植物生态学报 ›› 2014, Vol. 38 ›› Issue (6): 585-598.DOI: 10.3724/SP.J.1258.2014.00054
许格希1,罗水兴2,*(),郭泉水1,裴顺祥3,史作民1,朱莉4,朱妮妮1
收稿日期:
2013-12-03
接受日期:
2014-02-05
出版日期:
2014-12-03
发布日期:
2014-06-10
通讯作者:
罗水兴
基金资助:
XU Ge-Xi1,LUO Shui-Xing2,*(),GUO Quan-Shui1,PEI Shun-Xiang3,SHI Zuo-Min1,ZHU Li4,ZHU Ni-Ni1
Received:
2013-12-03
Accepted:
2014-02-05
Online:
2014-12-03
Published:
2014-06-10
Contact:
LUO Shui-Xing
摘要:
为了探讨我国热带地区植物物候与气候变化的关系, 利用海南岛尖峰岭热带树木园12种热带常绿阔叶乔木植物2003-2011年物候观测资料结合同期月平均气温和降水数据, 运用积分回归分析方法, 筛选出影响海南岛12种乔木(8种本地种、4种引入种)展叶始期与开花始期的气象因素以及不同气象因素月值变化(月平均气温和月降水量)综合作用对这些树种物候期的动态影响, 最终建立积分回归-物候预测模型, 对气候变化背景下我国热带地区植物物候变化趋势进行了预测。结果表明: 海南岛12种热带常绿阔叶乔木展叶始期与开花始期均对气候变化做出较明显的响应, 几乎所有的树种展叶始期与开花始期的发生都受到气温和降水的共同影响。多数树种展叶始期受展叶前冬季及春季气温影响显著, 且在临近展叶始期的月份, 气温的影响更显著。上一年秋季月降水量对各树种开花始期的影响比其他时段显著, 这验证了降水的滞后性假说。本地种展叶始期对气候变化的响应比其开花始期对气候变化的响应更敏感, 引入种则相反。各树种展叶和开花在受气温和降水综合影响最明显的月份(假设其余11个月份月平均气温和月降水量不变), 月平均气温升高0.1 ℃、月降水量增加10 mm可使展叶始期和开花始期提前或推迟1-3天。积分回归分析方法为解释海南岛热带常绿阔叶乔木物候与气温和降水的动态关系提供了有效的途径, 基于气温和降水与物候资料建立的积分回归-物候预测模型具有对气温和降水变化影响下物候响应的解释率和预测精度高(R2≥ 0.943)的优点, 对于预测气候变化影响下的植物物候变化趋势有一定的适用性。
许格希,罗水兴,郭泉水,裴顺祥,史作民,朱莉,朱妮妮. 海南岛尖峰岭12种热带常绿阔叶乔木展叶期与开花期对气候变化的响应. 植物生态学报, 2014, 38(6): 585-598. DOI: 10.3724/SP.J.1258.2014.00054
XU Ge-Xi,LUO Shui-Xing,GUO Quan-Shui,PEI Shun-Xiang,SHI Zuo-Min,ZHU Li,ZHU Ni-Ni. Responses of leaf unfolding and flowering to climate change in 12 tropical evergreen broadleaf tree species in Jianfengling, Hainan Island. Chinese Journal of Plant Ecology, 2014, 38(6): 585-598. DOI: 10.3724/SP.J.1258.2014.00054
种名 Species name | 物种代码 Species code | 科名 Family name | 物种来源 Species origin |
---|---|---|---|
海南紫荆木 Madhuca hainanensis | MAHA | 山榄科 Sapotaceae | 本地种 Native species |
蝴蝶树 Heritiera parvifolia | HEPA | 梧桐科 Sterculiaceae | 本地种 Native species |
破布叶 Microcos paniculata | MIPA | 椴树科 Tiliaceae | 本地种 Native species |
海南大风子 Hydnocarpus hainanensis | HYHA | 大风子科 Flacourtiaceae | 本地种 Native species |
海南苹婆 Sterculia hainanensis | STHA | 梧桐科 Sterculiaceae | 本地种 Native species |
细基丸 Polyalthia cerasoides | POCE | 番荔枝科 Annonaceae | 本地种 Native species |
囊瓣木 Saccopetalum prolificum | SAPR | 番荔枝科 Annonaceae | 本地种 Native species |
海杧果 Cerbera manghas | CEMA | 夹竹桃科 Apocynaceae | 本地种 Native species |
酸豆 Tamarindus indica | TAIN | 苏木科 Caesalpiniaceae | 引入种 Introduced species |
