植物生态学报 ›› 2008, Vol. 32 ›› Issue (2): 431-439.DOI: 10.3773/j.issn.1005-264x.2008.02.022
所属专题: 生态系统碳水能量通量
收稿日期:
2006-11-01
接受日期:
2007-02-03
出版日期:
2008-11-01
发布日期:
2008-03-30
通讯作者:
刘玲玲
作者简介:
E-mail: meizhongdai@126.com基金资助:
LIU Ling-Ling1,2(), LIU Yun-Fen2, WEN Xue-Fa2, WANG Ying-Hong3
Received:
2006-11-01
Accepted:
2007-02-03
Online:
2008-11-01
Published:
2008-03-30
Contact:
LIU Ling-Ling
摘要:
CH4在温室效应中起着重要作用,为估算中亚热带CH4的源汇现状,评价森林生态系统对温室效应的影响,采用静态箱-气相色谱法研究了千烟洲红壤丘陵区人工针叶林的土壤CH4排放通量特征及水热因子对其的影响。对2004年9月~2005年12月期间的观测结果分析表明:千烟洲人工针叶林土壤总体表现为大气CH4的吸收汇,原状林地土壤(Forest soil)情况下,CH4通量的变化为7.67~-67.17 μg·m-2·h-1,平均为-15.53 μg·m-2·h-1;无凋落物处理(Litter-free)情况下,CH4通量的变化是9.31~-90.36 μg·m-2·h-1,平均为-16.53 μg·m-2·h-1。二者对土壤CH4的吸收表现出明显的季节变化规律,秋>夏>冬>春,但无凋落物处理CH4变化幅度较原状林地土壤大,无凋落物处理吸收高峰出现在10月,最低值出现在翌年3月,原状林地土壤则分别在9月和翌年2月,均提前1个月。对土壤CH4吸收通量与温度和湿度的相关分析表明:无论是原状林地土壤还是无凋落物处理情况下,土壤CH4通量都与地下5 cm的温度和湿度相关性最高。偏相关分析反映了不同季节水热配置对土壤吸收CH4通量的影响:冬季为12月~翌年2月,温度起主要作用;雨季3~6月,温度作用为主,随着温度的升高而升高,水分作用微弱;7~8月,CH4吸收通量随着湿度的降低而增加,但高温限制了CH4的吸收;秋季(9~11月)水热配置适宜,CH4通量达到高峰值。总之,CH4吸收通量随着温度的升高和湿度的降低而增大,但温度过高会抑制其吸收。
刘玲玲, 刘允芬, 温学发, 王迎红. 千烟洲红壤丘陵区人工针叶林土壤CH4排放通量. 植物生态学报, 2008, 32(2): 431-439. DOI: 10.3773/j.issn.1005-264x.2008.02.022
LIU Ling-Ling, LIU Yun-Fen, WEN Xue-Fa, WANG Ying-Hong. CH4 EMISSION FLUX FROM SOIL OF PINE PLANTATIONS IN THE QIAN- YANZHOU RED EARTH HILL REGION OF CHINA. Chinese Journal of Plant Ecology, 2008, 32(2): 431-439. DOI: 10.3773/j.issn.1005-264x.2008.02.022
季节 Seasons | 原状林地土壤 Forest soil (μg·m-2·h-1) | CH4通量占年吸收比例 Proportion of CH4 flux in one year (%) | 无凋落物处理 Litter-free (μg·m-2·h-1) | CH4通量占年吸收比例 Proportion of CH4 flux in one year (%) |
---|---|---|---|---|
春季 Spring | -10.56 | 18.29 | -9.42 | 15.31 |
夏季 Summer | -15.25 | 26.43 | -16.88 | 27.45 |
秋季 Autumn | -20.02 | 34.69 | -24.97 | 40.59 |
冬季 Winter | -11.88 | 20.59 | -10.24 | 16.65 |
表1 不同实验设计的CH4平均季节通量比较
Table 1 CH4 fluxes of different treatments in different seasons
季节 Seasons | 原状林地土壤 Forest soil (μg·m-2·h-1) | CH4通量占年吸收比例 Proportion of CH4 flux in one year (%) | 无凋落物处理 Litter-free (μg·m-2·h-1) | CH4通量占年吸收比例 Proportion of CH4 flux in one year (%) |
---|---|---|---|---|
春季 Spring | -10.56 | 18.29 | -9.42 | 15.31 |
夏季 Summer | -15.25 | 26.43 | -16.88 | 27.45 |
秋季 Autumn | -20.02 | 34.69 | -24.97 | 40.59 |
冬季 Winter | -11.88 | 20.59 | -10.24 | 16.65 |
地下5 cm温度 Temperature at 5 cm depth | 地表温度 Surface temperature | 箱内温度 Temperature inside the chamber | 箱外温度 Temperature outside the chamber | |
---|---|---|---|---|
原状林地土壤CH4通量 CH4 flux under the treatment of forest soil | -0.469** | -0.383 | -0.354 | -0.344 |
无凋落物处理CH4通量 CH4 flux under the treatment of litter-free | -0.525** | -0.460* | -0.444* | -0.430* |
表2 原状林地土壤和无凋落物处理土壤CH4通量与不同温度的相关系数
Table 2 Correlated coefficients between CH4 flux and different temperatures under the treatment of forest soil and litter-free
地下5 cm温度 Temperature at 5 cm depth | 地表温度 Surface temperature | 箱内温度 Temperature inside the chamber | 箱外温度 Temperature outside the chamber | |
---|---|---|---|---|
原状林地土壤CH4通量 CH4 flux under the treatment of forest soil | -0.469** | -0.383 | -0.354 | -0.344 |
无凋落物处理CH4通量 CH4 flux under the treatment of litter-free | -0.525** | -0.460* | -0.444* | -0.430* |
5 cm湿度 Moisture at 5 cm depth | 20 cm湿度 Moisture at 20 cm depth | 50 cm湿度 Moisture at 50 cm depth | |
