植物生态学报 ›› 2011, Vol. 35 ›› Issue (6): 672-680.DOI: 10.3724/SP.J.1258.2011.00672
李磊1,2,3, 李向义1,3,*(), 林丽莎1,3, 王迎菊1,2,3, 薛伟1,2,3
收稿日期:
2010-12-20
接受日期:
2011-04-22
出版日期:
2011-12-20
发布日期:
2011-06-30
通讯作者:
李向义
作者简介:
* E-mail: xiangyil@yahoo.com
LI Lei1,2,3, LI Xiang-Yi1,3,*(), LIN Li-Sha1,3, WANG Ying-Ju1,2,3, XUE Wei1,2,3
Received:
2010-12-20
Accepted:
2011-04-22
Online:
2011-12-20
Published:
2011-06-30
Contact:
LI Xiang-Yi
摘要:
昆仑山前山牧场海拔较高, 策勒绿洲海拔相对较低, 两者生境差异较大。以昆仑山前山牧场和策勒绿洲边缘两种不同生境条件下生长的6种牧草: 冰草(Agropyron cristatum)、无芒雀麦(Bromus inermis)、矮生高羊茅(Festuca elata)、披碱草(Elymus dahuricus )、红豆草(Onobrychis pulchella)及和田大叶(Medicago sativa var. luxurians)为试验材料, 研究了不同生境条件下牧草叶片叶绿素含量及叶绿素荧光动力学参数的变化情况。结果显示: (1)在两种生境条件下, 昆仑山前山牧场生境生长的牧草叶绿素a、叶绿素b、总叶绿素的含量明显较高, 生长在策勒绿洲生境的牧草品种叶绿素a/b值较高; (2)昆仑山前山牧场生境牧草最大荧光、光系统II (PSII)最大光化学效率、PSII潜在活性和单位面积反应中心的数量的值明显高于策勒绿洲生境品种, 而初始荧光、单位反应中心吸收的光能、单位反应中心捕获的能量、单位反应中心耗散的能量、荧光诱导曲线初始斜率值则低于策勒绿洲生境品种。因此, 两种生境下环境因子发生了改变, 对牧草产生综合的胁迫作用; 策勒绿洲生境明显对牧草生长产生了抑制, 策勒绿洲生境牧草的色素含量降低以及PSII的机构遭到损坏, 导致反应中心一部分失活或裂解, 剩余有活性的反应中心的效率增加, 昆仑山生境则相对比较适宜牧草生长; 两种生境不同牧草叶绿素含量和叶绿素荧光参数的变化幅度不同。
李磊, 李向义, 林丽莎, 王迎菊, 薛伟. 两种生境条件下6种牧草叶绿素含量及荧光参数的比较. 植物生态学报, 2011, 35(6): 672-680. DOI: 10.3724/SP.J.1258.2011.00672
LI Lei, LI Xiang-Yi, LIN Li-Sha, WANG Ying-Ju, XUE Wei. Comparison of chlorophyll content and fluorescence parameters of six pasture species in two habitats in China. Chinese Journal of Plant Ecology, 2011, 35(6): 672-680. DOI: 10.3724/SP.J.1258.2011.00672
图1 两种生境条件下牧草叶绿素含量的变化(平均值±标准误差)。同种生境牧草间标有不同英文字母, 表明两者的差异显著(p < 0.05)。AC, 冰草; BI, 无芒雀麦; ED, 披碱草; FE, 矮生高羊茅; MS, 和田大叶; OP, 红豆草。
Fig. 1 Changes of pigment content of pasture in two habitats (mean ± SE). Different alphabet indicate significant difference between species (p < 0.05). AC, Agropyron cristatum; BI, Bromus inermis; ED, Elymus dahuricus; FE, Festuca elataa; MS, Medicago sativa var. luxurians; OP, Onobrychis pulchell. Chl, Chlorophyll.
图2 两种生境条件下牧草的PSII原初光化学效率和初始荧光等参数的变化(平均值±标准误差)。同种生境牧草间标有不同英文字母, 表明两者的差异显著(p < 0.05)。AC, 冰草; BI, 无芒雀麦; ED, 披碱草; FE, 矮生高羊茅; MS, 和田大叶; OP, 红豆草。
Fig. 2 Changes of chlorophyll fluorescence parameters of pasture in two habitats (mean ± SE). Different alphabet indicate significant difference between species (p < 0.05). AC, Agropyron cristatum; BI, Bromus inermis; ED, Elymus dahuricus; FE, Festuca elata; MS, Medicago sativa var. luxurians; OP, Onobrychis pulchella. Fm, maximum fluorescence yield; Fo, minimum fluorescence yield; Fv, variable fluorescence yield; Fv/Fm, maximum photochemical efficiency of PSII; Fv/Fo, potential activity of PSII.