大叶桃花心木 Swietenia macrophylla | SWMA | 楝科 Meliaceae | 引入种 Introduced species |
非洲楝 Khaya senegalensis | KHSE | 楝科 Meliaceae | 引入种 Introduced species |
蝴蝶果 Cleidiocarpon cavaleriei | CLCA | 大戟科 Euphorbiaceae | 引入种 Introduced species |
表1 海南岛尖峰岭12种热带常绿阔叶乔木植物分类学信息
Table 1 Taxonomic information of 12 tropical evergreen broadleaf tree species in Jianfengling, Hainan Island
种名 Species name | 物种代码 Species code | 科名 Family name | 物种来源 Species origin |
---|---|---|---|
海南紫荆木 Madhuca hainanensis | MAHA | 山榄科 Sapotaceae | 本地种 Native species |
蝴蝶树 Heritiera parvifolia | HEPA | 梧桐科 Sterculiaceae | 本地种 Native species |
破布叶 Microcos paniculata | MIPA | 椴树科 Tiliaceae | 本地种 Native species |
海南大风子 Hydnocarpus hainanensis | HYHA | 大风子科 Flacourtiaceae | 本地种 Native species |
海南苹婆 Sterculia hainanensis | STHA | 梧桐科 Sterculiaceae | 本地种 Native species |
细基丸 Polyalthia cerasoides | POCE | 番荔枝科 Annonaceae | 本地种 Native species |
囊瓣木 Saccopetalum prolificum | SAPR | 番荔枝科 Annonaceae | 本地种 Native species |
海杧果 Cerbera manghas | CEMA | 夹竹桃科 Apocynaceae | 本地种 Native species |
酸豆 Tamarindus indica | TAIN | 苏木科 Caesalpiniaceae | 引入种 Introduced species |
大叶桃花心木 Swietenia macrophylla | SWMA | 楝科 Meliaceae | 引入种 Introduced species |
非洲楝 Khaya senegalensis | KHSE | 楝科 Meliaceae | 引入种 Introduced species |
蝴蝶果 Cleidiocarpon cavaleriei | CLCA | 大戟科 Euphorbiaceae | 引入种 Introduced species |
图1 海南岛尖峰岭12种热带常绿阔叶乔木展叶始期与开花始期基本信息(平均值±标准误差)。物种代码同表1。
Fig. 1 Basic information for the onset of leaf unfolding and the onset of first flowering in 12 tropical evergreen broadleaf tree species in Jianfengling, Hainan Island (mean ± SE). Species codes are the same as in Table 1.
图2 展叶始期发生前月平均气温升高0.1 ℃、月降水量增加10 mm对12种乔木展叶始期的影响。物种代码同表1。
Fig. 2 The influences of a 0.1 °C rise in mean air temperature and a 10 mm increase in precipitation in each of the preceding month on the onset of leaf unfolding in 12 tree species. Species codes are the same as in Table 1.
图3 开花始期发生前月平均气温升高0.1 ℃, 月降水量增加10 mm对12种乔木开花始期的影响。物种代码同表1。
Fig. 3 The influences of a 0.1 °C rise in mean air temperature and a 10 mm increase in precipitation in each of the preceding month on the onset of first flowering in 12 tree species. Species codes are the same as in Table 1.