---|---|---|---|
原状林地土壤CH4通量 CH4 flux under the treatment of forest soil | 0.781*** | 0.578** | 0.324 |
无凋落物处理的CH4通量 CH4 flux under the treatment of litter-free | 0.690** | 0.546* | 0.330 |
表3 原状林地土壤和无凋落物处理下土壤CH4通量和土壤不同深度湿度的相关系数
Table 3 Correlated coefficients between CH4 flux and soil moisture at different depth under the treatment of forest soil and litter-free
5 cm湿度 Moisture at 5 cm depth | 20 cm湿度 Moisture at 20 cm depth | 50 cm湿度 Moisture at 50 cm depth | |
---|---|---|---|
原状林地土壤CH4通量 CH4 flux under the treatment of forest soil | 0.781*** | 0.578** | 0.324 |
无凋落物处理的CH4通量 CH4 flux under the treatment of litter-free | 0.690** | 0.546* | 0.330 |
春季 Spring1) | 夏季 Summer2) | 秋季 Autumn3) | 冬季 Winter4) | |
---|---|---|---|---|
5 cm温度 Temperature at 5 cm depth | -0.218 2 | 0.243 5 | -0.195 2 | -0.226 6 |
5 cm湿度 Moisture at 5 cm depth | -0.091 0 | 0.465 7*** | 0.126 3 | 0.183 8 |
表4 CH4通量与温度和湿度在不同季节的偏相关系数
Table 4 Partial relationships between CH4 flux and moisture and temperature at 5 cm depth in different seasons
春季 Spring1) | 夏季 Summer2) | 秋季 Autumn3) | 冬季 Winter4) | |
---|---|---|---|---|
5 cm温度 Temperature at 5 cm depth | -0.218 2 | 0.243 5 | -0.195 2 | -0.226 6 |
5 cm湿度 Moisture at 5 cm depth | -0.091 0 | 0.465 7*** | 0.126 3 | 0.183 8 |
春季 Spring1) | 夏季 Summer2) | 秋季 Autumn3) | 冬季 Winter4) | |
---|---|---|---|---|
F | 增加Increase | 增加Increase | 最大Max | 最小Min |
5T | 增加Increase | 最大Max | 减少Decrease | 最小Min |
5M | 最大Max | 最小Min | 增加Increase | 增加Increase |
T & M | 土壤湿度过高作用微弱 Less effect by the high moisture | 土壤温度过高限制 Restricted by the high temperature | 水热配置适宜 Well interaction by the suitable temperature and moisture | 土壤温度过低限制 Restricted by the low temperature |
表5 水热因子配置对CH4通量的影响
Table 5 The combined effects of moisture and temperature on CH4 flux
春季 Spring1) | 夏季 Summer2) | 秋季 Autumn3) | 冬季 Winter4) | |
---|---|---|---|---|
F | 增加Increase | 增加Increase | 最大Max | 最小Min |
5T | 增加Increase | 最大Max | 减少Decrease | 最小Min |
5M | 最大Max | 最小Min | 增加Increase | 增加Increase |
T & M | 土壤湿度过高作用微弱 Less effect by the high moisture | 土壤温度过高限制 Restricted by the high temperature | 水热配置适宜 Well interaction by the suitable temperature and moisture | 土壤温度过低限制 Restricted by the low temperature |
[1] | Ball BC, Scott A, Parker JP (1999). Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland. Soil & Tillage Research, 53, 29-39. |
[2] | Boeekx P, Cleemput OV (1996). Methane oxidation in a neutral landfill cover soil:influence of moisture content, temperature and nitrogen turnover. Environment, 5, 178-183. |
[3] | Castro MS, Steudler PA, Melillo JM (1995a). Factors controlling atmospheric methane consumption by temperate forest soils. Global Biogeochemical Cycles, 9, 1-10. |
[4] | Castro MS, Steudler PA, Melillo JM, Aber JD, Bowden D (1995b). Factors controlling atmospheric methane consumption by temperate forest soils. Global Biogeochemical Cycles, 9, 1-10. |
[5] | Chang TC, Yang SS (2003). Methane emission from wetlands in Taiwan. Atmospheric Environment, 37, 4551-4558. |
[6] | Dong YS (董云社), Peng GB (彭公炳), Li J (李俊) (1996). Seasonal variation of CO2, CH4, and N2O fluxes from temperate forest soil. Acta Geographica Sinica (地理学报), 51, 120-127. (in Chinese with English abstract) |
