植物生态学报 ›› 2011, Vol. 35 ›› Issue (10): 1083-1090.DOI: 10.3724/SP.J.1258.2011.01083
所属专题: 生物多样性
• 研究论文 • 上一篇
魏源1,2,*(), 王世杰1,**(
), 刘秀明1, 黄天志1,2
收稿日期:
2011-05-10
接受日期:
2011-06-28
出版日期:
2011-05-10
发布日期:
2011-11-07
通讯作者:
王世杰
作者简介:
** (E-mail: wangshijie@vip.skleg.cn)* E-mail: rbq-wy@163.com
WEI Yuan1,2,*(), WANG Shi-Jie1,**(
), LIU Xiu-Ming1, HUANG Tian-Zhi1,2
Received:
2011-05-10
Accepted:
2011-06-28
Online:
2011-05-10
Published:
2011-11-07
Contact:
WANG Shi-Jie
摘要:
为探明西南喀斯特地区小生境土壤中丛枝菌根真菌(AMF)的遗传多样性特征, 利用巢式PCR和变性梯度凝胶电泳相结合的分子生物学方法, 对茂兰3种植被类型下的小生境(石缝、石沟、土面) AMF遗传多样性进行了研究。结果发现: 各类小生境都含有丰富的AMF遗传多样性, 灌木林土面的多样性指数和物种丰富度最高, 为4.06和68; 次生林石缝的最低, 为3.16和29, 所研究的9个小生境多样性指数和物种丰富度的平均值分别高达3.67和48, 高于同类研究在其他地区的结果, 这可能主要与喀斯特生态系统复杂的结构和较高的植物多样性有关; 聚类分析显示各类小生境间的AMF群落结构差异显著, 相似性指数最高仅为0.45, 说明小生境所带来的空间异质性对AMF的遗传多样性产生了显著影响; 基因测序显示球囊霉属(Glomus)极有可能是喀斯特地区AMF的优势菌属, 在以后筛选喀斯特地区的高效生态恢复菌种时可重点考虑球囊霉属的一些菌种。
魏源, 王世杰, 刘秀明, 黄天志. 不同喀斯特小生境中土壤丛枝菌根真菌的遗传多样性. 植物生态学报, 2011, 35(10): 1083-1090. DOI: 10.3724/SP.J.1258.2011.01083
WEI Yuan, WANG Shi-Jie, LIU Xiu-Ming, HUANG Tian-Zhi. Genetic diversity of arbuscular mycorrhizal fungi in karst microhabitats of Guizhou Province, China. Chinese Journal of Plant Ecology, 2011, 35(10): 1083-1090. DOI: 10.3724/SP.J.1258.2011.01083
引物 Primer | 序列 Sequence | 长度 Length | 来源 Sources |
---|---|---|---|
GeoA2 | 5′-CCAGTAGTCATATGCTTGTCTC-3′ | 1.80 kb | |
Geo11 | 5′-ACCTTGTTACGACTTTTACTTCC-3′ | ||
AM1 | 5′-GTTTCCCGTAAGGCGCCGAA-3′ | 0.55 kb | |
NS31-GC | 5′-TTGGAGGGCAAGTCTGGTGCC-3′ | ||
Glol | 5′-GCCTGCTTTAAACACTCTA-3′ | 0.23 kb |
表1 Nested-PCR引物
Table 1 Primers of Nested-PCR
引物 Primer | 序列 Sequence | 长度 Length | 来源 Sources |
---|---|---|---|
GeoA2 | 5′-CCAGTAGTCATATGCTTGTCTC-3′ | 1.80 kb | |
Geo11 | 5′-ACCTTGTTACGACTTTTACTTCC-3′ | ||
AM1 | 5′-GTTTCCCGTAAGGCGCCGAA-3′ | 0.55 kb | |
NS31-GC | 5′-TTGGAGGGCAAGTCTGGTGCC-3′ | ||
Glol | 5′-GCCTGCTTTAAACACTCTA-3′ | 0.23 kb |
图1 不同样品丛枝菌根真菌的DGGE图谱以及泳道比较图。百分数(%)是其余泳道与第7泳道结构的相似百分比。1, 次生林石缝; 2, 次生林石沟; 3, 次生林土面; 4, 灌木林石缝; 5, 灌木林石沟; 6, 灌木林土面; 7, 原生林石缝; 8, 原生林石沟; 9, 原生林土面。
Fig. 1 DGGE profile of amplified AMF fragments from different samples and lane compare. % is the structure similarity of other lanes with 7 lane. 1, secondary forest rocky crevice; 2, secondary forest rocky gully; 3, secondary forest soil surface; 4, shrubbery rocky crevice; 5, shrubbery rocky gully; 6, shrubbery soil surface; 7, original forest rocky crevice; 8, original forest rocky gully; 9, original forest soil surface.