图3 两种生境下牧草PSII反应中心能量流动分配的变化(平均值±标准误差)。同种生境牧草间标有不同英文字母, 表明两者的差异显著(p < 0.05)。AC, 冰草; BI, 无芒雀麦; ED, 披碱草; FE, 矮生高羊茅; MS, 和田大叶; OP, 红豆草。
Fig. 3 Changes of energy flow distribute in PSII reaction center of pasture in two habitats (mean ± SE). Different alphabet indicate significant difference between species (p < 0.05). AC, Agropyron cristatum; BI, Bromus inermis; ED, Elymus dahuricus; FE, Festuca elata; MS, Medicago sativa var. luxurians; OP, Onobrychis pulchella. The specific energy fluxes (per reaction centers, RC) for absorption (ABS/RC), trapping (TRo/RC), and dissipation (DIo/RC); RC/CSo, active reaction centers per cross-section; Mo, initial slope of fluorescence intensity.
图4 两种生境条件下牧草叶绿素荧光动力学曲线的变化。A, 昆仑山。B, 策勒绿洲。各点含义详见李鹏民等(2005)。
Fig. 4 Changes of chlorophyll fluorescence transients fo pasture in two habitats. A, Kunlun Mountains. B, Cele oasis. The meaning of each point referred Li et al. (2005).
参数 Parameter | 变异来源 Source of variation | 自由度 df | 平方和 SS | 均方 Mean square | F | p |
---|---|---|---|---|---|---|
叶绿素a Chlorophyll a | 生境 Habitat | 1 | 1.081 81 | 1.081 81 | 161.71 | 0.000** |
物种 Species | 5 | 3.373 93 | 0.674 79 | 100.87 | 0.000** | |
生境×物种 Interaction | 5 | 2.363 28 | 0.472 66 | 70.65 | 0.000** | |
误差 Error | 24 | 0.160 55 | 0.006 69 | |||
总变异 Total variation | 35 | 6.979 58 | ||||
叶绿素b Chlorophyll b | 生境 Habitat | 1 | 0.306 63 | 0.306 63 | 272.80 | 0.000** |
物种 Species | 5 | 0.339 89 | 0.067 98 | 60.48 | 0.000** | |
生境×物种 Interaction | 5 | 0.409 85 | 0.081 97 | 72.93 | 0.000** | |
误差 Error | 24 | 0.026 98 | 0.001 12 | |||
总变异 Total variation | 35 | 1.083 36 | ||||
总叶绿素 Chlorophyll | 生境 Habitat | 1 | 2.540 3 | 2.540 3 | 212.47 | 0.000** |
物种 Species | 5 | 5.848 1 | 1.169 6 | 97.83 | 0.000** | |
生境×物种 Interaction | 5 | 4.683 2 | 0.936 6 | 78.34 | 0.000** | |
误差 Error | 24 | 0.286 9 | 0.012 0 | |||
总变异 Total variation | 35 | 13.358 7 | ||||
初始荧光 Fo | 生境 Habitat | 1 | 504 214 | 530 337 | 61.73 | 0.000** |
物种 Species | 5 | 424 867 | 84 734 | 9.86 | 0.000** | |
生境×物种 Interaction | 5 | 293 673 | 58 735 | 6.84 | 0.000** | |
误差 Error | 34 | 292 116 | 8 592 | |||
总变异 Total variation | 45 | 1 514 871 | ||||
最大荧光 Fm | 生境 Habitat | 1 | 14 193 581 | 14 403 083 | 180.04 | 0.000** |
物种 Species | 5 | 1 616 251 | 339 166 | 4.24 | 0.004** | |
生境×物种 Interaction | 5 | 2 440 896 | 488 179 | 6.84 | 0.000** | |
误差 Error | 34 | 2 719 966 | 79 999 | |||
总变异 Total variation | 45 | 20 970 694 | ||||
最大光化学效率 Fv/Fm | 生境 Habitat | 1 | 0.594 401 | 0.624 560 | 166.16 | 0.000** |