[7] | Du R (杜睿), Huang JH (黄建辉), Wang XW (万小伟), Jia YH (贾月慧) (2004). The research on the law of greenhouse gases emissions from warm temperate forest soil in Beijing region. Chinese Journal of Environmental Science (环境科学), 25(2), 12-16. (in Chinese with English abstract) |
[8] | Dunfield P, Knowles R (1993). Methane production and consumption in temperate and sub-arctic peat soil. Soil Biology and Biochemistry, 25, 321-326. |
[9] | Gulledge J, Doyle AP, Schimel JP (1997). Different NH4 inhibition patterns of soil CH4 consumption: a result of distinct CH4 oxidizer populations across sites. Soil Biology and Biochemistry, 29, 13-21. |
[10] | Harriss RC, Sebacher DI, Day RC (1982). Methane flux in the great dismal swamp. Nature, 297, 673-674. |
[11] | IPCC (1992). Scientific Assessment. Cambridge University Press, Cambridge, 25-46. |
[12] | IPCC (2001). Climate Change. The Scientific Basis: Chapter 4. Atmosphere Chemistry and Green-House Gases. Cambridge University Press, Cambridge. |
[13] | Kammann C, Grünhage L, Jager HJ (2001). Methane fluxes from differentially managed grassland study plots: the important role of CH4 oxidation in grassland with a high potential for CH4 production. Environmental Pollution, 115, 261-273. |
[14] | Lal R (1999). World soils and greenhouse effect. IGBP Global Change, Newsletter, 37, 4-5. |
[15] | Le Mer J, Roger P (2001). Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology, 37, 25-50. |
[16] | Mosier AR, Schimel D, Valentine D, Bronson K, Parton W (1991). Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature, 350, 330-332. |
[17] | Ojima DS, Valentine DW, Mosier AR (1993). Effect of land use change on methane oxidation in temperate forest and grassland soils. Chemosphere, 26, 675-685. |
[18] | Liu YF (刘允芬), Yu GY (于贵瑞), Sun XM (孙晓敏), Wen XF (温学发), Wang YH (王迎红), Song X (宋霞), Li J (李菊), Yang FT (杨风亭), Chen YR (陈永瑞), Liu QJ (刘琪王景) (2006). Seasonal dynamics of CO2 fluxes from subtropical plantation coniferous ecosystem. Sciences in China Suppl. Ⅱ. (Series D) (中国科学D辑, 增刊Ⅱ), 36, 91-102. (in Chinese) |
[19] | Qi YC (齐玉春), Luo J (罗辑), Dong YS (董云社), Zhang S (章申) (2002). The research of N2O and CH4 fluxes from soil of dark coniferous forest in Gongga Mountin. Sciences in China (Series D) (中国科学D辑), 32, 935-940. (in Chinese) |
[20] | Rask H, Schoenau J, Anderson D (2002). Factors influencing methane flux from a boreal forest wetland in Saskatchewan, Canada. Soil Biology & Biochemistry, 34, 435-443. |
[21] | Song CC (宋长春) (2004). Advance in the studies on methane emission from wetlands. Ecology and Environment (生态与环境), 13, 69-73. (in Chinese with English abstract) |
[22] | Steinkamp R, Butterbach-Bahl K, Papen H (2001). Methane oxidation by soil of an N limited and N fertilized Spruce forest in the Black Forest, Germany. Soil Biology and Biochemistry, 33, 145-153. |
[23] | Sun XY (孙向阳) (2000). CH4 emission flux of forest soils in lower mountain area, Beijing. Soil and Environmental Sciences (土壤与环境), 9, 173-176. (in Chinese with English abstract) |
[24] | Tamaia N, Takenakaa C, Ishizukab S, Tezukac T (2003). Methane flux and regulatory variables in soils of three equal-aged Japanese cypress (Chamaecyparis obtusa) forests in central Japan. Soil Biology & Biochemistry, 35, 633-641. |