树种 Tree species | 物候期 Phenophase | 物候预测模型 Model of phenological prediction | df | R2 | p |
---|---|---|---|---|---|
海南紫荆木 MAHA | 展叶始期 OLU | $y=-2.38228{{T}_{0}}-0.63656{{T}_{4}}-0.00135{{P}_{5}}+917.67182$ | 3, 1 | >0.99 | 0.014 |
开花始期奋OFL | $y=-\text{0}\text{.00879}{{T}_{3}}-0.01756{{P}_{0}}+0.00081{{P}_{2}}-0.00011{{P}_{4}}+184.08273$ | 4, 1 | >0.99 | 0.002 | |
蝴蝶树 HEPA | 展叶始期 OLU | $y=-1.61897{{T}_{0}}+0.05895{{T}_{4}}+0.00801{{P}_{1}}+0.00048{{P}_{2}}-0.00314{{P}_{4}}+648.65012$ | 5, 1 | >0.99 | 0.017 |
开花始期 OFL | $y=-0.30489{{T}_{1}}+0.32204{{T}_{2}}-0.02228{{P}_{0}}-0.00108{{P}_{1}}+0.00109{{P}_{2}}-25.57393$ | 5, 3 | >0.99 | <0.001 | |
破布叶 MIPA | 展叶始期 OLU | $y=-0.29822{{T}_{2}}+0.34796{{T}_{4}}-0.00219{{P}_{2}}+200.64790$ | 3, 4 | 0.951 | 0.006 |
开花始期 OFL | $y=0.07539{{T}_{5}}-0.07119{{P}_{0}}-0.00750{{P}_{1}}+0.00221{{P}_{3}}+0.00174{{P}_{4}}+294.71511$ | 5, 2 | >0.99 | 0.002 | |
海南大风子 HYHA | 展叶始期 OLU | $y=-0.29424{{T}_{0}}+0.07539{{T}_{2}}-0.09409{{P}_{0}}+0.00139{{P}_{4}}+337.34806$ | 4, 1 | >0.99 | 0.013 |
开花始期 OFL | $y=-0.07740{{T}_{3}}+224.64306$ | 1, 3 | 0.978 | 0.002 | |
海南苹婆 STHA | 展叶始期 OLU | $y=0.74999{{T}_{1}}+0.58373{{T}_{3}}-0.15748{{T}_{4}}-0.01991{{T}_{5}}-0.01532{{P}_{1}}+0.00059{{P}_{3}}+0.00034{{P}_{5}}-3.92288$ | 7, 1 | >0.99 | 0.004 |
开花始期 OFL | $y=0.26684{{T}_{0}}-0.03156{{T}_{2}}-0.14139{{T}_{4}}+0.05450{{T}_{5}}-0.00179{{P}_{1}}-30.75027$ | 5, 1 | >0.99 | 0.002 | |
细基丸 POCE | 展叶始期 OLU | $y=0.14537{{T}_{3}}-0.13648{{T}_{4}}+0.02903{{P}_{0}}-0.00071{{P}_{4}}+15.75967$ | 4, 3 | 0.976 | 0.007 |
开花始期 OFL | $y=-0.56060{{T}_{1}}-0.03974{{T}_{3}}+0.02169{{T}_{5}}+0.00164{{P}_{2}}+0.00347{{P}_{3}}-4.71946$ | 5, 1 | >0.99 | 0.012 | |
囊瓣木 SAPR | 展叶始期 OLU | $y=-11.03330{{T}_{0}}+0.81146{{T}_{1}}-0.60157{{T}_{3}}+0.02282{{P}_{1}}\text{+3741}\text{.54475}$ | 4, 1 | >0.99 | 0.075 |
开花始期 OFL | $y=-11.93835{{T}_{0}}-0.81942{{T}_{1}}-0.14417{{P}_{0}}-0.00540{{P}_{5}}+3724.18480$ | 4, 1 | 0.943 | 0.221 | |
海杧果 CEMA | 展叶始期 OLU | $y=\text{0}\text{.92868}{{T}_{1}}-0.15218{{T}_{3}}-0.00026{{T}_{4}}+0.00271{{P}_{5}}+116.50025$ | 4, 1 | >0.99 | 0.023 |
开花始期 OFL | $y=-0.02314{{T}_{2}}-0.13206{{T}_{4}}+0.03085{{T}_{5}}+0.00185{{P}_{3}}+0.00083{{P}_{5}}+67.07923$ | 5, 1 | >0.99 | 0.022 | |
酸豆 TAIN | 展叶始期 OLU | $y=-0.33273{{T}_{1}}-0.16320{{T}_{2}}+0.03014{{T}_{4}}+0.00214{{P}_{0}}+0.00022{{P}_{2}}+0.00172{{P}_{3}}+0.00005{{P}_{4}}+113.40775$ | 4, 2 | >0.99 | 0.003 |
