植物生态学报 ›› 2009, Vol. 33 ›› Issue (5): 966-973.DOI: 10.3773/j.issn.1005-264x.2009.05.016
所属专题: 生物多样性
收稿日期:
2008-11-27
出版日期:
2009-11-27
发布日期:
2009-09-30
通讯作者:
刘伟
作者简介:
*(lwgrass@126.com)基金资助:
LIU Wei*(), WANG Xi, GAN You-Min, HUANG Lin-Kai, XIE Wen-Gang, MIAO Jia-Min
Received:
2008-11-27
Online:
2009-11-27
Published:
2009-09-30
Contact:
LIU Wei
摘要:
利用SRAP (Sequence-related amplified polymorphism)分子标记, 对放牧干扰下的高山嵩草(Kobresia pygmaea)种群进行了遗传多样性研究, 获得了下述结果: 1) 20对SRAP引物组合共检测出448条清晰条带, 其中376条条带具有多态性, 多态位点百分率为83.93%, 随着放牧强度的增加, 高山嵩草种群多态位点百分数、Nei’s遗传多样性指数、Shannon信息指数均下降。2)高山嵩草种群具有较高的遗传多样性和较低的遗传分化(总的遗传多样性Ht为0.276 6, 种群内遗传多样性Hs为0.243 6, 遗传分化系数Gst为0.119 4, 基于Gst估计的基因流Nm*为1.843 4), 但随着放牧强度的增加, Gst增加, Nm*降低, 说明放牧限制了种群间的基因交流, 使种群发生遗传分化。3)不同放牧梯度的高山嵩草种群间的遗传距离很小, 但是随着放牧强度的增加, 种群间的遗传距离逐渐增加, 遗传一致度降低。根据遗传距离所构建的UPGMA聚类图中高山嵩草4个种群随着牧压的增加, 逐级聚在一起。
刘伟, 王曦, 干友民, 黄林凯, 谢文刚, 苗佳敏. 高山嵩草种群在放牧干扰下遗传多样性的变化. 植物生态学报, 2009, 33(5): 966-973. DOI: 10.3773/j.issn.1005-264x.2009.05.016
LIU Wei, WANG Xi, GAN You-Min, HUANG Lin-Kai, XIE Wen-Gang, MIAO Jia-Min. GENETIC DIVERSITY OF KOBRESIA PYGMAEA POPULATIONS ALONG A GRAZING GRADIENT. Chinese Journal of Plant Ecology, 2009, 33(5): 966-973. DOI: 10.3773/j.issn.1005-264x.2009.05.016
项目 Item | 放牧压力 Grazing pressure | |||
---|---|---|---|---|
对照 CK | 轻度放牧 LG | 中度放牧 MG | 重度放牧 HG | |
群落优势种与主要伴生种 Community dominant species and main companion species | 1、2、3、4 | 1、2、4、5 | 4、1、3、6 | 5、6、1、4 |
多年生牧草种数 No. of perennial species | 15 | 12 | 8 | 5 |
一、二年生植物种数 No. of annual species | 7 | 11 | 13 | 15 |
植被盖度 Vegetation cover (%) | 96 | 83 | 65 | 51 |
植被高度 Vegetation height (cm) | 28 | 18 | 13 | 6 |
7月干草产量 Dry weight of plant community in July (g·m-2) | 368.3 | 213.8 | 135.7 | 64.9 |
表1 不同放牧压力样地植物群落特征
Table 1 Plant community characteristics along different grazing gradients
项目 Item | 放牧压力 Grazing pressure | |||
---|---|---|---|---|
对照 CK | 轻度放牧 LG | 中度放牧 MG | 重度放牧 HG | |
群落优势种与主要伴生种 Community dominant species and main companion species | 1、2、3、4 | 1、2、4、5 | 4、1、3、6 | 5、6、1、4 |
多年生牧草种数 No. of perennial species | 15 | 12 | 8 | 5 |
一、二年生植物种数 No. of annual species | 7 | 11 | 13 | 15 |
植被盖度 Vegetation cover (%) | 96 | 83 | 65 | 51 |
植被高度 Vegetation height (cm) | 28 | 18 | 13 | 6 |
7月干草产量 Dry weight of plant community in July (g·m-2) | 368.3 | 213.8 | 135.7 | 64.9 |
上游引物 Forward primers (5′→3′) | 下游引物 Reverse primers (5′→3′) |
---|---|
me1: TGAGTCCAAACCGGATA me2: TGAGTCCAAACCGGAGC me5: TGAGTCCAAACCGGAAG me6: TGAGTCCAAACCGGTAA me11: TGAGTCCAAACCGGTGT | em1: GACTGCGTACGAATTAAT em2: GACTGCGTACGAATTTGC em3: GACTGCGTACGAATTGAC em4: GACTGCGTACGAATTTGA em5: GACTGCGTACGAATTAAC em7: GACTGCGTACGAATTCAA em8: GACTGCGTACGAATTCTG em12: GACTGCGTACGAATTATG em13: GACTGCGTACGAATTAGC em16: GACTGCGTACGAATTTCG |
表2 高山嵩草种群SRAP分析的引物序列
Table 2 Primer sequences used in SRAP analyses of Kobresia pygmaea populations
上游引物 Forward primers (5′→3′) | 下游引物 Reverse primers (5′→3′) |
---|---|
