植物生态学报 ›› 2009, Vol. 33 ›› Issue (2): 338-346.DOI: 10.3773/j.issn.1005-264x.2009.02.011
张璞进1, 杨劼1,2,*(), 宋炳煜1, 赵利清1, 清华1,3
收稿日期:
2008-03-27
接受日期:
2008-10-10
出版日期:
2009-03-27
发布日期:
2009-03-31
通讯作者:
杨劼
作者简介:
* E-mail: Jyang@mail.imu.edu.cn基金资助:
ZHANG Pu-Jin1, YANG Jie1,2,*(), SONG Bing-Yu1, ZHAO Li-Qing1, QING Hua1,3
Received:
2008-03-27
Accepted:
2008-10-10
Online:
2009-03-27
Published:
2009-03-31
Contact:
YANG Jie
摘要:
在内蒙古高原, 藏锦鸡儿(Caragana tibetica)群落分布在草原向荒漠的过渡带上, 在植被区划中常作为由草原进入荒漠的指示物种。藏锦鸡儿是一种旱生垫状矮灌木, 由于其垫状生物学特性, 在地表覆沙的生境中常形成较均匀的、非常醒目的灌丛沙堆。不同大小的灌丛沙堆可对应其不同的发育阶段, 选取不同大小的藏锦鸡儿灌丛沙堆, 划分成小、中、大3组, 小、中两组灌丛沙堆对应其发育阶段, 大沙堆组对应于稳定阶段, 通过测定沙堆间、沙堆内(顶部、中部)及沙堆下的土壤有机质(Soil organic matters, SOM)、全磷(Total phosphorus, TP)和土壤质量含水量(Mass water content of soil, Wm), 分析了藏锦鸡儿群落土壤资源的特点。结果显示, 随着沙堆的发育, 沙堆内和堆下0~20 cm处的土壤有机质、全磷和土壤质量含水量的平均含量呈递增趋势, 大沙堆、中沙堆及堆下0~20 cm处的土壤有机质、全磷和土壤质量含水量的平均含量均大于沙堆间, 小沙堆的土壤有机质、堆下0~20 cm的土壤全磷和质量含水量的平均含量大于沙堆间。不同大小的灌丛沙堆, 在垂直方向上, 土壤有机质、全磷含量基本均呈先增加后减少的趋势, 土壤质量含水量呈递减趋势; 在水平方向, 随着灌丛沙堆的发育, 土壤有机质、全磷和土壤质量含水量在同一部位的同一土层基本呈递增趋势; 不同大小的沙堆表层0~20 cm 处的土壤有机质由顶部、中部、沙堆间依次呈先增加后减小的趋势; 大沙堆和中沙堆的全磷由沙堆顶部、中部、沙堆间依次呈递减趋势, 而小沙堆土壤全磷呈先增加后减少的趋势。随着灌丛沙堆的发育, 藏锦鸡儿灌丛截获的植物残体量呈增加趋势。研究显示, 藏锦鸡儿在发育过程中形成“沃岛效应”, 这种效应不仅表现在沙堆内, 也表现在沙堆下, 同时也引起土壤有机质、全磷和土壤水分的空间异质性分布。
张璞进, 杨劼, 宋炳煜, 赵利清, 清华. 藏锦鸡儿群落土壤资源空间异质性. 植物生态学报, 2009, 33(2): 338-346. DOI: 10.3773/j.issn.1005-264x.2009.02.011
ZHANG Pu-Jin, YANG Jie, SONG Bing-Yu, ZHAO Li-Qing, QING Hua. SPATIAL HETEROGENEITY OF SOIL RESOURCES OF CARAGANA TIBETICA COMMUNITY. Chinese Journal of Plant Ecology, 2009, 33(2): 338-346. DOI: 10.3773/j.issn.1005-264x.2009.02.011
大沙堆 Large nebkhas | 中沙堆 Medium nebkhas | 小沙堆 Small nebkhas | |
---|---|---|---|
长 Length | 250~200 | 140~110 | 70~60 |
宽 Width | 180~130 | 100~70 | 55~45 |
灌丛高 Shrub height | 65~60 | 55~45 | 30~20 |
沙堆高 Nebkhas height | 55~50 | 50~40 | 20~15 |
表1 藏锦鸡儿沙堆的取样范围
Table 1 The size of Caragana tibeticanebkhas (cm)
大沙堆 Large nebkhas | 中沙堆 Medium nebkhas | 小沙堆 Small nebkhas | |
---|---|---|---|
长 Length | 250~200 | 140~110 | 70~60 |
宽 Width | 180~130 | 100~70 | 55~45 |
灌丛高 Shrub height | 65~60 | 55~45 | 30~20 |
沙堆高 Nebkhas height | 55~50 | 50~40 | 20~15 |
大沙堆 Large nebkhas | 中沙堆 Medium nebkhas | 小沙堆 Small nebkhas | 沙堆外 Outside nebkhas | |
---|---|---|---|---|
土壤有机质 Soil organic matter (g?kg-1) | 9.444±1.886a | 8.132±1.435b | 7.579±1.579b | 7.564±0.916b |
土壤全磷 Soil total phosphorus (g?kg-1) | 0.233±0.020a | 0.221±0.030a c | 0.191±0.025b | 0.199±0.017bc |
土壤质量含水量 Mass water content of soil (%) | 2.55±0.8a | 2.15±0.6ab | 1.67±0.4b | 2.04±0.62ab |
表2 藏锦鸡儿沙堆内和沙堆间土壤有机质、土壤全磷和土壤质量含水量的平均含量(平均值±标准误差)