[25] | Torn MS, Harte J (1996). Methane consumption by methane soils: implications for positive and negative feedback with climatic change. Biogeochemistry, 32, 53-67. |
[26] | Tsuyuzaki S, Nakano T, Kuniyoshi S (2001). Methane flux in grassy marshlands near Kolyma River, north-eastern Siberia. Soil Biology & Biochemistry, 33, 1419-1423. |
[27] | Wang DX (王德宣), Lü XG (吕宪国), Ding WX (丁维新), Cai ZC (蔡祖聪), Wang YY (王毅勇) (2002). Comparison of methane emission from mash and paddy field in Sanjiang plain. Scientia Geographica Sinica (地理科学), 22, 500-503. (in Chinese with English abstract) |
[28] | Wang MX (2000). Source of methane in China. Journal of Environmental Sciences, 5, 183-399. |
[29] | Wang YF (王艳芬), Ji BM (纪宝明), Chen ZZ (陈佐忠) (2000). Preliminary results of a study on CH4 flux in Xilin River Basin steppe under different grazing intensities. Acta Phytoecologica Sinica (植物生态学报), 24, 693-696. (in Chinese with English abstract) |
[30] | Wang YS (王跃思), Wang MX (王明星) (2000). Seasonal variation and trend of atmospheric methane in Beijing. Chinese Journal of Atmospheric Sciences (大气科学), 24, 157-164. (in Chinese with English abstract) |
[31] | Watson RT, Meiro Filho LG, Sanhueza E, Janetos A (1992). Greenhouse gases: sources and sinks. In: Houghton JT, Callendar BA, Varney SK eds. Climate Change 1992-The Supplementary Report to the IPPC Scientific Assessment. Cambridge University Press, New York. 25-46. |
[32] | Whalen SC, Reeburgh WS (1998). A methane flux time series for tundra environments. Global Biogeochemical Cycles, 2, 399-409. |
[33] | Xu H (徐慧), Chen GX (陈观新), Ma CX (马成新) (1995). A preliminary study on N2O and CH4 emissions from different soils on northern slope Changbai Mountion. Chinese Journal of Applied Ecology (应用生态学报), 6, 373-377. (in Chinese with English abstract) |
[34] | Zhang XJ (张秀君), Xu H (徐慧), Chen GX (陈冠雄) (2002). Important factors controlling rates of N2O emission and CH4 oxidation from forest soil. Environmental Science (环境科学), 23, 8-12. (in Chinese with English abstract) |
[35] | Zhou CY (周存宇), Zhou GY (周国逸), Wang YH (王迎红), Zhang DQ (张德强), Liu SZ (刘世忠), Sun Y (孙扬) (2005). CH4 fluxes from soil of coniferous broad-leaved mixed forest in Dinghu Mountain. Ecology and Environment (生态环境), 14, 333-335. (in Chinese with English abstract) |
[1] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
[2] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[3] | 杨萌, 于贵瑞. 中国干旱半干旱区土壤CO2与CH4通量的耦联解耦及其对温度的响应[J]. 植物生态学报, 2022, 46(12): 1497-1507. |
[4] | 魏杰, 陈昌华, 王晶苑, 温学发. 箱式通量观测技术和方法的理论假设及其应用进展[J]. 植物生态学报, 2020, 44(4): 318-329. |
[5] | 赵佳玉, 肖薇, 张弥, 王晶苑, 温学发, 李旭辉. 通量梯度法在温室气体及同位素通量观测研究中的应用与展望[J]. 植物生态学报, 2020, 44(4): 305-317. |
[6] | 窦渤凯, 王义东, 薛冬梅, 王中良. 挺水和湿生草本植物传输甲烷的过程与机制研究进展[J]. 植物生态学报, 2017, 41(11): 1208-1218. |
[7] | 徐冰鑫, 胡宜刚, 张志山, 陈永乐, 张鹏, 李刚. 模拟增温对荒漠生物土壤结皮-土壤系统CO2、CH4和N2O通量的影响[J]. 植物生态学报, 2014, 38(8): 809-820. |
[8] | 刘伟, 王继明, 王智平. 内蒙古典型草原植物功能型对土壤甲烷吸收的影响[J]. 植物生态学报, 2011, 35(3): 275-283. |
[9] | 李海防, 夏汉平, 傅声雷, 张杏锋. 剔除林下灌草和添加翅荚决明对尾叶桉林土壤温室气体排放的影响[J]. 植物生态学报, 2009, 33(6): 1015-1022. |
[10] | 牟长城, 石兰英, 孙晓新. 小兴安岭典型草丛沼泽湿地CO2、CH4和N2O的排放动态及其影响因素[J]. 植物生态学报, 2009, 33(3): 617-623. |
[11] | 王艳芬, 纪宝明, 陈佐忠, Dennis Ojima. 锡林河流域放牧条件下草原CH4通量研究结果初报[J]. 植物生态学报, 2000, 24(6): 693-696. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19