物种 Species | 5 | 0.259 409 | 0.053 059 | 14.12 | 0.000** | |
生境×物种 Interaction | 5 | 0.232 687 | 0.046 537 | 12.38 | 0.000** | |
误差 Error | 34 | 0.127 798 | 0.003 759 | |||
总变异 Total variation | 45 | 1.214 295 |
表1 不同生境条件下6种牧草叶绿素含量及荧光参数的双因素方差分析
Table 1 The two-way ANOVA of chlorophyll content and fluorescence parameters of six pasture species in two habitats
参数 Parameter | 变异来源 Source of variation | 自由度 df | 平方和 SS | 均方 Mean square | F | p |
---|---|---|---|---|---|---|
叶绿素a Chlorophyll a | 生境 Habitat | 1 | 1.081 81 | 1.081 81 | 161.71 | 0.000** |
物种 Species | 5 | 3.373 93 | 0.674 79 | 100.87 | 0.000** | |
生境×物种 Interaction | 5 | 2.363 28 | 0.472 66 | 70.65 | 0.000** | |
误差 Error | 24 | 0.160 55 | 0.006 69 | |||
总变异 Total variation | 35 | 6.979 58 | ||||
叶绿素b Chlorophyll b | 生境 Habitat | 1 | 0.306 63 | 0.306 63 | 272.80 | 0.000** |
物种 Species | 5 | 0.339 89 | 0.067 98 | 60.48 | 0.000** | |
生境×物种 Interaction | 5 | 0.409 85 | 0.081 97 | 72.93 | 0.000** | |
误差 Error | 24 | 0.026 98 | 0.001 12 | |||
总变异 Total variation | 35 | 1.083 36 | ||||
总叶绿素 Chlorophyll | 生境 Habitat | 1 | 2.540 3 | 2.540 3 | 212.47 | 0.000** |
物种 Species | 5 | 5.848 1 | 1.169 6 | 97.83 | 0.000** | |
生境×物种 Interaction | 5 | 4.683 2 | 0.936 6 | 78.34 | 0.000** | |
误差 Error | 24 | 0.286 9 | 0.012 0 | |||
总变异 Total variation | 35 | 13.358 7 | ||||
初始荧光 Fo | 生境 Habitat | 1 | 504 214 | 530 337 | 61.73 | 0.000** |
物种 Species | 5 | 424 867 | 84 734 | 9.86 | 0.000** | |
生境×物种 Interaction | 5 | 293 673 | 58 735 | 6.84 | 0.000** | |
误差 Error | 34 | 292 116 | 8 592 | |||
总变异 Total variation | 45 | 1 514 871 | ||||
最大荧光 Fm | 生境 Habitat | 1 | 14 193 581 | 14 403 083 | 180.04 | 0.000** |
物种 Species | 5 | 1 616 251 | 339 166 | 4.24 | 0.004** | |
生境×物种 Interaction | 5 | 2 440 896 | 488 179 | 6.84 | 0.000** | |
误差 Error | 34 | 2 719 966 | 79 999 | |||
总变异 Total variation | 45 | 20 970 694 | ||||
最大光化学效率 Fv/Fm | 生境 Habitat | 1 | 0.594 401 | 0.624 560 | 166.16 | 0.000** |
物种 Species | 5 | 0.259 409 | 0.053 059 | 14.12 | 0.000** | |
生境×物种 Interaction | 5 | 0.232 687 | 0.046 537 | 12.38 | 0.000** | |
误差 Error | 34 | 0.127 798 | 0.003 759 | |||
总变异 Total variation | 45 | 1.214 295 |
[1] |
Anderson JM, Aro EM (1994). Grana stacking and protection of photosystem II in thylakoid membranes of higher plant leaves under sustained high irradiance: an hypothesis. Photosynthesis Research, 41, 315-326.
URL PMID |
[2] |
Baker NR (1991). A possible role for photosystem II in environmental perturbations of photosynthesis. Physiologia Plantarum, 81, 563-570.
