植物生态学报 ›› 2014, Vol. 38 ›› Issue (10): 1117-1123.DOI: 10.3724/SP.J.1258.2014.00106
冯汉青1,*(), 焦青松1, 田武英1, 孙坤1, 贾凌云1
收稿日期:
2014-05-16
接受日期:
2014-07-16
出版日期:
2014-05-16
发布日期:
2021-04-20
通讯作者:
冯汉青
作者简介:
* E-mail: fenghanq@nwnu.edu.cn基金资助:
FENG Han-Qing1,*(), JIAO Qing-Song1, TIAN Wu-Ying1, SUN Kun1, JIA Ling-Yun1
Received:
2014-05-16
Accepted:
2014-07-16
Online:
2014-05-16
Published:
2021-04-20
Contact:
FENG Han-Qing
摘要:
三磷酸腺苷(ATP)不但分布在细胞内部, 而且广泛存在于动物和植物细胞的细胞外基质中。细胞外ATP (eATP)可与细胞膜表面相应的受体结合并激发细胞内的第二信使, 从而调节细胞的多种生理学功能。但目前对于eATP是否也能对植物的光合作用产生影响则研究较少。该文以菜豆(Phaseolus vulgaris)叶片为实验材料, 研究了在不同光强下eATP对菜豆叶片叶绿素荧光特性和光合放氧速率的影响。结果显示, 随着光强的增加, 叶片的光适应下最大光化学效率(Fv′/Fm′)、光系统II (PSII)实际光化学效率(Y(II))、光化学猝灭系数(qP)均呈现下降趋势, 而电子传递速率(ETR)、非光化学猝灭系数(qN)以及调节性能量耗散的量子产量(Y(NPQ))随着光强的增加呈上升趋势。与对照相比, eATP的处理可以显著提高菜豆叶片PSII的潜在最大光化学效率(Fv/Fm)、Y(II)、qP、ETR和光合放氧速率; 但eATP的处理对Fv′/Fm′、qN以及Y(NPQ)没有显著影响。AMP-PCP (β,γ-亚甲基三磷酸腺苷, eATP细胞外受体的抑制剂)的处理显著降低了Fv/Fm、Fv′/Fm′、Y(II)、ETR和光合放氧速率, 同时也显著增加了qN以及Y(NPQ)的水平。以上结果显示, 植物eATP水平的变化对植物光合作用的光化学反应有着重要的影响。
冯汉青, 焦青松, 田武英, 孙坤, 贾凌云. 不同光强下细胞外三磷酸腺苷对菜豆叶片光化学反应特性的影响. 植物生态学报, 2014, 38(10): 1117-1123. DOI: 10.3724/SP.J.1258.2014.00106
FENG Han-Qing, JIAO Qing-Song, TIAN Wu-Ying, SUN Kun, JIA Ling-Yun. Effects of extracellular ATP on the characteristics of photochemical reaction in bean (Phaseolus vulgaris) leaves under different light intensities. Chinese Journal of Plant Ecology, 2014, 38(10): 1117-1123. DOI: 10.3724/SP.J.1258.2014.00106
图1 细胞外ATP及AMP-PCP对菜豆叶片PSII潜在最大光化学效率(Fv/Fm)的影响(平均值±标准偏差, n = 4)。 *, p < 0.05。
Fig. 1 Effects of extracellular ATP and AMP-PCP on potential maximal photochemical efficiency (Fv/Fm) in bean leaves (mean ± SD, n = 4). *, p < 0.05.
图2 细胞外ATP及AMP-PCP对菜豆叶片光照下PSII光化学效率和电子传递的影响(平均值±标准偏差, n = 4)。 *, p < 0.05。
Fig. 2 Effects of extracellular ATP and AMP-PCP on photochemical efficiency and electron transport rate in bean leaves under light (mean ± SD, n = 4). *, p < 0.05. ETR, electron transport rate; Fv'/Fm', maximal photosystem II quantum yield in light adaptation; qp, photochemical quenching coefficient; Y(II), effective photochemical quenching yield.
图3 细胞外ATP及AMP-PCP对菜豆叶片光照下光合放氧速率的影响(平均值±标准偏差, n = 4)。 *, p < 0.05。
Fig. 3 Effects of extracellular ATP and AMP-PCP on photosynthetic O2 evolution rate in bean leaves under light (mean ± SD, n = 4). *, p < 0.05.
图4 ATP及AMP-PCP对菜豆叶片光照下能量耗散的影响(平均值±标准偏差, n = 4)。 *, p < 0.05。
Fig. 4 Effects of ATP and AMP-PCP on energy dissipation in bean leaves under light (mean ± SD, n = 4). *, p < 0.05. qN, non-photochemical quenching coefficient; Y(NPQ), quantum yield of regulated energy dissipation.