me1: TGAGTCCAAACCGGATA me2: TGAGTCCAAACCGGAGC me5: TGAGTCCAAACCGGAAG me6: TGAGTCCAAACCGGTAA me11: TGAGTCCAAACCGGTGT | em1: GACTGCGTACGAATTAAT em2: GACTGCGTACGAATTTGC em3: GACTGCGTACGAATTGAC em4: GACTGCGTACGAATTTGA em5: GACTGCGTACGAATTAAC em7: GACTGCGTACGAATTCAA em8: GACTGCGTACGAATTCTG em12: GACTGCGTACGAATTATG em13: GACTGCGTACGAATTAGC em16: GACTGCGTACGAATTTCG |
引物对 Primer pairs bands | 扩增总条带数 Total No. of polymorphic | 多态性条带数 No. of polymorphic bands | 多态性比率 Percentage of polymorphic bands (%) |
---|---|---|---|
me1-em1 me1-em2 me1-em3 me1-em8 me1-em12 me1-em16 me2-em4 me2-em5 me2-em7 me2-em13 me2-em16 me5-em1 me5-em2 me5-em3 me5-em4 me5-em5 me5-em7 me6-em11 me11-em5 me11-em7 | 34 18 24 17 17 25 19 19 17 19 30 25 23 21 26 21 20 27 22 24 | 27 16 22 13 16 23 12 15 15 17 24 24 19 19 21 18 17 24 19 21 | 79.41 88.89 79.16 76.47 94.12 80.00 63.16 78.95 88.24 89.47 80.00 96.00 82.61 90.48 80.77 85.71 85.00 88.89 86.36 87.50 |
总计 Total | 448 | 376 | |
平均值 Average | 22.4 | 18.8 | 83.93 |
表3 20对引物对高山嵩草种群的扩增结果
Table 3 Amplification results of Kobresia pygmaea populations from 20 primer combination
引物对 Primer pairs bands | 扩增总条带数 Total No. of polymorphic | 多态性条带数 No. of polymorphic bands | 多态性比率 Percentage of polymorphic bands (%) |
---|---|---|---|
me1-em1 me1-em2 me1-em3 me1-em8 me1-em12 me1-em16 me2-em4 me2-em5 me2-em7 me2-em13 me2-em16 me5-em1 me5-em2 me5-em3 me5-em4 me5-em5 me5-em7 me6-em11 me11-em5 me11-em7 | 34 18 24 17 17 25 19 19 17 19 30 25 23 21 26 21 20 27 22 24 | 27 16 22 13 16 23 12 15 15 17 24 24 19 19 21 18 17 24 19 21 | 79.41 88.89 79.16 76.47 94.12 80.00 63.16 78.95 88.24 89.47 80.00 96.00 82.61 90.48 80.77 85.71 85.00 88.89 86.36 87.50 |
总计 Total | 448 | 376 | |
平均值 Average | 22.4 | 18.8 | 83.93 |
项目 Item | 样本数 Sample size | 多态位点 Polymorphic loci | 多态位点百分比 Percentage of polymorphic loci | Nei’s遗传多样性 指数H* | Shannon信息 指数I* | |
---|---|---|---|---|---|---|
对照 CK | 平均值 Mean | 25 | 358 | 79.91% | 0.266 9a | 0.405 2a |
标准误差 SD | 0.178 5 | 0.244 8 | ||||
轻度放牧 LG | 平均值 Mean | 25 | 340 | 75.89% | 0.246 7ab | 0.372 3ab |
标准误差 SD | 0.190 7 | 0.265 9 | ||||
中度放牧 MG | 平均值 Mean | 25 | 334 | 74.55% | 0.242 4ab | 0.367 0ab |
标准误差 SD | 0.188 6 | 0.264 1 | ||||
重度放牧 HG | 平均值 Mean | 25 | 324 | 72.32% | 0.218 5b | 0.334 7b |
标准误差 SD | 0.187 1 | 0.263 3 | ||||
物种水平 | 0.276 6 | 0.539 0 | ||||
Species level | 0.141 4 | 0.177 6 |
表4 不同放牧梯度高山嵩草种群多态位点的差异、Nei’s遗传多样性指数和Shannon信息指数
Table 4 Difference of polymorphic loci, Nei’s gene diversity index and Shannon information index of Kobresia pygmaea populations under different grazing intensities
项目 Item | 样本数 Sample size | 多态位点 Polymorphic loci | 多态位点百分比 Percentage of polymorphic loci | Nei’s遗传多样性 指数H* | Shannon信息 指数I* | |
---|---|---|---|---|---|---|
对照 CK | 平均值 Mean | 25 | 358 | 79.91% | 0.266 9a | 0.405 2a |
标准误差 SD | 0.178 5 | 0.244 8 | ||||
轻度放牧 LG | 平均值 Mean | 25 | 340 | 75.89% | 0.246 7ab | 0.372 3ab |
标准误差 SD | 0.190 7 | 0.265 9 | ||||
中度放牧 MG | 平均值 Mean | 25 | 334 | 74.55% | 0.242 4ab | 0.367 0ab |
标准误差 SD | 0.188 6 | 0.264 1 | ||||
重度放牧 HG | 平均值 Mean | 25 | 324 | 72.32% | 0.218 5b | 0.334 7b |
标准误差 SD | 0.187 1 | 0.263 3 | ||||