开花始期 OFL | $y=2.06823{{T}_{0}}-0.25660{{T}_{4}}+0.08053{{P}_{0}}-0.00481{{P}_{3}}+0.00759{{P}_{5}}-550.00567$ | 5, 1 | >0.99 | 0.020 | |
大叶桃花心木 SWMA | 展叶始期 OLU | $y=-2.89018{{T}_{0}}-0.06850{{T}_{2}}+0.01177{{T}_{3}}-0.11516{{T}_{4}}+0.00383{{T}_{5}}-0.00133{{P}_{3}}-0.00131{{P}_{5}}+900.06504$ | 7, 1 | >0.99 | 0.003 |
开花始期 OFL | $y=4.22220{{T}_{0}}-1.20205{{T}_{1}}-0.31324{{T}_{3}}-0.01633{{T}_{4}}-0.05578{{T}_{5}}-0.00106{{P}_{4}}-1286.86831$ | 6, 1 | >0.99 | 0.011 | |
非洲楝 KHSE | 展叶始期 OLU | $y=-2.59746{{T}_{0}}-0.11448{{T}_{2}}-0.00390{{P}_{3}}-0.00091{{P}_{5}}+808.78470$ | 4, 1 | >0.99 | 0.003 |
开花始期 OFL | $y=-0.08557{{T}_{2}}+0.00276{{P}_{4}}+90.17318$ | 2, 3 | 0.972 | 0.006 | |
蝴蝶果 CLCA | 展叶始期 OLU | $y=-1.76916{{T}_{0}}-0.00544{{T}_{2}}+0.01952{{P}_{1}}+0.00028{{P}_{5}}+655.81729$ | 4, 1 | >0.99 | 0.005 |
开花始期 OFL | $y=0.08547{{T}_{2}}-0.04329{{T}_{5}}+0.02425{{P}_{1}}+211.96571$ | 3, 1 | >0.99 | 0.025 |
表2 12种常绿阔叶乔木展叶始期和开花始期基于气温和降水共同作用的积分回归-物候预测模型
Table 2 Integrate air temperature and precipitation regression models for predicting the onset of leaf unfolding and the onset of first flowering in 12 evergreen broadleaf tree species
树种 Tree species | 物候期 Phenophase | 物候预测模型 Model of phenological prediction | df | R2 | p |
---|---|---|---|---|---|
海南紫荆木 MAHA | 展叶始期 OLU | $y=-2.38228{{T}_{0}}-0.63656{{T}_{4}}-0.00135{{P}_{5}}+917.67182$ | 3, 1 | >0.99 | 0.014 |
开花始期奋OFL | $y=-\text{0}\text{.00879}{{T}_{3}}-0.01756{{P}_{0}}+0.00081{{P}_{2}}-0.00011{{P}_{4}}+184.08273$ | 4, 1 | >0.99 | 0.002 | |
蝴蝶树 HEPA | 展叶始期 OLU | $y=-1.61897{{T}_{0}}+0.05895{{T}_{4}}+0.00801{{P}_{1}}+0.00048{{P}_{2}}-0.00314{{P}_{4}}+648.65012$ | 5, 1 | >0.99 | 0.017 |
开花始期 OFL | $y=-0.30489{{T}_{1}}+0.32204{{T}_{2}}-0.02228{{P}_{0}}-0.00108{{P}_{1}}+0.00109{{P}_{2}}-25.57393$ | 5, 3 | >0.99 | <0.001 | |
破布叶 MIPA | 展叶始期 OLU | $y=-0.29822{{T}_{2}}+0.34796{{T}_{4}}-0.00219{{P}_{2}}+200.64790$ | 3, 4 | 0.951 | 0.006 |
开花始期 OFL | $y=0.07539{{T}_{5}}-0.07119{{P}_{0}}-0.00750{{P}_{1}}+0.00221{{P}_{3}}+0.00174{{P}_{4}}+294.71511$ | 5, 2 | >0.99 | 0.002 | |
海南大风子 HYHA | 展叶始期 OLU | $y=-0.29424{{T}_{0}}+0.07539{{T}_{2}}-0.09409{{P}_{0}}+0.00139{{P}_{4}}+337.34806$ | 4, 1 | >0.99 | 0.013 |
开花始期 OFL | $y=-0.07740{{T}_{3}}+224.64306$ | 1, 3 | 0.978 | 0.002 | |
海南苹婆 STHA | 展叶始期 OLU | $y=0.74999{{T}_{1}}+0.58373{{T}_{3}}-0.15748{{T}_{4}}-0.01991{{T}_{5}}-0.01532{{P}_{1}}+0.00059{{P}_{3}}+0.00034{{P}_{5}}-3.92288$ | 7, 1 | >0.99 | 0.004 |