[1] | Berger S, Papadopoulos M, Schreiber U, Kaiser W, Roitsch T (2004). Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiologia Plantarum, 122,419-428. |
[2] | Bilger W, Björkman O (1994). Relationships among violaxanthin deepoxidation, thylakoid membrane conformation, and nonphotochemical chlorophyll fluorescence quenching in leaves of cotton (Gossypium hirsutum L.). Planta, 193,238-246. |
[3] |
Chivasa S, Murphy AM, Hamilton JM, Lindsey K, Carr JP, Slabas AR (2009). Extracellular ATP is a regulator of pathogen defence in plants. The Plant Journal, 60,436-448.
DOI URL PMID |
[4] | Chivasa S, Ndimba BK, Simon WJ, Lindsey K, Slabas AR (2005). Extracellular ATP functions as an endogenous external metabolite regulating plant cell viability. The Plant Cell Online, 17,3019-3034. |
[5] |
Chivasa S, Simon WJ, Murphy AM, Lindsey K, Carr JP, Slabas AR (2010). The effects of extracellular adenosine 5′-triphosphate on the tobacco proteome. Proteomics, 10,235-244.
DOI URL PMID |
[6] |
Choi J, Tanaka K, Cao Y, Qi Y, Qiu J, Liang Y, Lee SY, Stacey G (2014). Identification of a plant receptor for extracellular ATP. Science, 343,290-294.
DOI URL PMID |
[7] |
Clark G, Torres J, Finlayson S, Guan X, Handley C, Lee J, Kays JE, Chen ZJ, Roux SJ (2010). Apyrase (nucleoside triphosphate-diphosphohydrolase) and extracellular nucleotides regulate cotton fiber elongation in cultured ovules. Plant Physiology, 152,1073-1083.
DOI URL PMID |
[8] |
Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010). Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. Journal of Cell Science, 123,1468-1479.
DOI URL PMID |
[9] |
Demidchik V, Nichols C, Oliynyk M, Dark A, Glover BJ, Glover BJ, Davies JM (2003). Is ATP a signaling agent in plants? Plant Physiology, 133,456-461.
DOI URL PMID |
[10] | Demidchik V, Shang ZL, Shin R, Thompson E, Rubio L, Laohavisit A, Mortimer JC, Chivasa S, Slabas AR, Glover BJ, Schachtman DP, Shabala SN, Davies JM (2009). Plant extracellular ATP signalling by plasma membrane NADPH oxidase and Ca2+ channels. The Plant Journal, 58,903-913. |
[11] | Demmig-Adams B, Adams III WW (1996). Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta, 198,460-470. |
[12] |
Dichmann S, Idzko M, Zimpfer U, Hofmann C, Ferrari D, Lutt- mann W, Virchow Jr C, Virgilio FD, Norgauer J (2000). Adenosine triphosphate-induced oxygen radical production and CD11b up-regulation: Ca2+ mobilization and actin reorganization in human eosinophils. Blood, 95,973-978.
URL PMID |
[13] |
Farquhar GD, von Caemmerer SV, Berry JA (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149,78-90.
URL PMID |
[14] |
Foresi NP, Laxalt AM, Tonón CV, Casalongué CA, Lamattina L (2007). Extracellular ATP induces nitric oxide production in tomato cell suspensions. Plant Physiology, 145,589-592.
DOI URL PMID |
[15] |
Hao LH, Wang WX, Chen C, Wang YF, Liu T, Li X, Shang ZL (2012). Extracellular ATP promotes stomatal opening of Arabidopsis thaliana through heterotrimeric G protein α subunit and reactive oxygen species. Molecular Plant, 5,852-864.
DOI URL PMID |
[16] |
Ifuku K, Yamamoto Y, Ono TA, Ishihara S, Sato F (2005). PsbP protein, but not PsbQ protein, is essential for the regulation and stabilization of photosystem II in higher plants. Plant Physiology, 139,1175-1184.
DOI URL PMID |
[17] |
Khakh BS, Burnstock G (2009). The double life of ATP. Scientific American, 301,84-90, 92.
DOI URL PMID |
[18] |
Maxwell K, Johnson GN (2000). Chlorophyll fluorescence―a practical guide. Journal of Experimental Botany, 51,659-668.
DOI URL PMID |
[19] |
Pastenes C, Horton P (1996). Effect of high temperature on photosynthesis in beans (I. Oxygen evolution and chlorophyll fluorescence). Plant Physiology, 112,1245-1251.
DOI URL PMID |
[20] |
Quilliam RS, Swarbrick PJ, Scholes JD, Rolfe SA (2006). Imaging photosynthesis in wounded leaves of Arabidopsis thaliana. Journal of Experimental Botany, 57,55-69.
URL PMID |
[21] |
Riewe D, Grosman L, Fernie AR, Wucke C, Geigenberger P (2008). The potato-specific apyrase is apoplastically localized and has influence on gene expression, growth, and development. Plant Physiology, 147,1092-1109.
DOI URL PMID |
[22] |
Roux SJ, Steinebrunner I (2007). Extracellular ATP: an unexpected role as a signaler in plants. Trends in Plant Science, 12,522-527.
URL PMID |
[23] |
Song CJ, Steinebrunner I, Wang X, Stout SC, Roux SJ (2006). Extracellular ATP induces the accumulation of superoxide via NADPH oxidases in Arabidopsis. Plant Physiology, 140,1222-1232.