图2 非加权组平均法(unweighted pair-group method with arithmetic means)分析。1, 次生林石缝; 2, 次生林石沟; 3, 次生林土面; 4, 灌木林石缝; 5, 灌木林石沟; 6, 灌木林土面; 7, 原生林石缝; 8, 原生林石沟; 9, 原生林土面。
Fig. 2 DGGE cluster analysis (unweighted pair-group method with arithmetic means, UPGMA) of 18S rDNA AMF communities in soil samples. 1, secondary forest rocky crevice; 2, secondary forest rocky gully; 3, secondary forest Soil surface; 4, shrubbery rocky crevice; 5, shrubbery rocky gully; 6, shrubbery soil surface; 7, original forest rocky crevice; 8, original forest rocky gully; 9, original forest soil surface.
样品 Sample | Shannon多样性指数 Shannon’s diversity index | 丰富度 Richness | 均匀度 Evenness |
---|---|---|---|
原生林石缝 Original forest rocky crevice | 3.89 | 57 | 0.96 |
原生林石沟 Original forest rocky gully | 3.74 | 48 | 0.97 |
原生林土面 Original forest soil surface | 3.33 | 36 | 0.93 |
次生林石缝 Secondary forest rocky crevice | 3.16 | 29 | 0.94 |
次生林石沟 Secondary forest rocky gully | 3.65 | 48 | 0.94 |
次生林土面 Secondary forest soil surface | 3.71 | 50 | 0.95 |
灌木林石缝 Shrubbery rocky crevice | 3.68 | 50 | 0.94 |
灌木林石沟 Shrubbery rocky gully | 3.77 | 48 | 0.97 |
灌木林土面 Shrubbery soil surface | 4.06 | 68 | 0.96 |
表2 不同样品的丛枝菌根真菌多样性指数、丰富度及均匀度
Table 2 AMF Shannon index, richness and evenness of each sample
样品 Sample | Shannon多样性指数 Shannon’s diversity index | 丰富度 Richness | 均匀度 Evenness |
---|---|---|---|
原生林石缝 Original forest rocky crevice | 3.89 | 57 | 0.96 |
原生林石沟 Original forest rocky gully | 3.74 | 48 | 0.97 |
原生林土面 Original forest soil surface | 3.33 | 36 | 0.93 |
次生林石缝 Secondary forest rocky crevice | 3.16 | 29 | 0.94 |
次生林石沟 Secondary forest rocky gully | 3.65 | 48 | 0.94 |
次生林土面 Secondary forest soil surface | 3.71 | 50 | 0.95 |
灌木林石缝 Shrubbery rocky crevice | 3.68 | 50 | 0.94 |
灌木林石沟 Shrubbery rocky gully | 3.77 | 48 | 0.97 |
灌木林土面 Shrubbery soil surface | 4.06 | 68 | 0.96 |
条带来源(GenBank登录号) Band source (GenBank accession number) | 最近相似种属 Closest genera | 相似性 Similarity |
---|---|---|
原生林石缝 Original forest rocky crevice (JN153048) | 用DGGE方法分离的属于未培养的球囊霉属的18S RNA菌种 Uncultured Glomus isolate DGGE gel band 22-1 18S ribosomal RNA gene (HQ874638) | 88% |
原生林石沟 Original forest rocky gully (JN153041) | 用DGGE方法分离的属于未培养的球囊霉属的18S RNA菌种 Uncultured Glomus isolate DGGE gel band 11-2 18S ribosomal RNA gene (HQ874635) | 86% |
原生林土面 Original forest soil surface (JN153042) | 用克隆方法分离的属于未培养的球囊霉属的18S RNA菌种 Uncultured Glomus clone OEF89 18S ribosomal RNA gene (EU340303) | 99% |