开花始期 OFL | $y=0.26684{{T}_{0}}-0.03156{{T}_{2}}-0.14139{{T}_{4}}+0.05450{{T}_{5}}-0.00179{{P}_{1}}-30.75027$ | 5, 1 | >0.99 | 0.002 | |
细基丸 POCE | 展叶始期 OLU | $y=0.14537{{T}_{3}}-0.13648{{T}_{4}}+0.02903{{P}_{0}}-0.00071{{P}_{4}}+15.75967$ | 4, 3 | 0.976 | 0.007 |
开花始期 OFL | $y=-0.56060{{T}_{1}}-0.03974{{T}_{3}}+0.02169{{T}_{5}}+0.00164{{P}_{2}}+0.00347{{P}_{3}}-4.71946$ | 5, 1 | >0.99 | 0.012 | |
囊瓣木 SAPR | 展叶始期 OLU | $y=-11.03330{{T}_{0}}+0.81146{{T}_{1}}-0.60157{{T}_{3}}+0.02282{{P}_{1}}\text{+3741}\text{.54475}$ | 4, 1 | >0.99 | 0.075 |
开花始期 OFL | $y=-11.93835{{T}_{0}}-0.81942{{T}_{1}}-0.14417{{P}_{0}}-0.00540{{P}_{5}}+3724.18480$ | 4, 1 | 0.943 | 0.221 | |
海杧果 CEMA | 展叶始期 OLU | $y=\text{0}\text{.92868}{{T}_{1}}-0.15218{{T}_{3}}-0.00026{{T}_{4}}+0.00271{{P}_{5}}+116.50025$ | 4, 1 | >0.99 | 0.023 |
开花始期 OFL | $y=-0.02314{{T}_{2}}-0.13206{{T}_{4}}+0.03085{{T}_{5}}+0.00185{{P}_{3}}+0.00083{{P}_{5}}+67.07923$ | 5, 1 | >0.99 | 0.022 | |
酸豆 TAIN | 展叶始期 OLU | $y=-0.33273{{T}_{1}}-0.16320{{T}_{2}}+0.03014{{T}_{4}}+0.00214{{P}_{0}}+0.00022{{P}_{2}}+0.00172{{P}_{3}}+0.00005{{P}_{4}}+113.40775$ | 4, 2 | >0.99 | 0.003 |
开花始期 OFL | $y=2.06823{{T}_{0}}-0.25660{{T}_{4}}+0.08053{{P}_{0}}-0.00481{{P}_{3}}+0.00759{{P}_{5}}-550.00567$ | 5, 1 | >0.99 | 0.020 | |
大叶桃花心木 SWMA | 展叶始期 OLU | $y=-2.89018{{T}_{0}}-0.06850{{T}_{2}}+0.01177{{T}_{3}}-0.11516{{T}_{4}}+0.00383{{T}_{5}}-0.00133{{P}_{3}}-0.00131{{P}_{5}}+900.06504$ | 7, 1 | >0.99 | 0.003 |
开花始期 OFL | $y=4.22220{{T}_{0}}-1.20205{{T}_{1}}-0.31324{{T}_{3}}-0.01633{{T}_{4}}-0.05578{{T}_{5}}-0.00106{{P}_{4}}-1286.86831$ | 6, 1 | >0.99 | 0.011 | |
非洲楝 KHSE | 展叶始期 OLU | $y=-2.59746{{T}_{0}}-0.11448{{T}_{2}}-0.00390{{P}_{3}}-0.00091{{P}_{5}}+808.78470$ | 4, 1 | >0.99 | 0.003 |
开花始期 OFL | $y=-0.08557{{T}_{2}}+0.00276{{P}_{4}}+90.17318$ | 2, 3 | 0.972 | 0.006 | |
蝴蝶果 CLCA | 展叶始期 OLU | $y=-1.76916{{T}_{0}}-0.00544{{T}_{2}}+0.01952{{P}_{1}}+0.00028{{P}_{5}}+655.81729$ | 4, 1 | >0.99 | 0.005 |
开花始期 OFL | $y=0.08547{{T}_{2}}-0.04329{{T}_{5}}+0.02425{{P}_{1}}+211.96571$ | 3, 1 | >0.99 | 0.025 |
图4 基于气温和降水积分回归-物候预测模型对12种乔木展叶始期和开花始期的模拟值与实测值比较。物种代码同表1。
Fig. 4 Simulated values based on the integrate air temperature and precipitation regression models for phenological predictions versus measured values of the onset of leaf unfolding and the onset of first flowering in 12 tree species. Species codes are the same as in Table 1.