DOI URL PMID |
[24] |
Sorokin C, Krauss RW (1958). The effects of light intensity on the growth rates of green algae. Plant Physiology, 33,109-113.
DOI URL PMID |
[25] |
Su XR, Wang XF, Yang FJ, Wei M (2007). Effects of NO3- stress on photosynthetic rate, photochemical efficiency of PSII and light energy allocation in cucumber seedling leaves. Journal of Applied Ecology, 18,1441-1446. (in Chinese with English abstract)
URL PMID |
[ 苏秀荣, 王秀峰, 杨凤娟, 魏珉 (2007). 硝酸根胁迫对黄瓜幼苗叶片光合速率、PSII光化学效率及光能分配的影响. 应用生态学报, 18,1441-1446.]
PMID |
|
[26] |
Sun J, Zhang CL, Zhang X, Deng SR, Zhao R, Shen X, Chen SL (2012). Extracellular ATP signaling and homeostasis in plant cells. Plant Signaling & Behavior, 7,566-569.
DOI URL PMID |
[27] |
Tanaka K, Gilroy S, Jones AM, Stacey G (2010). Extracellular ATP signaling in plants. Trends in Cell Biology, 20,601-608.
DOI URL PMID |
[28] | Wang F (2010). The Role of Ion Channel and ROS in eATP -Regluated Stomotal Movement of Vicia faba. Master degree dissertation, Hebei Normal University, Shijiazhuang. (in Chinese with English abstract) |
[ 王芳 (2010). ROS和离子通道在eATP调控蚕豆气孔运动过程中的作用. 硕士学位论文, 河北师范大学, 石家庄.] | |
[29] |
Wolf C, Hennig M, Romanovicz D, Steinebrunner I (2007). Developmental defects and seedling lethality in apyrase AtAPY1 and AtAPY2 double knockout mutants. Plant Molecular Biology, 64,657-672.
DOI URL PMID |
[30] |
Wu J, Steinebrunner I, Sun Y, Butterfield T, Torres J, Arnold D, Gonzalez A, Jacob F, Reichler S, Roux S J (2007). Apyrases (nucleoside triphosphate-diphosphohydrolases) play a key role in growth control in Arabidopsis. Plant Physiology, 144,961-975.
URL PMID |
[31] |
Zhang GX, Liu YF, Ni Y, Meng ZJ, Lu T, Li TL (2014). Exogenous calcium alleviates low night temperature stress on the photosynthetic apparatus of tomato leaves. PLoS ONE, 9(5),e97322.
DOI URL PMID |
[1] | 苑丹阳, 朱良军, 张远东, 李宗善, 赵慧颖, 王晓春. 吉林老白山鱼鳞云杉树轮蓝光强度和轮宽指数与气候响应关系随海拔变化的对比[J]. 植物生态学报, 2019, 43(12): 1061-1078. |
[2] | 颉洪涛, 虞木奎, 成向荣. 光照强度变化对5种耐阴植物氮磷养分含量、分配以及限制状况的影响[J]. 植物生态学报, 2017, 41(5): 559-569. |
[3] | 李力, 张祥星, 郑睿, 郭建青. 夏玉米光合特性及光响应曲线拟合[J]. 植物生态学报, 2016, 40(12): 1310-1318. |
[4] | 袁敏, 卜兆君, 刘超, 马进泽, 王升忠. 水位与光强变化对尖叶泥炭藓孢蒴生产动态的影响[J]. 植物生态学报, 2015, 39(5): 501-507. |
[5] | 李磊, 李向义, 林丽莎, 王迎菊, 薛伟. 两种生境条件下6种牧草叶绿素含量及荧光参数的比较[J]. 植物生态学报, 2011, 35(6): 672-680. |
[6] | 赵平, 孙谷畴, 曾小平. 适度高温下亚热带阔叶树种叶片的光合速率和吸收光能的分配[J]. 植物生态学报, 2008, 32(2): 413-423. |
[7] | 彭长连, 温学, 林植芳, 周厚诚, 陈少薇, 林桂珠. 龙须菜对海水氮磷富营养化的响应[J]. 植物生态学报, 2007, 31(3): 505-512. |
[8] | 师生波, 李和平, 王学英, 李惠梅, 韩发. 高山植物唐古特山莨菪和唐古特大黄对强太阳辐射光能的利用和耗散特性[J]. 植物生态学报, 2007, 31(1): 129-137. |
[9] | 王建林, 于贵瑞, 王伯伦, 齐华, 徐正进. 北方粳稻光合速率、气孔导度对光强和CO2浓度的响应[J]. 植物生态学报, 2005, 29(1): 16-25. |
[10] | 冯玉龙, 曹坤芳, 冯志立. 夜间低温对不同光强下生长的两种沟谷雨林树苗荧光参数的影响[J]. 植物生态学报, 2004, 28(2): 150-156. |
[11] | 孙谷畴, 赵平, 曾小平, 彭少麟. 不同光强下焕镛木和观光木的光合参数变化[J]. 植物生态学报, 2002, 26(3): 355-362. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19