物种水平 | 0.276 6 | 0.539 0 | ||||
Species level | 0.141 4 | 0.177 6 |
项目 Item | 对照 CK | 轻度放牧 LG | 中度放牧 MG | 重度放牧 HG |
---|---|---|---|---|
对照 CK | ||||
轻度放牧 LG | 0.043 9 | |||
中度放牧 MG | 0.049 4 | 0.134 8 | ||
重度放牧 HG | 0.144 6 | 0.132 3 | 0.116 1 |
表5 不同放牧梯度高山嵩草种群间遗传分化系数(Gst)
Table 5 Genetic differentiation coefficient among Kobresia pygmaea populations under different grazing intensities
项目 Item | 对照 CK | 轻度放牧 LG | 中度放牧 MG | 重度放牧 HG |
---|---|---|---|---|
对照 CK | ||||
轻度放牧 LG | 0.043 9 | |||
中度放牧 MG | 0.049 4 | 0.134 8 | ||
重度放牧 HG | 0.144 6 | 0.132 3 | 0.116 1 |
项目 Item | 对照 CK | 轻度放牧 LG | 中度放牧 MG | 重度放牧 HG |
---|---|---|---|---|
对照 CK | ||||
轻度放牧 LG | 5.436 9 | |||
中度放牧 MG | 3.798 3 | 1.604 8 | ||
重度放牧 HG | 1.477 8 | 1.638 8 | 1.903 8 |
表6 不同放牧梯度高山嵩草种群间基因流(Nm*)的变化
Table 6 Genetic flow (Nm*) among Kobresia pygmaea populations under different grazing intensities
项目 Item | 对照 CK | 轻度放牧 LG | 中度放牧 MG | 重度放牧 HG |
---|---|---|---|---|
对照 CK | ||||
轻度放牧 LG | 5.436 9 | |||
中度放牧 MG | 3.798 3 | 1.604 8 | ||
重度放牧 HG | 1.477 8 | 1.638 8 | 1.903 8 |
项目 Item | 对照 CK | 轻度放牧 LG | 中度放牧 MG | 重度放牧 HG |
---|---|---|---|---|
对照 CK | 0.976 7 | 0.961 9 | 0.948 9 | |
轻度放牧 LG | 0.023 6 | 0.961 8 | 0.948 1 | |
中度放牧 MG | 0.032 9 | 0.031 1 | 0.947 5 | |
重度放牧 HG | 0.051 3 | 0.052 0 | 0.052 7 |
表7 不同放牧梯度高山嵩草种群遗传距离和遗传一致度
Table 7 Nei’s genetic distance and genetic identity of Kobresia pygmaea populations under different grazing intensities
项目 Item | 对照 CK | 轻度放牧 LG | 中度放牧 MG | 重度放牧 HG |
---|---|---|---|---|
对照 CK | 0.976 7 | 0.961 9 | 0.948 9 | |
轻度放牧 LG | 0.023 6 | 0.961 8 | 0.948 1 | |
中度放牧 MG | 0.032 9 | 0.031 1 | 0.947 5 | |
重度放牧 HG | 0.051 3 | 0.052 0 | 0.052 7 |
图1 不同放牧梯度高山嵩草种群基于Nei’s遗传一致度的UPGMA聚类 CK、LG、MG、HG: 同表1 See Table 1
Fig. 1 UPGMA dendrogram based on Nei’ s genetic identity of Kobresia pygmaea populations under different grazing intensities
[1] | Deng ZF (邓自发), Xie XL (谢晓玲), Zhou XM (周兴民), Wang QJ (王启基) (2002). Study on reproductive ecology of Kobresia pygmaea population in alpine meadow. Acta Botanica Boreali-occidentalia Sinica (西北植物学报), 22, 344-349. (in Chinese with English abstract) |
[2] | Han B (韩彬), Fan JW (樊江文), Zhong HP (钟华平) (2006). Grassland biomass of communities along gradients of the Inner Mongolia grassland transects. Journal of Plant Ecology (Chinese Version) (植物生态学报), 30, 553-562. (in Chinese with English abstract) |
[3] | Hu ZA (胡志昂), Wang HX (王洪新) (1998). Advances in molecular ecology. Acta Ecologica Sinica (生态学报), 18, 565-574. (in Chinese with English abstract) |
[4] | Li B (李博) (1997). Current condition, problem and countermeasure of sustainable utilization of grassland resource in China. Bulletin of Chinese Academy of Sciences (中国科学院院刊), 1, 49-50. (in Chinese) |
[5] |
Li G, Quiros CF (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics, 103, 455-461.
DOI URL |
[6] | Li JH (李金花), Li ZQ (李镇清), Ren JZ (任继周) (2002). Response of plant and plant community to different stocking rates. Acta Prataculturae Sinica (草业学报), 11, 4-11. (in Chinese with English abstract) |