图5 12种常绿阔叶乔木展叶始期与开花始期物候模拟值与实测值的差值分布。物种代码同表1。
Fig. 5 Distribution of the differences between simulated values and measured values of the onset of leaf unfolding and the onset of first flowering in 12 tropical evergreen broadleaf tree species. Species codes are the same as in Table 1.
[1] |
Bradley AV, Gerard FF, Barbier N, Weedon GP, Anderson LO, Huntingford C, Aragão LEOC, Zelazowski P, Arai E (2011). Relationships between phenology, radiation and precipitation in the Amazon region. Global Change Biology, 17, 2245-2260.
DOI URL |
[2] | Chen XQ, Xu L (2012). Temperature controls on the spatial pattern of tree phenology in China’s temperate zone. Agricultural and Forest Meteorology, 154- 155, 195-202. |
[3] |
Chen XQ, Zhang FC (2001). Spring phonological change in Beijing in the last 50 years and its response to the climatic changes. Agricultural Meteorology, 22, 1-5. (in Chinese with English abstract)
DOI URL |
[ 陈效逑, 张福春 (2001). 近50年北京春季物候的变化及其对气候变化的响应. 中国农业气象, 22, 1-5.]
DOI URL |
|
[4] |
Dillon ME, Wang G, Huey RB (2010). Global metabolic impacts of recent climate warming. Nature, 467, 704-706.
URL PMID |
[5] | Ding ZL, Yuan F, Chen Z, Tan JB (2002). Error Theory and Data Processing. 2nd edn. Harbin Institute of Technology Press, Harbin. 86, 88. (in Chinese) |
[ 丁振良, 袁峰, 陈中, 谭久彬 (2002). 误差理论与数据处理(第2版). 哈尔滨工业大学出版社, 哈尔滨. 86, 88.] | |
[6] |
Fridley JD (2012). Extended leaf phenology and the autumn niche in deciduous forest invasions. Nature, 485, 359-362.
URL PMID |
[7] | Fu GA, Hong XJ (2008). Flora of vascular plants of Jianfengling, Hainan Island. Guihaia, 28, 226-229. (in Chinese with English abstract) |
[ 符国瑷, 洪小江 (2008). 海南岛尖峰岭的维管植物区系. 广西植物, 28, 226-229.] | |
[8] |
Fu YSH, Campioli M, Demarée G, Deckmyn A, Hamdi R, Janssens IA, Deckmyn G (2012a). Bayesian calibration of the unified budburst model in six temperate tree species. International Journal of Biometeorology, 56, 153-164.
URL PMID |
[9] |
Fu YSH, Campioli M, van Oijen M, Deckmyn G, Janssens IA (2012b). Bayesian comparison of six different temperature-based budburst models for four temperate tree species. Ecological Modelling, 230, 92-100.
DOI URL |
[10] |
Güenter S, Stimm B, Cabrera M, Diaz ML, Lojan M, Ordoñez E, Richter M, Weber M (2008). Tree phenology in montane forests of southern Ecuador can be explained by precipitation, radiation and photoperiodic control. Journal of Tropical Ecology, 24, 247-258.
DOI URL |
[11] |
Higgins SI, Delgado-Cartay MD, February EC, Combrink HJ (2011). Is there a temporal niche separation in the leaf phenology of savanna trees and grasses? Journal of Biogeography, 38, 2165-2175.
DOI URL |
[12] |
Hmimina G, Dufrêne E, Pontailler JY, Delpierre N, Aubinet M, Caquet B, de Grandcourt A, Burban B, Flechard C, Granier A, Gross P, Heinesch B, Longdoz B, Moureaux C, Ourcival JM, Rambal S, Saint André L, Soudani K (2013). Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: an investigation using ground-based NDVI measurements. Remote Sensing of Environment, 132, 145-158.