次生林石缝 Secondary forest rocky crevice (JN153043) | 用DGGE方法分离的属于未培养的球囊霉属的18S RNA菌种 Uncultured Glomus isolate DGGE gel band 22-2 18S ribosomal RNA gene (HQ874639) | 95% |
次生林石沟 Secondary forest rocky gully (JN153044) | 用克隆方法分离的属于未培养的球囊霉属的18S RNA菌种 Uncultured Glomus clone Ap7 18S ribosomal RNA gene (EU350053) | 95% |
次生林土面 Secondary forest soil surface (JN153040) | 用克隆方法分离的属于未培养的球囊霉属的18S RNA菌种 Uncultured Glomus clone FEA6HBX02GK5NA 18S ribosomal RNA gene (GU198582) | 93% |
灌木林石缝 Shrubbery rocky crevice (JN153045) | 未培养的球囊霉属的18S RNA菌种 Uncultured Glomus gene for 18S ribosomal RNA (AB556933) | 97% |
灌木林石沟 Shrubbery rocky gully (JN153046) | 未培养的球囊霉属的18S RNA菌种, Uncultured Glomus partial 18S rRNA gene (AJ563889) | 96% |
灌木林土面 Shrubbery soil surface (JN153047) | 用DGGE方法分离的属于未培养的球囊霉属的18S RNA菌种 Uncultured Glomus isolate DGGE gel band 22-2 18S ribosomal RNA gene (HQ874639) | 91% |
表3 DGGE切胶条带序列比对结果
Table 3 Alignment of DGGE sequenced clone to its most-similar GenBank sequence
条带来源(GenBank登录号) Band source (GenBank accession number) | 最近相似种属 Closest genera | 相似性 Similarity |
---|---|---|
原生林石缝 Original forest rocky crevice (JN153048) | 用DGGE方法分离的属于未培养的球囊霉属的18S RNA菌种 Uncultured Glomus isolate DGGE gel band 22-1 18S ribosomal RNA gene (HQ874638) | 88% |
原生林石沟 Original forest rocky gully (JN153041) | 用DGGE方法分离的属于未培养的球囊霉属的18S RNA菌种 Uncultured Glomus isolate DGGE gel band 11-2 18S ribosomal RNA gene (HQ874635) | 86% |
原生林土面 Original forest soil surface (JN153042) | 用克隆方法分离的属于未培养的球囊霉属的18S RNA菌种 Uncultured Glomus clone OEF89 18S ribosomal RNA gene (EU340303) | 99% |
次生林石缝 Secondary forest rocky crevice (JN153043) | 用DGGE方法分离的属于未培养的球囊霉属的18S RNA菌种 Uncultured Glomus isolate DGGE gel band 22-2 18S ribosomal RNA gene (HQ874639) | 95% |
次生林石沟 Secondary forest rocky gully (JN153044) | 用克隆方法分离的属于未培养的球囊霉属的18S RNA菌种 Uncultured Glomus clone Ap7 18S ribosomal RNA gene (EU350053) | 95% |
次生林土面 Secondary forest soil surface (JN153040) | 用克隆方法分离的属于未培养的球囊霉属的18S RNA菌种 Uncultured Glomus clone FEA6HBX02GK5NA 18S ribosomal RNA gene (GU198582) | 93% |
灌木林石缝 Shrubbery rocky crevice (JN153045) | 未培养的球囊霉属的18S RNA菌种 Uncultured Glomus gene for 18S ribosomal RNA (AB556933) | 97% |
灌木林石沟 Shrubbery rocky gully (JN153046) | 未培养的球囊霉属的18S RNA菌种, Uncultured Glomus partial 18S rRNA gene (AJ563889) | 96% |
灌木林土面 Shrubbery soil surface (JN153047) | 用DGGE方法分离的属于未培养的球囊霉属的18S RNA菌种 Uncultured Glomus isolate DGGE gel band 22-2 18S ribosomal RNA gene (HQ874639) | 91% |
