008, 32(6): 1362-1372. |
[13] | 周会平, 陈进, 张寿洲. 具混合繁殖策略的草本植物异果舞花姜的居群遗传结构[J]. 植物生态学报, 2008, 32(4): 751-759. |
[14] | 严茂粉, 李向华, 王克晶. 北京地区野生大豆种群SSR标记的遗传多样性评价[J]. 植物生态学报, 2008, 32(4): 938-950. |
[15] | 刘亚令, 李作洲, 姜正旺, 刘义飞, 黄宏文. 中华猕猴桃和美味猕猴桃自然居群遗传结构及其种间杂交渐渗[J]. 植物生态学报, 2008, 32(3): 704-718. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19