Table 2 The average contents of soil organic matter, soil total phosphorus and mass water content of soil inside and outside Caragana tibeticanebkhas (mean±SE)
大沙堆 Large nebkhas | 中沙堆 Medium nebkhas | 小沙堆 Small nebkhas | 沙堆外 Outside nebkhas | |
---|---|---|---|---|
土壤有机质 Soil organic matter (g?kg-1) | 9.444±1.886a | 8.132±1.435b | 7.579±1.579b | 7.564±0.916b |
土壤全磷 Soil total phosphorus (g?kg-1) | 0.233±0.020a | 0.221±0.030a c | 0.191±0.025b | 0.199±0.017bc |
土壤质量含水量 Mass water content of soil (%) | 2.55±0.8a | 2.15±0.6ab | 1.67±0.4b | 2.04±0.62ab |
大沙堆 Large nebkhas | 中沙堆 Medium nebkhas | 小沙堆 Small nebkhas | 沙堆外 Outside nebkhas | |
---|---|---|---|---|
土壤有机质 Soil organic matter (g?kg-1) | 9.739±2.367a | 8.692±1.310a | 7.393±1.600a | 7.564±0.916a |
土壤全磷 Soil total phosphorus (g?kg-1) | 0.223±0.040a | 0.216±0.030a | 0.203±0.038a | 0.199±0.017a |
土壤质量含水量 Mass water content of soil (%) | 5.87±0.56a | 4.16±0.63b | 2.72±0.32c | 2.04±0.62c |
表3 藏锦鸡儿沙堆地面下和沙堆间土壤有机质、土壤全磷和土壤质量含水量的平均含量(平均值±标准误差)
Table 3 The average contents of soil organic matter, soil total phosphorus and mass water content of soil underground nebkhas and outside the nebkhas (mean±SE)
大沙堆 Large nebkhas | 中沙堆 Medium nebkhas | 小沙堆 Small nebkhas | 沙堆外 Outside nebkhas | |
---|---|---|---|---|
土壤有机质 Soil organic matter (g?kg-1) | 9.739±2.367a | 8.692±1.310a | 7.393±1.600a | 7.564±0.916a |
土壤全磷 Soil total phosphorus (g?kg-1) | 0.223±0.040a | 0.216±0.030a | 0.203±0.038a | 0.199±0.017a |
土壤质量含水量 Mass water content of soil (%) | 5.87±0.56a | 4.16±0.63b | 2.72±0.32c | 2.04±0.62c |
图4 藏锦鸡儿沙堆顶部、中部与藏锦鸡儿沙堆间表层0~20 cm处土壤有机质和土壤全磷含量 图中垂直线表示标准误差
Fig. 4 Soil organic matter and soil total phosphorus contents in the surface layer soil (0~20 cm) in the top and middle parts ofCaragana tibetica nebkhas, as well as in the space between them Vertical line indicates standard error (±SE)
大沙堆 Large nebkhas | 中沙堆 Medium nebkhas | 小沙堆 Small nebkhas | 沙堆外 Outside nebkhas | |
---|---|---|---|---|
土壤质量含水量 Mass water content of soil (%) | 1.92±0.25a | 1.72±0.12a | 1.67±0.42a | 2.04±0.62a |
表4 藏锦鸡儿沙堆顶部表层0~20 cm处土壤质量含水量(平均值±标准误差)
Table 4 Soil-mass water content of Caragana tibetica nebkhas surface layer of 0~20 cm (mean±SE)
大沙堆 Large nebkhas | 中沙堆 Medium nebkhas | 小沙堆 Small nebkhas | 沙堆外 Outside nebkhas | |
---|---|---|---|---|
土壤质量含水量 Mass water content of soil (%) | 1.92±0.25a | 1.72±0.12a | 1.67±0.42a | 2.04±0.62a |
图5 藏锦鸡儿沙堆内、外植物残体含量 图中垂直线表标准误差
Fig. 5 The contents of plant residues inside and outside Caragana tibeticanebkhas Vertical line indicates standard error (±SE)
图6 藏锦鸡儿中沙堆土壤有机质含量 图中水平线表示标准误差
Fig. 6 The soil organic matter contents in mediumCaragana tibetica nebkhas Horizontal line indicates standard error (±SE)