[1] | Comejo P, Azcón-Aguilar C, Barea JM, Ferrel N (2004). Temporal temperature gradient gel electrophoresis (TTGE) as a tool for the characterization of arbuscular mycorrhizal fungi. FEMS Microbiology Letters, 241, 265-270. |
[2] | Fang H (房辉), Damodaran PN, Cao M (曹敏) (2006). Arbuscular mycorrhizal status of Glomus plants in tropical secondary forest of Xishuangbanna, southwest China. Acta Ecologica Sinica (生态学报), 26, 4179-4185. (in Chinese with English abstract) |
[3] | Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998). Ploughing up the wood-wide web? Nature, 394, 431. |
[4] | Kernaghan G (2005). Mycorrhizal diversity: cause and effect? Pedobiologia, 49, 511-520. |
[5] | Li Y (李岩), Jiao H (焦惠), Xu LJ (徐丽娟), Zhao HH (赵洪海), Liu RJ (刘润进) (2010). Advances in the study of community structure and function of arbuscular mycor- rhizl fungi. Acta Ecologica Sinica (生态学报), 30, 1089-1096. (in Chinese with English abstract) |
[6] | Li YB (李阳兵), Wang SJ (王世杰), Wei CF (魏朝富), Long J (龙健) (2006). An analysis on the frangibility of karst ecosystem. Tropical Geography (热带地理), 26, 303-307. (in Chinese with English abstract) |
[7] | Liu F (刘方), Wang SJ (王世杰), Luo HB (罗海波), Liu YS (刘元生), Liu HY (刘鸿雁) (2008). Micro-habitats in karst forest ecosystem and variability of soils. Acta Ped- ologica Sinica (土壤学报), 45, 1055-1062. (in Chinese with English abstract) |
[8] | Long LK (龙良鲲), Yang SZ (羊宋贞), Yao Q (姚青), Zhu HH (朱红惠) (2005). DNA extraction from arbuscular mycorrhizal fungi and analysis by PCR-denaturing gradient gel electrophoresis. Mycosystema (菌物学报), 24, 564-569. (in Chinese with English abstract) |
[9] | Luo HF, Qi HY, Zhang HX (2004). Assessment of the bacterial diversity in fenvalerate-treated soil. World Journal of Microbiology & Biotechnology, 20, 509-515. |
[10] | Peng SL (彭思利), Shen H (申鸿), Guo T (郭涛) (2010). Influence of mycorrhizal inoculation on water stable aggregates traits. Plant Nutrition and Fertilizer Science (植物营养与肥料学报), 16, 695-700. (in Chinese with English abstract) |
[11] | Renker C, Weißhuhn K, Kellner H, Buscot F (2006). Rationalizing molecular analysis of field-collected roots for assessing diversity of arbuscular mycorrhizal fungi: to pool, or not to pool, that is the question. Mycorrhiza, 16, 525-531. |
[12] | Schwarzott D, Schüβler A (2001). A simple and reliable method for SSU rRNA gene DNA extraction, amplification and cloning from single AM fungal spores. Mycorrhiza, 10, 203-207. |
[13] |
Simon L, Lalonde M, Bruns TD (1992). Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Applied and Environmental Microbiology, 58, 291-295.