[7] | Ma YS (马玉寿), Lang BN (郎百宁), Li QY (李青云), Shi JJ (施建军), Dong QM (董全民) (2003). Effect of fertilizing nitrogen rate and time on Kobresia pygmaea meadow grassland. Pratacultural Science (草业科学), 20, 47-50. (in Chinese with English abstract) |
[8] |
Nei M (1972). Genetic distance between populations. American Naturalist, 106, 283-292.
DOI URL |
[9] | Pearson LC (1995). The Diversity and Evolution of Plants. CRC/Taylor& Francis Press, New York, 450. |
[10] |
Rowe G, Beebee JJC, Burke T (1998). Phylogeography of the natterjack toad Bufocalamita in Britain: genetic differentiation of native and translocated populations. Molecular Ecology, 7, 1371-1381.
DOI URL |
[11] |
Shan D (珊丹), Zhao ML (赵萌莉), Han B (韩冰), Han GD (韩国栋) (2006). Genetic diversity of Stipa grandis under different grazing pressures. Acta Ecologica Sinica (生态学报), 26, 3175-3183. (in Chinese with English abstract)
DOI URL |
[12] |
Slatkin M (1985). Gene flow in natural populations. Annual Review of Ecology and Systematics, 16, 393-430.
DOI URL |
[13] |
Soane ID, Watkinson AR (1979). Clonal variation in population of Ranunculus repens. New Phytologist, 82, 557-573.
DOI URL |
[14] | Wang J (王静), Yang C (杨持), Yin J (尹俊), Wang TJ (王铁娟), Liu PT (刘朋涛) (2004). Changes of the genetic diversity of Aremisia frigid population under the disturbance of grazing. Acta Ecologica Sinica (生态学报), 24, 2465-2471. (in Chinese with English abstract) |
[15] | Wang WY (王文颖), Wang QJ (王启基), Jing ZC (景增春), Li SX (李世雄), Shi HL (史惠兰) (2006). Effects of vegetation cover change of alpine Kobresia meadow on plant community structure and diversity in source region of the Yangtze and Yellow River. Resource Science (资源科学), 28, 118-124. (in Chinese with English abstract) |
[16] | Wang YJ (王亚军), Wei XH (魏兴琥), Yang P (杨萍) (2005). Effects of overgrazing on vegetation degradation of Kobresia pygmaea meadow in Naqu, Tibet. Journal of Lanzhou University (Natural Science Edition) (兰州大学学报(自然科学版)), 41, 32-38. (in Chinese with English abstract) |
[17] | Wei XH (魏兴琥), Yang P (杨萍), Xie ZK (谢忠奎), Wang YJ (王亚军) (2003). Distribution and utilization of Kobresia pygmaea type pastures in Naqu prefecture of Tibet. Acta Agrestia Sinica (草地学报), 11, 67-74. (in Chinese with English abstract) |
[18] | Zhang FM (张富明), Ge S (葛颂) (2002). Data analysis in population genetics. I. Analysis of RAPD data with AMOVA. Biodiversity Science (生物多样性), 10, 438-444. (in Chinese with English abstract) |
[19] | Zhang J (张静), Li XL (李希来), Yang YW (杨元武), Niu ZYJ (牛周羊杰) (2003). The breeding characteristics of different degenerate Kobrecia parva alpine meadows. Heilongjiang Journal of Animal Science and Veterinary Medicine (黑龙江畜牧兽医), 6, 48. (in Chinese with English abstract) |
[20] |
Zhao ML, Willms WD, Han B, Laroche A (2005). Effects of heavy grazing pressure on the random amplified polymorphic DNA marker diversity of mountain rough fescue (Festuca campestris Rybd.)in south western Alberta. Canadian Journal of Plant Science, 85, 623-629.