DOI URL |
[3] | Cao Y (曹昀), Wang GX (王国祥), Zhang D (张聃) (2008). Effects of drought stress on the growth and chlorophyll fluorescence of reed seedling. Arid Land Geography (干旱区地理), 31, 862-869. (in Chinese with English abstract) |
[4] | Gao Y (高玉), Gao ZK (高志奎), Zhang XH (张晓慧), Gao RF (高荣孚) (2009). Heat shock stress on photosystem II in white cucumbers probed by the fast fluorescence rise OJIP. Acta Ecologica Sinica (生态学报), 29, 3335-3341. (in Chinese with English abstract) |
[5] | Han RH (韩瑞宏), Lu XS (卢欣石), Gao GJ (高桂娟), Yang XJ (杨秀娟) (2007). Photosynthetic physiological response of alfalfa (Medicago sativa) to drought stress. Acta Ecologica Sinica (生态学报), 27, 5229-5237. (in Chinese with English abstract) |
[6] |
Havaux M (1996). Short-term responses of photosystem I to heat stress: induction of a PSII-independent electron transport through PSI fed by stromal components. Photosynthesis Research, 47, 85-97.
DOI URL PMID |
[7] | Jiang CD, Gao HY, Zou Q (2003). Changes of donor and accepter side in photosystem 2 complex induced by iron deficiency in attached soybean and maize leaves. Photosynthetia, 41, 267-271. |
[8] | Larcher W (1994). Hochgebirge: an den grenzen des wachs- tums. In: Morawetz W ed. Ökologische Grundwerte in Österreich Biosystematics and Ecology Series. Osterr Akad Wiss, Wien. 304-343. |
[9] | Li HS (李合生) (2000). Plant Physiological Biochemical Experiment Principles and Techniques (植物生理生化试验原理和技术). Higher Education Press, Beijing. 137. (in Chinese) |
[10] | Li PM (李鹏民), Gao HY (高辉远), Strasser RJ (2005). Application of the fast chlorophyll fluorescence induction dynamics in photosynthesis study. Journal of Plant Physiology and Molecular Biology (植物生理与分子生物学学报), 31, 559-566. (in Chinese with English abstract) |
[11] | Li W (李伟), Cao KF (曹坤芳) (2006). Effects of drought stress on photosynthetic characteristics and chlorophyll fluorescence parameters in seedling of Terminthia paniculata grown under different light level. Acta Botanica Boreal-Occidentalia Sinica (西北植物学报), 26, 266-275. (in Chinese with English abstract) |
[12] | Li YH (李彦慧), Meng QR (孟庆瑞), Li XY (李向应), Li BG (李保国), Yang JM (杨建民) (2008). Contents of photosynthetic pigment and chlorophyll fluorescence parameters in Prunus cerasifera var. atropurea leaves under SO2 stress. Acta Scientiae Circumstantiae (环境科学学报), 28, 2236-2242. (in Chinese with English abstract) |
[13] | Qin JQ (秦建桥), Xia BC (夏北成), Zhao P (赵鹏) (2010). Photosynthetic physiological response of two Miscanthus floridulus populations to Cd stress. Acta Ecologica Sinica (生态学报), 30, 288-299. (in Chinese with English abstract) |
[14] |
Schreiber U, Berry JA (1977). Heat-induced changes in chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus. Planta, 136, 233-238.
DOI URL PMID |
[15] | Shi SB (师生波), Ben GY (贲桂英), Han F (韩发) (1999). Analysis of the solar UV-B radiation and plant UV-B- absorbing compounds in different regions. Acta Phytoecologica Sinica (植物生态学报), 23, 529-535. (in Chinese with English abstract) |
[16] | Song CY (宋春雨), Liu XB (刘晓冰), Jin CX (金彩霞) (2002). Mechanisms of damage and acclimation of photosynthetic apparatus due to heat stress. System Sciences and Comprehensive Studies in Agriculture (农业系统科学与综合研究), 18, 252-256. (in Chinese with English abstract) |
[17] | Srivastava A, Guissé B, Greppin H, Strasser RJ (1997). Regulation of antenna structure and electron transport in photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochimica et Biophysica Acta (BBA)- Bioenergetics, 1320, 95-106. |
[18] |
Srivastava A, Strasser RJ (1996). Stress and stress management of land plants during a regular day. Journal of Plant Physiology, 148, 445-455.