广义土壤有机质 Generalized soil organic matter (g?kg-1) | 狭义土壤有机质 Narrow sense soil organic matter (g?kg-1) | |
---|---|---|
中沙堆 Medium nebkhas | 11.623±2.420a | 8.132±1.435b |
表5 藏锦鸡儿中沙堆内广义土壤有机质和狭义土壤有机质含量(平均值±标准误差)
Table 5 The average contents of generalized and narrow sense soil organic matter inside Caragana tibeticanebkhas (mean±SE)
广义土壤有机质 Generalized soil organic matter (g?kg-1) | 狭义土壤有机质 Narrow sense soil organic matter (g?kg-1) | |
---|---|---|
中沙堆 Medium nebkhas | 11.623±2.420a | 8.132±1.435b |
[1] | Bao SD (鲍士旦) (2000). Analysis of Soil and Agricultural Chemistry(土壤农化分析). China Agricultural Press, Beijing. (in Chinese) |
[2] | Carner W, Steinberger A (1989). Proposed mechanism for the formation of “fertile islands” in the desert ecosystem. Journal of Arid Environments, 16,257-262. |
[3] | Charley JL, West NE (1975). Plant-induced soil chemical patterns in some shrub-dominated semi-desert ecosystems of Utah. Journal of Ecology, 63,945-964. |
[4] | Comprehensive Survey Team of Inner Mongolia and Ningxia of the Chinese Academy of Sciences (中国科学院内蒙古宁夏综合考察队)(1985). Inner Mongolia Vegetation (内蒙古植被). Science Press, Beijing, 141-142. (in Chinese) |
[5] | Fisher FM, Zak JC, Cunningham GL, Whitford WG (1987). Water and nitrogen effect on growth and allocation patterns of creosotebush in the northern of Chihuahuas Desert. Journal of Range Management, 41,387-391. |
[6] | Fuhlendorf SD, Engle DM (2001). Restoring heterogeneity on rangeland: ecosystem management based on evolutionary grazing patterns. BioScience, 51,625-632. |
[7] | Huang CY (黄昌勇) (2000). Pedology (土壤学). China Agricultural Press, Beijing, 32-49. (in Chinese) |
[8] | Jia XH (贾晓红), Li XR (李新荣), Chen YW (陈应武) (2007). Soil properties of Nitraria land in southeastern Tengger Desert. Arid Land Geography (干旱区地理), 30,557-564. (in Chinese with English abstract) |
[9] | Li H, Reynolds JF (1995). On definition and quantification of heterogeneity. Oikos, 73,280-284. |
[10] | Li J (李君), Zhao CY (赵成义), Zhu H (朱宏), Wang F (王锋) (2007). Species effect of Tamarix spp. and Haloxylon ammodendron on shrub “fertile island”. Acta Ecologica Sinica (生态学报), 27,5138-5147. (in Chinese with English abstract) |
[11] | Liu FM (刘发民), Jin Y (金燕), Zhang XJ (张小军) (1999). Preliminary study on “fertile island” effect about Haloxylon ammodendron. Journal of Arid Land Resources and Environment (干旱区资源与研究), 13,86-88. (in Chinese with English abstract) |
[12] |
Robertson GP, Crun JR, Ellis BG (1993). The spatial variability of soil resources following long-term disturbance. Oecologia, 96,451-456.
