植物生态学报 ›› 2008, Vol. 32 ›› Issue (4): 751-759.DOI: 10.3773/j.issn.1005-264x.2008.04.003
收稿日期:
2006-09-20
接受日期:
2007-08-11
出版日期:
2008-09-20
发布日期:
2008-07-30
通讯作者:
陈进
作者简介:
*E-mail:cj@xtbg.org.cn
ZHOU Hui-Ping1,3, CHEN Jin1,*(), ZHANG Shou-Zhou2
Received:
2006-09-20
Accepted:
2007-08-11
Online:
2008-09-20
Published:
2008-07-30
Contact:
CHEN Jin
Supported by:
摘要:
居群遗传结构的形成受到各种因素的影响。其中, 繁殖方式可能对居群内遗传变异有极其重要的意义, 而距离隔离也是居群间变异产生的主要原因之一。异果舞花姜(Globba racemosa)具有混合繁殖策略(以种子进行有性繁殖和以珠芽进行无性克隆繁殖)。调查分布于云南的7个异果舞花姜居群间有性与无性克隆繁殖的差异。采用ISSR标记研究各个居群的遗传多样性与克隆多样性, 探讨繁殖方式和距离隔离对居群遗传结构的影响。调查结果表明, 异果舞花姜各个居群存在一定的繁殖差异。ISSR结果显示, 该种在种水平上呈现较高水平的遗传变异(PPB=71.19%), 大部分的变异来自于居群间(GST = 0.590 7)。同时, 异果舞花姜具有较高水平克隆多样性(G/N = 0.88)。遗传多样性和克隆多样性与繁殖水平的变异间相关性不明显, 说明繁殖方式不是居群遗传结构形成的必要和决定性的因素。居群间的地理距离与遗传距离显著相关(r = 0.68, p < 0.05), 表明距离隔离是居群间遗传变异形成的重要原因。其它因素(如少量新有性个体的补充、细胞突变、奠基效应等)也对异果舞花姜居群遗传结构的形成和维持起到了重要作用。
周会平, 陈进, 张寿洲. 具混合繁殖策略的草本植物异果舞花姜的居群遗传结构. 植物生态学报, 2008, 32(4): 751-759. DOI: 10.3773/j.issn.1005-264x.2008.04.003
ZHOU Hui-Ping, CHEN Jin, ZHANG Shou-Zhou. GENETIC AND CLONAL DIVERSITY OF GLOBBA RACEMOSA, A HERB WITH A MIXED REPRODUCTIVE MODE. Chinese Journal of Plant Ecology, 2008, 32(4): 751-759. DOI: 10.3773/j.issn.1005-264x.2008.04.003
Pop1 | Pop2 | Pop3 | Pop4 | Pop5 | Pop6 | Pop7 | |
---|---|---|---|---|---|---|---|
Latitude/longitude | 21o53′ N/ 100o58′ E | 22o53′ N/ 99o48′ E | 24o04′ N/ 97o48′ E | 24o05′ N/ 99o44′ E | 24o25′ N/ 97o50′ E | 24o35′ N/ 97o40′ E | 24o56′ N/ 102o29′ E |
Habitat size (100 m2) | 5-10 | 5-10 | 10-20 | 5-10 | 10-20 | 10-20 | 10-20 |
Altitude (m) | 1 350 | 1 700 | 1 136 | 1 873 | 1 456 | 1 352 | 2 100 |
Soil water supply | Rich | Rich | Rich | Poor | Very rich | Poor | Very poor |
Degree of disturbance | Slight | Slight | Undisturbed | Intense | Undisturbed | Intense | Slight |
No. of fruits per plant (Mean ± 1 SE, n = 30) | 1.65 ± 0.37 | 6.53 ± 0.62 | 0 | 0.80 ± 0.228 | 19.10 ± 1.58 | 0 | 0.20 ± 0.12 |
No. of bulbils per plant (Mean ± 1 SE, n = 30) | 20. 12 ± 0.88 | 24. 67 ± 1.88 | 30.00 ± 1.90 | 24.27 ± 1.79 | 28.63 ± 0.77 | 18.83 ± 1.28 | 24.43 ± 1.30 |
Ratio of fruits/bulbils (Mean ± 1 SE, n = 30) | 0.11 ± 0.03 | 0.34 ± 0.06 | 0 | 0.04 ± 0.01 | 0.67 ± 0.05 | 0 | 0.01 ± 0.01 |
Table 1 Geographical, physical habitat and reproductive characteristics of seven Globba racemosa populations (Data of Pop2-Pop7 are from Gao et al., 2006)
Pop1 | Pop2 | Pop3 | Pop4 | Pop5 | Pop6 | Pop7 | |
---|---|---|---|---|---|---|---|