DOI URL |
[19] | Strasser RJ, Srivastava A, Tsimilli-Michael M (2000). The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P eds. Photosynthesis: Mechanisms, Regulation and Adaptation. Taylor and Francis Press, London. 445-483. |
[20] | Strasser RJ, Tsimill-Michael M, Srivastava A (2004). Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G, Govindjee eds. Advances in Photosynthesis and Respiration. KAP Press, Dordrecht, The Netherlands. 1-47. |
[21] | Sundby C, Melis A, Mäenpää P, Andersson B (1986). Temperature-dependent changes in the antenna size of photosystem II. Reversible conversion of photosystem IIα to photosystem IIβ. Biochimica et Biophysica Acta (BBA)- Bioenergetics, 851, 475-483. |
[22] | Sun XZ (孙宪芝), Zheng CS (郑成淑), Wang XF (王秀峰) (2008). Effects of high temperature stress on photosynthesis and chlorophyll fluorescence of cut flower chrysanthemum (Dendranthema grandiflora ‘Jinba’). Chinese Journal of Applied Ecology (应用生态学报), 19, 2149-2154. (in Chinese with English abstract) |
[23] | Wang M (王梅), Gao ZK (高志奎), Huang RH (黄瑞虹), Wang HY (王惠英), Zhang WL (张文丽), Gao RF (高荣孚) (2007). Heat stress characteristics of photosystem II in eggplant. Chinese Journal of Applied Ecology (应用生态学报), 18, 63-68. (in Chinese with English abstract) |
[24] | Wang WJ (王文杰), Li WX (李文馨), Zu YG (祖元刚), Wang XP (王晓鹏), He HS (贺海升) (2009). Differences in pigments and chlorophyll fluorescence parameters between stems and leaves of Eupatorium adenophorum under different temperature treatments. Acta Ecologica Sinica (生态学报), 29, 5424-5433. (in Chinese with English abstract) |
[25] | Wen GS (温国胜), Tian HT (田海涛), Zhang MR (张明如), Jiang WW (蒋文伟) (2006). Application of chlorophyll fluorescence analysis in forest tree cultivation. Chinese Journal of Applied Ecology (应用生态学报), 17, 1973-1977. (in Chinese with English abstract) |
[26] | Wu HY (吴韩英), Shou SY (寿森炎), Zhu ZJ (朱祝军), Yang XT (杨信廷) (2001). Effects of high temperature stress on photosynthesis and chlorophyll fluorescence in sweet pepper (Capsicum fructescens L.). Acta Horticulturate Sinica (园艺学报), 28, 517-521. (in Chinese with English abstract) |
[27] | Zhu JT (朱军涛), Li XY (李向义), Zhang XM (张希明), Zeng FJ (曾凡江), Lin LS (林丽莎), Yang SG (杨尚功), Gui DW (桂东伟), Wang H (王辉), Liu B (刘波) (2010). Ecophysiological response of Calligonum roborovskii to the habitats in different altitudes in north slope of Kunlun Mountain. Acta Ecologica Sinica (生态学报), 30, 602-609. (in Chinese with English abstract) |
[1] | 文佳 张新娜 王娟 赵秀海 张春雨. 性状调节幼苗存活率对邻体竞争和环境的响应 [J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[3] | 冯珊珊, 黄春晖, 唐梦云, 蒋维昕, 白天道. 细叶云南松针叶形态和显微性状地理变异及其环境解释[J]. 植物生态学报, 2023, 47(8): 1116-1130. |
[4] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[5] | 石荡, 郭传超, 蒋南林, 唐莹莹, 郑凤, 王瑾, 廖康, 刘立强. 新疆野杏天然更新幼株的个体特征及空间分布格局[J]. 植物生态学报, 2023, 47(4): 515-529. |
[6] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[7] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[8] | 汪晶晶, 王嘉浩, 黄致云, Vanessa Chiamaka OKECHUKW, 胡蝶, 祁珊珊, 戴志聪, 杜道林. 不同氮水平下内生固氮菌对入侵植物南美蟛蜞菊生长策略的影响[J]. 植物生态学报, 2023, 47(2): 195-205. |
[9] | 余玉蓉, 吴浩, 高娅菲, 赵媛博, 李小玲, 卜贵军, 薛丹, 刘正祥, 武海雯, 吴林. 模拟氮沉降对鄂西南湿地泥炭藓生理及形态特征的影响[J]. 植物生态学报, 2023, 47(11): 1493-1506. |
[10] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[11] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[12] | 余秋伍, 杨菁, 沈国春. 浙江天童常绿阔叶林林冠结构与群落物种组成的关系[J]. 植物生态学报, 2022, 46(5): 529-538. |
[13] | 孟庆静, 樊卫国. 刺梨的适钙类型及对高钙生境的适应性[J]. 植物生态学报, 2022, 46(12): 1562-1572. |
[14] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[15] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19