URL PMID |
[14] | Smith SE, Read DJ (1997). Mycorrhizal Symbiosis. Academic Press, London. 1-20. |
[15] | Sykorová Z, Wiemken A, Redecker D (2007). Cooccurring Gentiana verna and Gentiana acaulis and their neighboring plants in two Swiss supper montane meadows harbor distinct arbuscular mycorrhizal fungal communities. Applied and Environmental Microbiology, 73, 5426-5434. |
[16] | Tu YL (屠玉麟) (1989). Preliminary study on karst forests in Guizhou. Carsologica Sinica (中国岩溶), 8, 282-290. (in Chinese with English abstract) |
[17] | Wang L (王立), Jia WQ (贾文奇), Ma F (马放), Li SY (李世阳), Zhang SJ (张淑娟) (2010). Perspective of mycorrhizal technology application for environmental remediation. Ecology and Environment (生态环境学报), 19, 487-493. (in Chinese with English abstract) |
[18] | Wang SJ (王世杰), Lu HM (卢红梅), Zhou YC (周运超), Xie LP (谢丽萍), Xiao DA (肖德安) (2007). Spatial variability of soil organic carbon and representative soil sampling method in maolan karst virgin forest. Acta Pedologica Sinica (土壤学报), 44, 475-483. (in Chinese with English abstract) |
[19] | Yang RY (杨如意), Chen X (陈欣), Tang JJ (唐建军), Chen J (陈静), Jiang QQ (蒋琦清), Hu SJ (2005). Methods employed in species diversity determination of arbuscular mycorrhizal fungi (AMF) colonized in terrestrial ecosystem. Bulletin of Science and Technology (科技通报), 21, 668-673. (in Chinese with English abstract) |
[20] | Zhang MQ (张美庆), Wang YS (王幼珊), Xing LJ (邢礼军) (1998). The ecological distribution of AM fungi community in south and east coast of China. Mycosystema (菌物系统), 17, 274-277. (in Chinese with English abstract) |
[21] | Zhang MQ (张美庆), Wang YS (王幼珊), Xing LJ (邢礼军) (1999). The relationship between the distribution of AM fungi and environmental factors. Mycosystema (菌物系统), 18, 25-29. (in Chinese with English abstract) |
[22] | Zhang Y (张英), Guo LD (郭良栋), Liu RJ (刘润进) (2003). Diversity and ecology of arbuscular mycorrhizal fungi in Dujiangyan. Acta Phytoecologica Sinica (植物生态学报), 27, 537-544. (in Chinese with English abstract) |
[23] | Zhou YY (周游游), Li SS (黎树式), Huang TF (黄天放) (2003). Features of karst forest ecosystem in China and its conservation in utilization―a case study on Maolan, Mulun, Nonggang typical karst forests in Southwest China. Journal of Guangxi Teachers College (Natural Science Edition) (广西师范学院学报(自然科学版)), 20(3), 67-72. (in Chinese with English abstract) |
[24] | Zhou ZX (周政贤) (1987). Scientific Investigation Report of Maolan Karst Forest (茂兰喀斯特森林科学考察集). Guizhou People’s Press, Guiyang. 1-23. (in Chinese) |
[25] | Zhu SQ (朱守谦) (2003). Ecological Research on Karst Forest (III) (喀斯特森林生态研究(III)). Guizhou Science and Technology Press, Guiyang. 52-62. (in Chinese) |
[1] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[2] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[3] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[4] | 冉松松, 余再鹏, 万晓华, 傅彦榕, 邹秉章, 王思荣, 黄志群. 邻域树种多样性对杉木叶片氮磷生态化学计量比的影响[J]. 植物生态学报, 2023, 47(7): 932-942. |
[5] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[6] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[7] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[8] | 钟姣, 姜超, 刘世荣, 龙文兴, 孙建新. 海南长臂猿食源植物的潜在物种丰富度分布格局[J]. 植物生态学报, 2023, 47(4): 491-505. |
[9] | 万春燕, 余俊瑞, 朱师丹. 喀斯特与非喀斯特森林乔木叶性状及其相关性网络的差异[J]. 植物生态学报, 2023, 47(10): 1386-1397. |
[10] | 孙彩丽, 仇模升, 黄朝相, 王艺伟. 黔西南石漠化过程中土壤胞外酶活性及其化学计量变化特征[J]. 植物生态学报, 2022, 46(7): 834-845. |
[11] | 陈天翌, 娄安如. 青藏高原东侧白桦种群的遗传多样性与遗传结构[J]. 植物生态学报, 2022, 46(5): 561-568. |
[12] | 谢伟, 郝志鹏, 张莘, 陈保冬. 丛枝菌根网络介导的植物间信号交流研究进展及展望[J]. 植物生态学报, 2022, 46(5): 493-515. |
[13] | 孟庆静, 樊卫国. 刺梨的适钙类型及对高钙生境的适应性[J]. 植物生态学报, 2022, 46(12): 1562-1572. |
[14] | 黄侩侩, 胡刚, 庞庆玲, 张贝, 何业涌, 胡聪, 徐超昊, 张忠华. 放牧对中国亚热带喀斯特山地灌草丛物种组成与群落结构的影响[J]. 植物生态学报, 2022, 46(11): 1350-1363. |
[15] | 崔光帅, 罗天祥, 梁尔源, 张林. 干旱半干旱区灌丛对草本植物的促进作用研究进展[J]. 植物生态学报, 2022, 46(11): 1321-1333. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19