Latitude/longitude | 21o53′ N/ 100o58′ E | 22o53′ N/ 99o48′ E | 24o04′ N/ 97o48′ E | 24o05′ N/ 99o44′ E | 24o25′ N/ 97o50′ E | 24o35′ N/ 97o40′ E | 24o56′ N/ 102o29′ E |
Habitat size (100 m2) | 5-10 | 5-10 | 10-20 | 5-10 | 10-20 | 10-20 | 10-20 |
Altitude (m) | 1 350 | 1 700 | 1 136 | 1 873 | 1 456 | 1 352 | 2 100 |
Soil water supply | Rich | Rich | Rich | Poor | Very rich | Poor | Very poor |
Degree of disturbance | Slight | Slight | Undisturbed | Intense | Undisturbed | Intense | Slight |
No. of fruits per plant (Mean ± 1 SE, n = 30) | 1.65 ± 0.37 | 6.53 ± 0.62 | 0 | 0.80 ± 0.228 | 19.10 ± 1.58 | 0 | 0.20 ± 0.12 |
No. of bulbils per plant (Mean ± 1 SE, n = 30) | 20. 12 ± 0.88 | 24. 67 ± 1.88 | 30.00 ± 1.90 | 24.27 ± 1.79 | 28.63 ± 0.77 | 18.83 ± 1.28 | 24.43 ± 1.30 |
Ratio of fruits/bulbils (Mean ± 1 SE, n = 30) | 0.11 ± 0.03 | 0.34 ± 0.06 | 0 | 0.04 ± 0.01 | 0.67 ± 0.05 | 0 | 0.01 ± 0.01 |
Primer No. | Sequence | Annealing temperature (oC) |
---|---|---|
807 808 810 835 836 840 847 848 855 857 886 887 888 889 890 | (AG)8T (AG)8C (GA)8T (AG)8YC (AG)8YA (GA)8YT (CA)8RC (AG)8RG (AC)8YT (AC)8YG VDV(TC)7 DVD(TC)7 BDB(CA)7 BDB(AC)7 VHV(GT)7 | 50 52 50 50 52 50 52 52 52 52 52 52 52 52 52 |
Table 2 Fifteen ISSR primers used for Globba racemosa amplification
Primer No. | Sequence | Annealing temperature (oC) |
---|---|---|
807 808 810 835 836 840 847 848 855 857 886 887 888 889 890 | (AG)8T (AG)8C (GA)8T (AG)8YC (AG)8YA (GA)8YT (CA)8RC (AG)8RG (AC)8YT (AC)8YG VDV(TC)7 DVD(TC)7 BDB(CA)7 BDB(AC)7 VHV(GT)7 | 50 52 50 50 52 50 52 52 52 52 52 52 52 52 52 |
Population | Sample size | na | ne | h | I | PPB(%) |
---|---|---|---|---|---|---|
Pop1 Pop2 Pop3 Pop4 Pop5 Pop6 Pop7 Average Species level | 20 19 16 17 19 19 20 18.57 130 | 1.245 8 1.254 2 1.245 8 1.330 5 1.305 1 1.339 0 1.050 8 1.253 0 1.711 9 | 1.141 2 1.181 3 1.206 4 1.201 5 1.228 3 1.222 9 1.025 7 1.172 5 1.398 7 | 0.083 7 0.099 2 0.109 5 0.117 9 0.125 5 0.125 3 0.014 7 0.096 5 0.236 3 | 0.125 7 0.143 8 0.155 8 0.176 4 0.181 3 0.184 5 0.022 3 0.127 1 0.357 5 | 24.58 25.42 24.58 33.05 30.51 33.90 5.08 25.30 71.19 |
Table 3 Genetic variability within populations of Globba racemosadetected by ISSR analysis
Population | Sample size | na | ne | h | I | PPB(%) |
---|---|---|---|---|---|---|
Pop1 Pop2 Pop3 Pop4 Pop5 Pop6 Pop7 Average Species level | 20 19 16 17 19 19 20 18.57 130 | 1.245 8 1.254 2 1.245 8 1.330 5 1.305 1 1.339 0 1.050 8 1.253 0 1.711 9 | 1.141 2 1.181 3 1.206 4 1.201 5 1.228 3 1.222 9 1.025 7 1.172 5 1.398 7 | 0.083 7 0.099 2 0.109 5 0.117 9 0.125 5 0.125 3 0.014 7 0.096 5 0.236 3 | 0.125 7 0.143 8 0.155 8 0.176 4 0.181 3 0.184 5 0.022 3 0.127 1 0.357 5 | 24.58 25.42 24.58 33.05 30.51 33.90 5.08 25.30 71.19 |