DOI URL |
[13] |
Hufkens K, Friedl MA, Keenan TF, Sonnentag O, Bailey A, O’Keefe J, Richardson AD (2012). Ecological impacts of a widespread frost event following early spring leaf-out. Global Change Biology, 18, 2365-2377.
DOI URL |
[14] | Jiang YX, Lu JP (1991). The Tropical Forest Ecosystem of Jianfeng Mountain in Hainan Island, China. Science Press, Beijing. 3. (in Chinese) |
[ 蒋有绪, 卢俊培 (1991). 中国海南岛尖峰岭热带林生态系统. 科学出版社, 北京. 3.] | |
[15] | Jiang YX, Zang RG (1999). A preliminary analysis on elementary architecture of tropical trees in the tropical arboretum of Jianfengling, Hainan Island. Resources Science, 21, 80-84. (in Chinese with English abstract) |
[ 蒋有绪, 臧润国 (1999). 海南岛尖峰岭树木园热带树木基本构筑型的初步分析. 资源科学, 21, 80-84.] | |
[16] |
Johnson EI, Stouffer PC, Bierregaard RO Jr (2012). The phenology of molting, breeding and their overlap in central Amazonian birds. Journal of Avian Biology, 43, 141-154.
DOI URL |
[17] |
Kariyeva J, van Leeuwen WJD, Woodhouse CA (2012). Impacts of climate gradients on the vegetation phenology of major land use types in Central Asia (1981-2008). Frontiers of Earth Science, 6, 206-225.
DOI URL |
[18] |
Li RP, Zhou GS (2012). A temperature-precipitation based leafing model and its application in northeast China. PLoS ONE, 7, e33192.
DOI URL PMID |
[19] |
Liang L, Schwartz MD (2009). Landscape phenology: an integrative approach to seasonal vegetation dynamics. Landscape Ecology, 24, 465-472.
DOI URL |
[20] |
Liang L, Schwartz MD, Fei SL (2012). Photographic assessment of temperate forest understory phenology in relation to springtime meteorological drivers. International Journal of Biometeorology, 56, 343-355.
URL PMID |
[21] |
Ma T, Zhou CH (2012). Climate-associated changes in spring plant phenology in China. International Journal of Biometeorology, 56, 269-275.
URL PMID |
[22] | Melaas EK, Richardson AD, Friedl MA, Dragoni D, Gough CM, Herbst M, Montagnani L, Moors E (2013). Using FLUXNET data to improve models of springtime vegetation activity onset in forest ecosystems. Agricultural and Forest Meteorology, 171- 172, 46-56. |
[23] |
Morin X, Roy J, Sonié L, Chuine I (2010). Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytologist, 186, 900-910.
DOI URL PMID |
[24] |
Ose T, Arakawa O (2011). Uncertainty of future precipitation change due to global warming associated with sea surface temperature change in the tropical Pacific. Journal of the Meteorological Society of Japan, 89, 539-552.
DOI URL |
[25] |
Reyer CPO, Leuzinger S, Rammig A, Wolf A, Bartholomeus RP, Bonfante A, de Lorenzi F, Dury M, Gloning P, Abou Jaoudé R, Klein T, Kuster TM, Martins M, Niedrist G, Riccardi M, Wohlfahrt G, de Angelis P, de Dato G, Francois L, Menzel A, Pereira M (2013). A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability. Global Change Biology, 19, 75-89.
URL PMID |
[26] |
Richardson AD, Bailey AS, Denny EG, Martin CW, O’Keefe J (2006). Phenology of a northern hardwood forest canopy. Global Change Biology, 12, 1174-1188.
DOI URL |
[27] |
Rollinson CR, Kaye MW (2012). Experimental warming alters spring phenology of certain plant functional groups in an early successional forest community. Global Change Biology, 18, 1108-1116.
DOI URL |
[28] | Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007). Climate Change 2007―the Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[29] |
Soudzilovskaia NA, Elumeeva TG, Onipchenko VG, Shidakov II, Salpagarova FS, Khubiev AB, Tekeev DK, Cornelissen JHC (2013). Functional traits predict relationship between plant abundance dynamic and long-term climate warming. Proceedings of the National Academy of Sciences, 110, 18180-18184.