DOI URL PMID |
[13] | Schlesinger WH, Raikes JA, Hartley AE, Cross AF (1996). On the spatial pattern of soil nutrients in desert ecosystems. Ecology, 77,364-374. |
[14] | Schlesinner WH, Pilmanis AM (1998). Plant-soil interactions in deserts. Biogeochemistry, 42,169-187. |
[15] | Stock WD, Dlamini TS, Cowling RM (1999). Plant induced fertile islands as possible indicators of desertification in asucculent desert ecosystem in northern Namaqualand, South Africa. Plant Ecology, 142,161-167. |
[16] | Su JH (苏金华), Liu FY (刘福英), Wang L (王璐), Qi XJ (齐小娟), Zhao J (赵静) (2006). Conservation on biodiversity in enrichment zone with relict vegetations between farmland and grassland—a case study in Eerduosi. Journal of Agro-Environment Science (农业环境科学学报), 25(Suppl.),285-289. |
[17] | Tengberg A, Faso B (1998). A comparative analysis of nehkhas in central Tunisia and northern Burkina Faso. Geomorphology, 22,181-192. |
[18] | Virginia RA, Jarrell WM (1983). Soil properties in a mesquite-dominated Sonoran Desert ecosystem. Soil Science Society of America Journal, 47,138-144. |
[19] | Wezel A, Rajot JL, Herbrig C (2000). Influence of shrubs on soil characteristics and their function in Sahelian agro-ecosystems in semi-arid Niger. Journal of Arid Environments, 44,383-398. |
[20] | Whitford WG, Anderson J, Rice PM (1997). Stemflow contribution to the “fertile island”effects in creosote bush, Larrea tridentate. Journal of Arid Environments, 35,451-457. |
[21] | Xiong XG (熊小刚), Han XG (韩兴国) (2005). Spatial heterogeneity in soil carbon and nitrogen resources, caused by Caragana microphylla, in the thicketization of semiarid grassland, Inner Mongolia. Acta Ecologica Sinica (生态学报), 25,1678-1683. (in Chinese with English abstract) |
[22] | Xiong Y (熊毅), Li QK (李庆逵) (1987). Soil of China(中国土壤). Science Press, Beijing. (in Chinese) |
[1] | 白悦, 刘晨, 黄月, 董亚楠, 王露. 科尔沁沙质草地植物群落高度空间异质性对不同放牧方式的响应[J]. 植物生态学报, 2022, 46(4): 394-404. |
[2] | 杨焕莹, 宋建达, 周焘, 金光泽, 姜峰, 刘志理. 林分、土壤及空间因子对谷地云冷杉林叶面积指数空间异质性的影响[J]. 植物生态学报, 2019, 43(4): 342-351. |
[3] | 杜虎, 曾馥平, 宋同清, 温远光, 李春干, 彭晚霞, 张浩, 曾昭霞. 广西主要森林土壤有机碳空间分布及其影响因素[J]. 植物生态学报, 2016, 40(4): 282-291. |
[4] | 黄琛,张宇,王静,李元恒,五十六,塔娜,赵萌莉,韩国栋,朗巴达拉呼,赵艳芳. 不同放牧强度下短花针茅荒漠草原植被的空间异质性[J]. 植物生态学报, 2014, 38(11): 1184-1193. |
[5] | 王淮亮,高君亮,原伟杰,李玉宝,高永. 戈壁灌丛堆周边地表土壤颗粒的空间异质特征[J]. 植物生态学报, 2013, 37(5): 464-473. |
[6] | 郭俊杰, 赵志刚, 欧景莉, 沙二, 林开勤, 曾杰, 徐大平. 广西靖西西南桦天然林种子雨的时空动态[J]. 植物生态学报, 2012, 36(8): 729-738. |
[7] | 张忠华, 胡刚, 祝介东, 倪健. 喀斯特森林土壤养分的空间异质性及其对树种分布的影响[J]. 植物生态学报, 2011, 35(10): 1038-1049. |
[8] | 翟树强, 李传荣, 许景伟, 刘立川, 张丹, 周振. 灵山湾国家森林公园刺槐林下垂序商陆种子雨时空动态[J]. 植物生态学报, 2010, 34(10): 1236-1242. |
[9] | 尚占环, 龙瑞军, 马玉寿, 丁路明. 青藏高原“黑土滩”次生毒杂草群落成体植株与幼苗空间异质性及相似性分析[J]. 植物生态学报, 2008, 32(5): 1157-1165. |
[10] | 王海涛, 何兴东, 高玉葆, 卢建国, 薛苹苹, 马迪. 油蒿演替群落密度对土壤湿度和有机质空间异质性的响应[J]. 植物生态学报, 2007, 31(6): 1145-1153. |
[11] | 梁士楚, 张淑敏, 于飞海, 董鸣. 绢毛匍匐委陵菜与土壤有效磷的小尺度空间相关分析[J]. 植物生态学报, 2007, 31(4): 613-618. |
[12] | 何志斌, 赵文智, 常学礼. 荒漠绿洲过渡带植被空间异质性的可塑性面积单元问题[J]. 植物生态学报, 2004, 28(5): 616-622. |
[13] | 韩有志, 王政权, 谷加存. 林分光照空间异质性对水曲柳更新的影响[J]. 植物生态学报, 2004, 28(4): 468-475. |
[14] | 王政权, 王庆成, 李哈滨. 红松老龄林主要树种的空间异质性特征与比较的定量研究[J]. 植物生态学报, 2000, 24(6): 718-723. |
[15] | 王其兵, 李凌浩, 刘先华, 贺金生. 内蒙古锡林河流域草原土壤有机碳及氮素空间异质分析[J]. 植物生态学报, 1998, 22(5): 409-414. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19