[1] | Abrahamson WG (1980). Demography and vegetative reproduction. In: Solbrig OT ed. Demography and Evolution in Plant Populations. Blackwell Scientific Publishers, Oxford, 89-106. |
[2] | Ashton PJ, Mitchell DS (1989). Aquatic plants: patterns and modes of invasion attributes of invading species and assessment of control programmes. In: Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ, Rejmanele M, Williamson M eds. Biological Invasions: a Global Perspective. John Wiley and Sons, London,111-154. |
[3] | Avise JC (1994). Molecular Markers, Natural History, and Evolution. Chapman & Hall, New York. |
[4] |
Baker AJ, Moeed A (1987). Rapid genetic differentiation and founder effect in colonizing populations of common mynas (Acridotheres tristis). Evolution, 41,525-538.
DOI URL PMID |
[5] | Barrett SCH (1980). Sexual reproduction in Eichhornia crassipes (water hyacinth). II. Seed production in natural populations . Journal of Applied Ecology, 17,113-124. |
[6] |
Camacho FJ, Liston A (2001). Population structure and genetic diversity of Botrychium pumicola (Ophioglossaceae) based on inter-simple sequence repeat (ISSR). American Journal of Botany, 88,1065-1070.
URL PMID |
[7] |
Ceplitis A (2001). The importance of sexual and asexual reproduction in the recent evolution of Allium vineale. Evolution, 55,1581-1591.
URL PMID |
[8] | Chen F (陈帆), Chen J (陈进), Liu ZQ (刘志秋), Zhang L (张玲), Liu Y (刘勇), Bai ZL (白智林) (2004). The role of ants in seed dispersal of Globba lancangensis and the spatial distribution of its seedlings . Acta Phytoecologica Sinica (植物生态学报), 28,210-217. (in Chinese with English abstract) |
[9] | Douglas DA (1981). The balance between vegetative and sexual reproduction of Mimulus primuloides (Scrophulariaceae) at different altitudes in California . Journal of Ecology, 69,295-310. |
[10] | Doyle JJ, Doyle JL (1987). Isolation of plant material from fresh tissue. Focus, 12,13-15. |
[11] | Eckert CG, Barrett SHC (1993). Clonal reproduction and patterns of genotypic diversity in Decodon verticillatus (Lythraceae ). American Journal of Botany, 80,1175-1182. |
[12] |
Eckert CG, Lui K, Bronson K, Pierre C, Bruneau A (2003). Population genetic consequences of extreme variation in sexual and clonal reproduction in an aquatic plant. Molecular Ecology, 12,331-344.