DOI URL |
[21] | Zhou XM (周兴民) (2001). Kobresia meadow of China (中国嵩草草甸). Science Press, Beijing, 112, 128. (in Chinese) |
[22] | Zou YP (邹喻苹), Ge S (葛颂), Wang XD (王晓东) (2001). Molecular Markers in Systematic and Evolutionary Botany (系统与进化植物学中的分子标记). Science Press,Beijing, 140-149. (in Chinese) |
[1] | 陈天翌, 娄安如. 青藏高原东侧白桦种群的遗传多样性与遗传结构[J]. 植物生态学报, 2022, 46(5): 561-568. |
[2] | 张新新, 王茜, 胡颖, 周玮, 陈晓阳, 胡新生. 植物边缘种群遗传多样性研究进展[J]. 植物生态学报, 2019, 43(5): 383-395. |
[3] | 张俪文, 韩广轩. 植物遗传多样性与生态系统功能关系的研究进展[J]. 植物生态学报, 2018, 42(10): 977-989. |
[4] | 王锦楠, 陈进福, 陈武生, 周新洋, 许东, 李际红, 亓晓. 柴达木地区野生黑果枸杞种群遗传多样性的AFLP分析[J]. 植物生态学报, 2015, 39(10): 1003-1011. |
[5] | 刘军, 姜景民, 邹军, 徐金良, 沈汉, 刁松峰. 中国特有濒危树种毛红椿核心和边缘居群的遗传多样性[J]. 植物生态学报, 2013, 37(1): 52-60. |
[6] | 张炜, 罗建勋, 辜云杰, 胡庭兴. 西南地区麻疯树天然种群遗传多样性的等位酶变异[J]. 植物生态学报, 2011, 35(3): 330-336. |
[7] | 魏源, 王世杰, 刘秀明, 黄天志. 不同喀斯特小生境中土壤丛枝菌根真菌的遗传多样性[J]. 植物生态学报, 2011, 35(10): 1083-1090. |
[8] | 张云红, 侯艳, 娄安如. 华北地区小丛红景天种群的AFLP遗传多样性[J]. 植物生态学报, 2010, 34(9): 1084-1094. |
[9] | 陈良华, 胡庭兴, 张帆, 李国和. 用AFLP技术分析四川核桃资源的遗传多样性[J]. 植物生态学报, 2008, 32(6): 1362-1372. |
[10] | 周会平, 陈进, 张寿洲. 具混合繁殖策略的草本植物异果舞花姜的居群遗传结构[J]. 植物生态学报, 2008, 32(4): 751-759. |
[11] | 严茂粉, 李向华, 王克晶. 北京地区野生大豆种群SSR标记的遗传多样性评价[J]. 植物生态学报, 2008, 32(4): 938-950. |
[12] | 刘亚令, 李作洲, 姜正旺, 刘义飞, 黄宏文. 中华猕猴桃和美味猕猴桃自然居群遗传结构及其种间杂交渐渗[J]. 植物生态学报, 2008, 32(3): 704-718. |
[13] | 魏宇昆, 高玉葆. 禾草内生真菌的遗传多样性及其共生关系[J]. 植物生态学报, 2008, 32(2): 512-520. |
[14] | 杨明博, 杨劼, 杨九艳, 梁娜, 清华. 鄂尔多斯高原不同生境条件下中间锦鸡儿植物叶片表皮特征及遗传多样性变化分析[J]. 植物生态学报, 2007, 31(6): 1181-1189. |
[15] | 穆立蔷, 刘赢男. 不同地理分布区紫椴种群的遗传多样性变化[J]. 植物生态学报, 2007, 31(6): 1190-1198. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19