DOI URL |
[30] | Wan MW, Liu XZ (1979). Chinese Phenological Observation Methods. Science Press, Beijing. 49-51. (in Chinese) |
[ 宛敏渭, 刘秀珍 (1979). 中国物候观测方法. 科学出版社, 北京, 49-51.] | |
[31] | Wang SC, Tsou YH, Tsai YT (1979). Winter wheat production in Peking district and the statistical analysis of its meteorological factor. Scientia Agricultura Sinica,(1), 10-18. (in Chinese with English abstract) |
[ 王世耆, 曹永华, 蔡泳慈 (1979). 北京地区冬小麦产量和气象要素的统计学分析. 中国农业科学, (1), 10-18.] | |
[32] |
Xu H, Liu SR, Li YD, Zang RG, He FL (2012). Assessing non-parametric and area-based methods for estimating regional species richness. Journal of Vegetation Science, 23, 1006-1012.
DOI URL |
[33] | Xu JH (2006). Quantitative Geography. Higher Education Press, Beijing. 74. (in Chinese) |
[ 徐建华 (2006). 计量地理学. 高等教育出版社, 北京. 74.] | |
[34] | Zhang FC (1983). Statistic analysis on the phenophase of trees in spring of Beijing. Geographical Research, 2(2), 55-64. (in Chinese with English abstract) |
[ 张福春 (1983). 北京春季的树木物候与气象因子的统计学分析. 地理研究, 2(2), 55-64.] | |
[35] | Zhang XX, Ge QS, Zheng JY, Zhang FC (2005). Responses of spring phenology to climate changes in Beijing in last 150 years. Chinese Journal of Agrometeorology, 26, 263-267. (in Chinese with English abstract) |
[ 张学霞, 葛全胜, 郑景云, 张福春 (2005). 近150年北京春季物候对气候变化的响应. 中国农业气象, 26, 263-267.] | |
[36] | Zhang ZD, Zang RG, Wang LY, Wang GM, Zhang J (2012). Effects of environmental variation and spatial distance on the beta diversity of woody plant functional groups in a tropical forest. Polish Journal of Ecology, 60, 525-533. |
[37] |
Zhao JB, Zhang YP, Tan ZH, Song QH, Liang NS, Yu L, Zhao JF (2012). Using digital cameras for comparative phenological monitoring in an evergreen broad-leaved forest and a seasonal rain forest. Ecological Informatics, 10, 65-72.
DOI URL |
[38] | Zhou Z, Li YD, Lin MX, Chen DX, Xu H, Luo TS (2009). Preliminary study on climatic abrupt change and anomaly of tropical mountain rainforest from 1980 to 2005 in Jianfengling, Hainan Province. Journal of Meteorology and Environment, 25(3), 66-72. (in Chinese with English abstract) |
[ 周璋, 李意德, 林明献, 陈德祥, 许涵, 骆土寿 (2009). 1980-2005年海南岛尖峰岭热带山地雨林区气候突变与异常的初步研究. 气象与环境学报, 25(3), 66-72.] |
[1] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[2] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[3] | 于海英, 杨莉琳, 付素静, 张志敏, 姚琦馥. 暖温带森林木本植物展叶始期对低温和热量累积变化的响应[J]. 植物生态学报, 2022, 46(12): 1573-1584. |
[4] | 王焕炯, 陶泽兴, 葛全胜. 气候波动对西安39种木本植物展叶始期及其积温需求的影响[J]. 植物生态学报, 2019, 43(10): 877-888. |
[5] | 邢小艺, 郝培尧, 李冠衡, 李慧, 董丽. 北京植物物候的季节动态特征——以北京植物园为例[J]. 植物生态学报, 2018, 42(9): 906-916. |
[6] | 白洁, 葛全胜, 戴君虎, 王英. 西安木本植物物候与气候要素的关系[J]. 植物生态学报, 2010, 34(11): 1274-1282. |
[7] | 常兆丰, 韩福贵, 仲生年. 甘肃民勤荒漠区18种乔木物候与气温变化的关系[J]. 植物生态学报, 2009, 33(2): 311-319. |
[8] | 张峰, 周广胜, 王玉辉. 内蒙古克氏针茅草原植物物候及其与气候因子关系[J]. 植物生态学报, 2008, 32(6): 1312-1322. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19