URL PMID |
[13] | Ellstrand NC, Roose ML (1987). Patterns of genotypic diversity in clonal plant species. American Journal of Botany, 74,123-131. |
[14] | Esselman EJ, Li JQ, Crawford DJ, Winduss JL, Wolfe AD (1999). Clonal diversity in the rare Calamagrostis porteri ssp. insperata (Poaceae): comparative results for allozymes and random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) markers . Molecular Ecology, 8,443-451. |
[15] | Excoffier L (1993). Analysis of Molecular Variance (AMOVA) version 1.55. Genetics and Biometry Laboratory, University of Geneva, Switzerland. |
[16] | Fernandez ME, Figueiras AM, Benito C (2002). The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barely cultivars with known origin. Theoretical and Applied Genetics, 104,845-851. |
[17] | Gao XX (高秀霞), Chen J (陈进), Zhou HP (周会平), Bai ZL (白智林) (2006). The effect of nutrient supply on sexual and asexual reproduction of three species of Globba. Journal of Plant Ecology (Chinese Version) (植物生态学报), 30,132-139. (in Chinese with English abstract) |
[18] | Godwin ID, Aitken EAB, Smith LW (1997). Application of inter-simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis, 18,1524-1528. |
[19] | Hangelbroek HH, Ouborg NJ, Santamaria L, Schwenk K (2002). Clonal diversity and structure within a population of the pondweed Potamogeton pectinatus foraged by Bewick’s swans . Molecular Ecology, 11,2137-2150. |
[20] | Hamrick JL, Godt MJ (1989). Allozyme diversity in plants. In: Brown AHD, Clegg MT, Kahler AL, Weir BS eds. Plant Population Genetics, Breeding and Genetic Resources. Sinauer, Sunderland,43-63. |
[21] | Houliston G, Chapman H (2004). Reproductive strategy and population variability in the facultative apomict Hieracium pilosella (Asteraceae ). American Journal of Botany, 91,37-44. |
[22] | Hughes J, Richards AJ (1988). The genetic structure of populations of sexual and asexual Taraxacum (dandelions ). Heredity, 60,161-171. |
[23] |
Jacquemyn H, Brys R, Honnay O, Hermy M, Roldán-Ruiz I (2005). Local forest environment largely affects below-ground growth, clonal diversity and fine-scale spatial genetic structure in the temperate deciduous forest herb Paris quadrifolia. Molecular Ecology, 14,4479-4488.
URL PMID |
[24] | Joshi SP, Gupta VS, Aggarwal PK, Ranjekar PK, Brar DS (2000). Genetic diversity and phylogenetic relationship as revealed by inter simple sequence repeat (ISSR) polymorphism in the genus Oryza. Theoretical and Applied Genetics, 100,1311-1320. |
[25] | Klimes L, Klimesova J, Hendriks R, van Groenendael JM (1997). Clonal plant architecture: a comparative analysis of form and function. In: de Kroon H, van Groenendael JM eds. The Ecology and Evolution of Clonal Plants. Backhuys Publishers, Leiden,1-29. |
[26] | Kress WJ, De Filipps RA, Farr E, Kyi DYY, Lace JH, Rodger R, Hundley HG, Chit KKU (2003). A checklist of the trees, shrubs, herbs, and climbers of Myanmar. Contributions from the United States National Herbarium, 45,1-590. |
[27] |
Kress WJ, Prince LM, Williams KJ (2002). The phylogeny and a new classification of the gingers (Zingiberaceae): evidence from molecular data. American Journal of Botany, 89,1682-1696.
URL PMID |
[28] | Kudoh H, Shibaike H, Takasu H, Whigham DF, Kawano S (1999). Genet structure and determinants of clonal structure in a temperate deciduous woodland herb, Uvularia perfoliata. Journal of Ecology, 87,244-257. |
[29] | Larsen K (1996). A preliminary checklist of the Zingiberaceae of Thailand. Thai Forest Bulletin (Botany), 24,35-49. |
[30] | Li A, Ge S (2001). Genetic variation and clonal diversity of Psammochloa villosa (Poaceae) detected by ISSR markers . Annals of Botany, 87,585-590. |
[31] | Loveless MD, Hamrick JL (1984). Ecological determinants of genetic structure in plant populations. Annual Review of Ecology and Systematics, 15,65-95. |
[32] |
Mantel NA (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27,209-220.
URL PMID |
[33] | Nagaoka T, Ogihara Y (1997). Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theoretical and Applied Genetics, 94,597-602. |
[34] | Nei M (1972). Genetic distance between populations. The American Naturalist, 106,283-292. |
[35] | Nybom H (2004). Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology, 13,1143-1155. |
[36] | Piquot Y, Petit D, Valero M, Cuguen J, De Laguerie P, Vernet P (1998). Variation in sexual and asexual reproduction among young and old populations of the perennial macrophyte Sparganium erectum. Oikos, 82,139-148. |
[37] | Qian W, Ge S, Hong DY (2001). Genetic variation with and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers . Theoretical and Applied Genetics, 102,440-449. |
[38] | Richards AJ (1986). Plant Breeding Systems. George Allen and Unwin, London. |
[39] | Rohlf FJ (1997). NTSYS: Numerical Taxonomy and Multivariate Analysis System, version 2.02a, Exeter Software. Setauket, New York. |
[40] | Ronsheim ML, Bever JD (2000). Genetic variation and evolutionary trade-offs for sexual and asexual reproductive modes in Allium vineale (Liliaceae ). American Journal of Botany, 87,1769-1777. |
[41] |
Schemske DW (1984). Population structure and local selection in Impatiens pallida (Balsaminaceae), a selfing annual . Evolution, 38,817-832.
URL PMID |
[42] | Schumann K (1904). Zingiberaceae. In: Engler A ed. Das Pflanzenreich. Wilhelm Engelmann, Leipzig, 4,1-458. |
[43] | Silander JAJ (1985). Microevolution in clonal plants. In: Jackson JBC, Buss LW, Cook RE eds. Population Biology and Evolution of Clonal Organisms. Yale University Press, London,107-152. |
[44] |
Slatkin M (1987). Gene flow and the geographic structure of natural populations. Science, 236,787-792.
URL PMID |
[45] | Slatkin M (1993). Isolation by distance in equilibrium and non-equilibrium populations. Evolution, 47,264-279. |
[46] | Sneath PHA, Sokal RR (1973). Numerical Taxonomy. Freeman, San Francisco. |
[47] | Starfinger U, Stöcklin J (1996). Seed, pollen, and clonal dispersal and their role in structuring plants populations. Progress in Botany, 57,336-355. |
[48] |
Torres E, Iriondo JM, Escudero A, Pérez C (2003). Analysis of within-population spatial genetic structure in Antirrhinum microphyllum (Scrophulariaceae ). American Journal of Botany, 90,1688-1695.
URL PMID |
[49] | Watkinson AR, Powell JC (1993). Seedling recruitment and the maintenance of clonal diversity in plant populations: a computer simulation of Ranunculus repens. Journal of Ecology, 81,707-718. |
[50] |
Welch MD, Meselson M (2000). Evidence for the evolution of bdelloid rotifers without sexual recombination or genetic exchange. Science, 288,1211-1215.
URL PMID |
[51] | Welch MD, Meselson M (2001). Rates of nucleotide substitution in sexual and anciently asexual rotifers. Proceedings of the National Academy of Sciences of the United States of America, 98,6720-6724. |
[52] | Widén B, Cronberg N, Widén M (1994). Genotypic diversity, molecular markers and spatial distribution of genets in clonal plants, a literature survey. In: Soukupova L, Hara T, Herben T, Marshall C eds. Plant Clonality: Biology and Diversity. Opulus Press, Sweden, 139-158. |
[53] |
Williams KJ, Kress WJ, Manos PS (2004). The phylogeny, evolution, and classification of the genus Globba and tribe Globbeae (Zingiberaceae): appendages do matter . American Journal of Botany, 91,100-114.
URL PMID |
[54] | Wolfe AD, Randle CP (2001). Relationships within and among species of the holoparasitic genus Hyobanche (Orobanchaceae) inferred from ISSR banding patterns and nucleotide sequences . Systematic Botany, 26,120-130. |
[55] | Wu DL (吴德邻) (1981). Flora of China (中国植物志). Science Press, Beijing,64-67. (in Chinese) |
[56] | Wu DL (吴德邻) (1999). Biogeography of ginger plants. In: Lu AM (陆安民) ed. The Geography of Spermatophyte Families and Genera (种子植物科属地理). Science Press, Beijing,604-614. (in Chinese) |
[57] | Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX (1997). POPGENE, the User-Friendly Shareware for Population Genetic Analysis. Molecular Biology and Biotechnology Center, University of Alberta, Edmonton, Alberta, Canada. |
[58] | Young AG, Hill JH, Murray BG, Peakall R (2002). Breeding system, genetic diversity and clonal structure in the sub-alpine forb Rutidosis leiolepis F. Muell (Asteraceae) . Biological Conservation, 106,71-76. |
[59] |
Zietkiewicz E, Rafalski A, Labuda D (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20,176-183.
URL PMID |
[1] | 陈天翌, 娄安如. 青藏高原东侧白桦种群的遗传多样性与遗传结构[J]. 植物生态学报, 2022, 46(5): 561-568. |
[2] | 张婵, 安宇梦, Yun JÄSCHKE, 王林林, 周知里, 王力平, 杨永平, 段元文. 青藏高原及周边高山地区的植物繁殖生态学研究进展[J]. 植物生态学报, 2020, 44(1): 1-21. |
[3] | 张新新, 王茜, 胡颖, 周玮, 陈晓阳, 胡新生. 植物边缘种群遗传多样性研究进展[J]. 植物生态学报, 2019, 43(5): 383-395. |
[4] | 张俪文, 韩广轩. 植物遗传多样性与生态系统功能关系的研究进展[J]. 植物生态学报, 2018, 42(10): 977-989. |
[5] | 王锦楠, 陈进福, 陈武生, 周新洋, 许东, 李际红, 亓晓. 柴达木地区野生黑果枸杞种群遗传多样性的AFLP分析[J]. 植物生态学报, 2015, 39(10): 1003-1011. |
[6] | 刘军, 姜景民, 邹军, 徐金良, 沈汉, 刁松峰. 中国特有濒危树种毛红椿核心和边缘居群的遗传多样性[J]. 植物生态学报, 2013, 37(1): 52-60. |
[7] | 张炜, 罗建勋, 辜云杰, 胡庭兴. 西南地区麻疯树天然种群遗传多样性的等位酶变异[J]. 植物生态学报, 2011, 35(3): 330-336. |
[8] | 魏源, 王世杰, 刘秀明, 黄天志. 不同喀斯特小生境中土壤丛枝菌根真菌的遗传多样性[J]. 植物生态学报, 2011, 35(10): 1083-1090. |
[9] | 张云红, 侯艳, 娄安如. 华北地区小丛红景天种群的AFLP遗传多样性[J]. 植物生态学报, 2010, 34(9): 1084-1094. |
[10] | 刘伟, 王曦, 干友民, 黄林凯, 谢文刚, 苗佳敏. 高山嵩草种群在放牧干扰下遗传多样性的变化[J]. 植物生态学报, 2009, 33(5): 966-973. |
[11] | 田大栓, 包祥, 关其格, 潘庆民. 内蒙古草原3种针茅属植物不同组织水平的生物量生殖分配[J]. 植物生态学报, 2009, 33(1): 97-107. |
[12] | 陈良华, 胡庭兴, 张帆, 李国和. 用AFLP技术分析四川核桃资源的遗传多样性[J]. 植物生态学报, 2008, 32(6): 1362-1372. |
[13] | 严茂粉, 李向华, 王克晶. 北京地区野生大豆种群SSR标记的遗传多样性评价[J]. 植物生态学报, 2008, 32(4): 938-950. |
[14] | 刘亚令, 李作洲, 姜正旺, 刘义飞, 黄宏文. 中华猕猴桃和美味猕猴桃自然居群遗传结构及其种间杂交渐渗[J]. 植物生态学报, 2008, 32(3): 704-718. |
[15] | 魏宇昆, 高玉葆. 禾草内生真菌的遗传多样性及其共生关系[J]. 植物生态学报, 2008, 32(2): 512-520. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19